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1. INTRODUCTION

Number theory concerns itself with studying the multiplicative and additive structure
of the natural numbers N = {1,2,3,...} (defined via the Peano axioms or some such: this
will not concern us). Frequently, number theoretic questions are better asked in the set of
all integers Z = {0,+1,42,£3,...}, and better answered by making use of the rational
numbers Q = {p/q : p € Z,q € N}, the real numbers R, and the complex numbers C,
where more structure may become apparent.

Some form of number theory was developed by the ancient Babylonians, Egyptians and
Greeks, and many modern open problems are motivated by this work.

Problem 1.1 (Egyptian Fractions). Is it true that for all integers n with n > 2, there
exist x,vy, z € N satisfying the equation

4 1 1 1

—=—4+-+=-17

n o xr y =z
For example, one has

4 1 1+1

5 2 5 10

It is generally believed that the answer to this problem should be in the affirmative. The
solubility of the above equation has been checked for all n < 1017 (by E. S. Saez, 2014),
and is known to hold “for almost all” natural numbers n; see R. C. Vaughan, On a problem
of Erdds, Straus and Schinzel, Mathematika 17 (1970), 193-198.

Problem 1.2 (Riemann Hypothesis). Is it true that when x is large enough, then one
has
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There is a million dollar Millenial Prize from the Clay Foundation available for a proof
of the conjecture that the answer here is in the affirmative. The sharpest unconditional
result in this direction has the function

zexp (—A(log )3/ (log log :c)’l/5)

in place of z'/2(log x)'%°%%%  wherein A is a suitable positive constant. This was proved

independently by I. M. Vinogradov and Korobov in 1958.

Problem 1.3 (Mersenne Primes). Show that there are infinitely many primes of the shape
2P — 1, with p a prime number.
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At the time of writing, the largest known prime is 2135279841 1 a number with 41024320
decimal digits. The primality of this number was established through the efforts of GIMPS
(see Great Internet Mersenne Prime Search, at http://www.mersenne.org/) on 19th Oc-
tober 2024. One can check that the integer 2" — 1 can be prime only when n is prime
(why?). The integers 2P — 1 with p a prime number are known as Mersenne primes, and
an industry of efficient primality tests for these special numbers is reflected in the GIMPS
effort. The latest discovery earned a $3000 prize, and there is $150000 for the discovery
of the first 100 million digit prime number.

Problem 1.4 (ABC Conjecture). Show that, for each ¢ > 0, there exists C. > 0 (depend-
ing at most on ) such that whenever abc # 0 and a + b+ c =0, then

max{lal bl lc} <C.( [ ») -

p divides abc

Note here that the product is taken over distinct prime divisors of a, b and ¢. The ABC
Conjecture has many profound implications, but until very recently seemed far beyond
reach. Shinichi Mochizuki has recently claimed to have proved this conjecture. However,
there is considerable skepticism concerning the validity of his proof, and despite much
activity attempting to verify his proof, serious problems have been identified without
fixes. See

http:\\en.wikipedia.org\wiki\Shinichi_Mochizuki
for more.
The conjecture that assumed the label “Fermat’s Last Theorem”, famously proved by

Wiles in 1995, was motivated by the work of Diophantus. Even quite modest generalisa-
tions of this conjecture remain open.

Problem 1.5 (Generalised Fermat problem). Is it true that the equation
"ty =" w"
has no solutions in integers x, y, z, w, n, with n > 5, other than the obvious ones with
{z,y} = {£z, £w} (n even),
{z,y} ={zw} or {z+y=2+w=0} (n odd)?

It is generally believed that the answer to this problem should be in the affirmative.
For some quantitative work on this problem, see T. D. Browning, Fqual sums of two kth
powers, J. Number Theory 96 (2002), 293-318.

Problem 1.6 (Goldbach Conjecture). Is every even integer exceeding 2 a sum of two
prime numbers?

It is generally believed that the answer to this problem should be in the affirmative. It
is known that “almost all” even natural numbers can indeed be written as the sum of two
primes; see H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach’s
problem, Acta Arith. 27 (1975), 353-370 for decisive progress in the history of this
problem.

