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1. (a) The function µ(n) is multiplicative, and hence µ2(n) is also multiplica-
tive. Then it suffices to examine prime powers, where we find that for each
prime p and non-negative integer h, one has∑

d|ph
µ2(d) =

h∑
l=0

µ2(pl) =

{
1, when h = 0,

1 + µ(p)2 = 2, when h ⩾ 1.

Thus, by applying multiplicativity, we see that when n =
∏

ph∥n p
h, one has∑

d|n µ
2(d) =

∏
p|n 2 = 2ω(n), as required.

(b) Since τ(n) is also multiplicative, we may proceed in like manner. Here we
note that τ(pl) = l + 1, and hence

∑
d|ph

µ(d)τ(d) =
h∑

l=0

µ(pl)τ(pl) =

{
1, when h = 0,

1− 2 = −1, when h ⩾ 1.

Thus, by applying multiplicativity, we see that when n =
∏

ph∥n p
h, one has∑

d|n µ(d)τ(d) =
∏

p|n(−1) = (−1)ω(n), as required.

2. (a) The sum of the first n positive integers is n(n+ 1)/2, so(
n∑

a=1

a

)2

= (n(n+ 1)/2)2 = 1
4
n2(n+ 1)2.

Meanwhile, whenever
n∑

a=1

a3 = 1
4
n2(n+ 1)2,

then one has

n+1∑
a=1

a3 = (n+1)3+ 1
4
n2(n+1)2 = 1

4
(n+1)2(4(n+1)+n2) = 1

4
(n+1)2(n+2)2.

Since
∑1

a=1 a
3 = 1 = 1

4
12(1 + 1)2, we conclude by induction that

n∑
a=1

a3 = 1
4
n2(n+ 1)2 =

(
n∑

a=1

a

)2

.

(b) For each prime power ph, we have

h∑
a=0

τ(pa) =
h∑

a=0

(a+ 1) = 1
2
(h+ 1)(h+ 2),

1
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and
h∑

a=0

τ(pa)3 =
h∑

a=0

(a+ 1)3 = 1
4
(h+ 1)2(h+ 2)2.

Thus, whenever n is a prime power, one has

∑
d|n

τ(d)3 =

∑
d|n

τ(d)

2

,

and the desired conclusion follows by multiplicativity.

3. Let f be an arithmetic function.

(a) When a and n are positive integers, one has∑
d|(a,n)

µ(d) = ν((a, n)) =

{
1, when (a, n) = 1,

0, when (a, n) > 1.

(b) Thus ∑
1⩽a⩽n
(a,n)=1

f(a) =
∑

1⩽a⩽n

∑
d|(a,n)

µ(d)f(a) =
∑
d|n

µ(d)
∑

1⩽a⩽n
d|a

f(a).

(c) We now assume that n > 1. First taking f(a) = 1, we find that∑
1⩽a⩽n
(a,n)=1

1 =
∑
d|n

µ(d)
∑

1⩽a⩽n
d|a

1 =
∑
d|n

µ(d)n/d = φ(n).

Next, taking f(a) = a, we obtain∑
1⩽a⩽n
(a,n)=1

a =
∑
d|n

µ(d)
∑

1⩽a⩽n
d|a

a =
∑
d|n

µ(d)d · 1
2
(n/d)(n/d+ 1)

= 1
2
n
∑
d|n

µ(d)n/d+ 1
2
n
∑
d|n

µ(d) = 1
2
nφ(n).

As a quick alternative, one can also use the change of summation a 7→ n − a
to see that

2
∑

1⩽a⩽n
(a,n)=1

a =
∑

1⩽a⩽n
(a,n)=1

a+
∑

1⩽a⩽n
(a,n)=1

(n− a) = n
∑

1⩽a⩽n
(a,n)=1

1 = nφ(n),

from which the desired conclusion is immediate.
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