
SOLUTIONS TO HOMEWORK 6

1. (a) Let g be a primitive root modulo ph. Then every reduced residue x
modulo ph can be written uniquely in the form x ≡ gu (mod ph) for some
integer u with 0 ⩽ u ⩽ ph−1(p− 1). Consequently, one has xp ≡ 1 (mod ph) if
and only if gup ≡ 1 (mod ph), and this is possible if and only if ph−1(p− 1)|up.
Since the latter condition is equivalent to requiring ph−2(p− 1)|u, we see that

the solutions of xp ≡ 1 (mod ph) are given by x ≡ gkp
h−2(p−1) (mod ph), with

0 ⩽ k < p. Hence the congruence in question has precisely p solutions.

(b) Proceeding as in (a), we find that x2p ≡ 1 (mod ph) if and only if one has
g2up ≡ 1 (mod ph), and this is possible if and only if ph−1(p − 1)|2up. Since
the latter condition is equivalent to requiring 1

2
ph−2(p − 1)|u, we see that the

solutions of x2p ≡ 1 (mod ph) are given by x ≡ gkp
h−2(p−1)/2 (mod ph), with

0 ⩽ k < 2p. Hence the congruence in question has precisely 2p solutions.

2. (a) Put B = bm +10bm−1 + . . .+10m−1b1. Then, if the usual base 10 digital
representation of a/n is a recurring decimal in the specified form, one has

a

n
= 10−mB

∞∑
h=0

(10−m)h =
B

10m − 1
.

Then a(10m − 1) = Bn, whence a(10m − 1) ≡ 0 (mod n). But (a, n) = 1, and
thus 10m ≡ 1 (mod n).

(b) When (10, n) = 1 and the order of 10 modulo n is d, it follows at once
that d|φ(n) (as a consequence of Euler’s theorem). Moreover, we have 10d ≡
1 (mod n), and thus 10d−1 = Cn, for some positive integer C. Write B = aC
in the shape b1b2 · · · bd as a base 10 integer, where bi ∈ {0, 1, 2, . . . , 9}. Then
we have

a

n
=

aC

10d − 1
=

B

10d − 1
= 10−dB

∞∑
h=0

(10−d)h,

whence a/n = 0 · b1b2 · · · bd. So a/n has a recurring decimal expansion with
period d. Moreover, since 10k ̸≡ 1 (mod n) whenever 0 ⩽ k < d, it follows
from part (a) that d is the least period of this recurring decimal.

(c) The largest possible order of 10 modulo n is φ(n), and this can occur only
when 10 is a primitive root modulo n. Moreover, we have φ(n) = n− 1 if and
only if n is prime. The desired conclusion follows.

3. For each prime pi, there exists a primitive root gi. Moreover, since (pi, pj) =
1 for 1 ⩽ i < j ⩽ r, it follows from the Chinese Remainder Theorem that there
exists an integer g with g ≡ gi (mod pi) for 1 ⩽ i ⩽ r. This integer g has the
property that for each integer d and each index i, one has gd ≡ gdi (mod pi),
and thus g is primitive modulo pi for 1 ⩽ i ⩽ r.
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4. (a) Since 0 < ad − 1 < aq − 1 whenever 1 ⩽ d < q, the smallest integer d
with ad ≡ 1 (mod aq − 1) is q. This integer d = q is the order of a modulo
aq − 1, and consequently divides φ(aq − 1).

(b) Suppose that N = aq − 1 =
∏

pr∥N pr, where the exponents r are positive

integers and the primes p are distinct. Hence φ(N) =
∏

pr∥N pr−1(p−1). From

part (a) we have q|φ(N), so for some prime p dividing N , we have q|pr−1(p−1).
The latter implies that q = p or p ≡ 1 (mod q). Thus we conclude that
either N is divisible by q, or else N is divisible by a prime number p with
p ≡ 1 (mod q).

5. Suppose that there are only finitely many prime numbers p with p ≡
1 (mod q), and let these primes be p1, p2, . . . , pn. Put a = qp1 · · · pn, and
consider the integer N = aq − 1. Since a is divisible by q, we find that
(N, q) = (aq − 1, q) = 1, so that q ∤ N . Then it follows from Q4(b) that N
must be divisible by a prime number p with p ≡ 1 (mod q). But for 1 ⩽ i ⩽ n,
we have pi|a and hence (N, pi) = (aq − 1, pi) = 1, and thus pi ∤ N . Then p is a
prime congruent to 1 modulo q that is different from p1, . . . , pn, contradicting
our initial hypothesis. Therefore, there are infinitely many primes p with
p ≡ 1 (mod q).
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