A positive integer n is called perfect if it is equal to the sum of all of the divisors of n
(itself!) smaller than n. Thus, one sees that 6 = 1 + 2 4 3, 28 and 496 are all perfect.
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Problem 1.7 (Odd perfect numbers). Do there exist odd perfect numbers?

It is generally believed that the answer to this problem should be in the negative. It is
known that if n is odd and perfect, then n > 105 and further n has at least 101 prime
factors and at least 10 distinct prime factors (see P. Ochem and M. Rao, Odd perfect
numbers are greater than 10'% Math. Comp. 81 (2012), 1869-1877). We note that,
although Wirsing showed in 1959 that for some positive number W, and all large values
of z, one has

card {n < z : n is odd and perfect} < z"V/loslos

it remains possible that there are more odd than even perfect numbers.

2. DIVISIBILITY
We begin by reviewing some basic properties of divisibility.

Definition 2.1. (i) Suppose that a,b € Z. We say that b divides a (written bla) when
there exists ¢ € Z such that a = be. In such circumstances, we say that a is divisible by
b, or that b is a divisor of a;

(ii) When a is not divisible by b, we write b { a;

(iii) When bla and 1 < b < a, we say that b is a proper divisor of «;

(iv) We write a”||b when a*|b but a*™ 1 b.

It is understood that bja makes sense only when b is non-zero.

Note that the notation a*||b relates to the ordered pair (a, k) and b. Thus the statement
4]|24, which is implicitly asserting that 4'||24, holds because 4|24 but 4%  24. Meanwhile,
the (distinct) statement 22||24 is false. In fact one has 23]|24 because 23|24 but 2* 1 24. This
notation is mostly used regarding prime power divisibility, and so any possible confusion
will be easily avoided.

The next theorem records the basic properties of divisibility that are intuitively clear,
but easily established from the definition.

Theorem 2.2. (i) ala for every a € Z \ {0};

(ii) al0 for every a € Z \ {0};

(#1) if a|b and blc, then alc;

(iv) if alb and a|c, then for all z,y € Z, one has a|(bx + cy);
(v) if alb and bla, then a = +b;

(vi) if alb and a > 0 and b > 0, then a < b;

(vii) when m # 0, one has alb < ma|mb.

Proof. We will leave these assertions as exercises, though in order to illustrate ideas, we
will give a formal proof of part (vii). Suppose that m # 0 and a|b. Then there exists
¢ € Z with the property that b = ac, whence mb = m(ac). So there exists ¢ € Z
with the property that (mb) = (ma)c, whence by the definition of divisibility (ma)|(mb).
Conversely, if m # 0 and ma|mb, then there exists ¢ € Z with mb = (ma)c. But since
m # 0, the latter implies that b = ac. So there exists ¢ € Z with the property that b = ac,
so from the definition of divisibility, one has alb. O

The next theorem underpins the development of the theory of congruences.
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Theorem 2.3 (The Division Algorithm). For any a,b € Z with a > 0, there ezist unique
integers q and r with b = ga +r and 0 < r < a. If, further, one has a1 b, then one has
the stronger inequality 0 < r < a.

Proof. Let aq be the largest multiple of a not exceeding b. Then if we put » = b — aq,
one has r > 0. Moreover, by hypothesis one has a(q¢ + 1) > b, and thus r = b — aq < a.
This establishes the existence of the integers ¢ and r as stated. In order to establish
uniqueness, suppose that another pair ¢/, 7’ satisfy analogous conditions. If r # »/, there
is no loss of generality in supposing that » < r’. Then since aq’ + " = b = aq+r, one has
a(q—¢') = r" —r, whence a|(r’' —r) and 0 < 7’ —r < a. But the latter contradicts case
(vi) of Theorem 2.2 (which would imply that " —r > a). Thus we find that r =/, and
this now leads to the equation ga = ¢’a. But a is non-zero, so ¢ = ¢’. Thus we find that
(q,7) = (¢, "), and this establishes uniqueness.

Finally, if 7 = 0 then b = ga, whence alb. The final assertion of the theorem is now
immediate. 0

Definition 2.4. (i) Suppose that a € Z \ {0} and b,c € Z. We say that a is a common
divisor of b and ¢ when a|b and alc;

(ii) When b and ¢ are not both zero, the number of common divisors of b and c¢ is finite (see
Theorem 2.2(vi)), and thus we may define the greatest common divisor (or highest
common factor) of b and ¢ to be the largest common divisor. The greatest common
divisor of b and ¢ is written (b, ¢) (or ged(b, ¢) or hef(b, ¢));

(iii) When ¢y, . . ., g, are integers, not all zero, we similarly write (g1, ..., g,) for the largest
integer d satisfying the condition that d|g; (1 <@ < n).

We remark that it is common to refer to the integers a and b as being coprime when
(a,b) = 1.

Example 2.5. One has (0,2) = 2, (1,3) = 1 and (1729, 182) = 91 (at this point one can
use trial and error, observing that (a,b) must be at most min{|al, |b|}).

The next theorem provides a useful tool to establish simple properties of greatest com-
mon divisors.

Theorem 2.6. If g = (b,c), then there exist integers x and y with g = bx + cy.

Proof. Define the integer d by setting
d = min{bu + cv : u,v € Z and bu + cv > 0}.

Also, let x and y be the values of u and v corresponding to this minimum, so that
d=bx + cy.

We first prove that d|b. If to the contrary d t b, then by the Division Algorithm
(Theorem 2.3), there exist integers r and ¢ with b = dg +r and 0 < r < d. Then

r=>b—dq=>b—q(br+cy) =b(1 — qzx) + c(—qy),

whence
r > min{bu + cv : u,v € Z and bu + cv > 0} = d.

This gives a contradiction, since r < d, and thus we find that d|b.
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A similar argument shows that d|c, and thus d is indeed a common divisor of b and ¢,
which is to say that d < (b,¢). But g = (b, ¢), and so there exist integers B and C' with
b= gB and ¢ = gC. Consequently, one has d = g(Bx + Cy), and hence g|d. Thus g > 0,
d > 0 and g|d, so by Theorem 2.2(vi) one has g < d. Then one has d > (b, ¢) in addition
to the relation d < (b, ¢) which we derived above, so that necessarily d = (b, ¢). But then
(b, ¢) = bx + ¢y, and this completes the proof of the theorem. O

Theorem 2.7. The greatest common divisor of b and c is:
(i) the least positive value of bx + cy, as x and y range over Z;
(i) the positive common divisor of b and ¢ that is divisible by all other such divisors.

Proof. The assertion (i) is plain from Theorem 2.6. For part (ii), observe that there exist
integers x and y with (b, ¢) = bx + cy. Then if d|b and d|c, say b = dB and ¢ = dC, one
finds that (b,c¢) = d(Bx + Cy), whence d|(b,c). So (b,c) is divisible by all other positive
common divisors of b and c. U

Remark 2.8. If g1, ..., g, are not all zero, then it follows as in the proof of Theorem 2.6
that there exist integers xq,...,x, with (g1,...,9,) = 121 + -+ + G Tp.

The criterion for determining the greatest common divisor recorded in Theorem 2.6, and
(in modified form) in Theorem 2.7, provides a simple and direct approach to establishing
simple properties of the greatest common divisor function.

Theorem 2.9. Whenever m € N, one has (ma, mb) = m(a,b).
Proof. Making use of Theorem 2.7(i) (twice), one has
(ma, mb) = min{maz + mby : z,y € Z and max + mby > 0}
=mmin{ax + by : ,y € Z and ax + by > 0}
= m(a,b).
U

Remark 2.10. Similiarly, when d € N, and d|a and d|b, one has (a/d,b/d) = (a,b)/d. In
particular, if g = (a,b), then (a/g,b/g) = 1.

Proof. The first assertion follows from Theorem 2.9 by means of the relation (d(a/d), d(b/d)) =

d(a/d,b/d), and the second is immediate from the first. O
Theorem 2.11. Whenever a, b, m are integers with (a,m) = (b,m) = 1, one has
(ab,m) = 1.

Proof. By Theorem 2.6, there exist integers z, y, u, v with 1 = ax +my = bu+muv. Thus
we obtain

(az)(bu) = (1 — my)(1 —mv) =1 — muw,
say, with w = y + v — mvy. Consequently, one has (ab)(xu) + mw = 1. But then by

Theorem 2.2(iv), any common divisor of ab and m divides 1. We therefore conclude that
(ab,m) = 1. O

Theorem 2.12. For any integer x, and for any integers a and b, not both zero, one has

(a,b) = (b,a) = (a,—b) = (a,b+ ax).
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Proof. The first assertions of the theorem are plain from Theorem 2.7(i). In order to prove
that (a,b) = (a,b+ ax), observe that by Theorem 2.6, there exist integers u and v with
(a,b) = au+bv, whence (a,b) = a(u—zv)+ (b+ax)v. We therefore have (a,b+ax)|(a,b).
But (a,b)|a and (a,b)|b, so (a,b)|(b+ ax). But now we have (a,b+ ax)|(a,b)|(a,b+ ax),
and so by virtue of positivity, Theorem 2.2(v) establishes the desired conclusion. 0

Example: Compute (n? + 1,n + 1) for n € Z.
Solution: Observe that repeated application of Theorem 2.12 shows that

M*+1Ln+t)=mn*+1—-nn+1),n+1)=(1—-n,n+1)
=1-n+Mn+1),n+1)=(2,n+1),

whence
2, when n is odd,

(n2+1,n+1):{

1, when n is even.

Theorem 2.13. Suppose that c|lab and (b,c) = 1. Then c|a.

Proof. By Theorem 2.9, the hypotheses of the theorem imply that (ab, ac) = |a|(b, c) = |al.
But by hypothesis, one has c|ab, which implies that c|(ab,ac). We thus conclude that
cla. O

At last we are positioned to describe an algorithm for calculating greatest common
divisors. Of course, by exhaustive checking one could determine the greatest common
divisor of two integers b and ¢ in time O(min{|b|, |c|}), but the Euclidean Algorithm has
running time only O(log(min{|b|,|c|})). Indeed, for most pairs of integers b and ¢, the
Euclidean Algorithm takes only about (12log2/7?)log(max{|b], |c|}) steps.

Theorem 2.14 (Euclidean Algorithm). Suppose that b € Z and ¢ € N. Define the
integers r; and q; for i = 1 by repeated application of the Division Algorithm thus:

b=cq +r, with0<r <c,
C=1T1q2 + T2, with0<r2<r1,

ry =1roq3 + 13, with 0 <13 <7y,

Tj_o =Tj_1q4; + 75, wz’th0<'r’j<7ﬁj,1,
Tj—1 = Tjq5+1-

(Here we adopt obvious conventions if the process terminates prematurely.) Then (b, c) =
rj, the last non-zero remainder in the division process.

Proof. Repeated application of Theorem 2.12 yields
(b,c) = (b—cqr,c) = (r1,¢)
= (c=riqe,m1) = (r2,71)
= (r1 —1rag3, m2) = (13,732)
== (rj,rj-1) = (r3,0) = ;.

This conclusion of the theorem follows at once. O
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Observation 2.15. One can apply the Fuclidean Algorithm to obtain integral solutions
(x,y) to linear equations of the shape bx + cy = (b,c) by “reversing” the application of
the algorithm. In general, one can apply this method to solve the equation bx + cy = k
whenever (b, c)|k (Why? Convince yourself that this is the case.)

Proof. Using the notation employed in the statement of the Euclidean Algorithm, one
finds that r; is a linear combination of b and ¢, and then that ro is a linear combination
of ¢ and 71, and hence of b and ¢, and that r3 is a linear combination of r; and r,, and
hence of b and ¢, and so on. In this way, we see that every remainder r; that occurs in the
algorithm is itself a linear combination of b and ¢, and the desired conclusion follows. [

Example 2.16. Determine the greatest common divisor of 2025 and 323, and find integers
x and y with 2025z + 323y = (2025, 323).

Proof. Applying the Euclidean Algorithm, we obtain

2025 =323 -6 487
323 =87-3+ 62

87 =62-1+25
62 =252+ 12
25=12-2+1
12=12-1,

and so (2025,323) = 1. Reversing this application of the Euclidean Algorithm, we find
that

1=25-12-2
=25—-(62—-25-2)-2=25-5—-62-2
= (87—62-1)-5—62-2=87-5—62-7
=87-5—(323—-87-3)-7=87-26—323-7
= (2025 —323-6) - 26 — 323 - 7 = 2025 - 26 — 323 - 163.
Thus, the equation 2025z + 323y = (2025, 323) = 1 has the solution (z,y) = (26, —163).
]

Note 2.17. One can obtain integral solutions to linear equations in more variables by
breaking the equation down into subequations of two variables each. In order to illustrate
the strategy, consider the equation 18v + 39y + 77z = 1. One can verify easily that
(18,39) = 3, and so the equation 18x + 39y = 3 possesses an integral solution, say
18xg + 39yg = 3, which may be found via the Fuclidean Algorithm. Now substitute this
solution into the original equation with an additional parameter, and solve the resulting
equation. We obtain the equation 3l + 77z = 1. Since (3,77) = 1, the latter equation has
an integral solution (1, z) = (lo, 20), say, which may be found via the Euclidean Algorithm.
A solution of the original equation is then given by (x,y, z) = (loxo, loYo, 20)-

We finish this section by introducing the concept of least common multiples.

Definition 2.18. (i) Non-zero integers as, ..., a, are said to have a common multiple b
when a;|b for 1 <i < n.
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(ii) The least common multiple of the non-zero integers ay, ..., a, is the smallest positive
common multiple of these integers, which we denote by [ay, ..., a,].

Theorem 2.19. (i) If m is a positive integer and a and b are non-zero integers, then
[ma, mb] = mla, b].
(i1) When a and b are non-zero integers, one has [a,b](a,b) = |ab].

Proof. First consider the assertion of part (i) of the theorem. Let D = [ma, mb] and
d = [a,b]. Then md is a multiple of both ma and mb, so that md > D. Also, D is a
multiple of both ma and mb, so that D/m is a multiple of both a and b. Then D/m > d.
We have therefore shown that md < D < md, whence D = md. This establishes part (i)
of the theorem.

Now consider part (ii). Put d = (a,b). Then (a/d,b/d) = (a,b)/d =1 and [a/d,b/d] =
la,b]/d. We aim to show that whenever o' and b’ satisfy (a/,b') = 1, then [a’,V/](a’, 1)
|a’b'|, for then we obtain [a/d,b/d](a/d,b/d) = |ab|/d* whence ([a,b]/d)((a,b)/d) =
lab|/d?, so that [a,b](a,b) = |ab|, as desired. There is no loss of generality in suppos-
ing that ' > 0 and &’ > 0. We may suppose that [a’,0'] = ma’, with ¥'|ma’. Since we now
suppose that (a’,0) = 1, it follows from Theorem 2.13 that &'|m, whence b’ < m. Then
b’ < ma'. But V'a' > [V/,d'] = ma’. We therefore conclude that ¥'a" = [V, a’| whenever
(0',a’) = 1. In view of our earlier remarks, the desired conclusion follows. O

Theorem 2.20. Suppose that by, ..., b, are non-zero integers. Then, putting k = [by, ..., b,],
the set of all common multiples of the integers b, ..., b, is given by {km : m € Z}.

Proof. Exercise. O

3. PRIMES AND THE FUNDAMENTAL THEOREM OF ARITHMETIC

Definition 3.1. A natural number p satisfying the conditions (i) p > 1, and (ii) that
whenever d|p, one has |d| = 1 or p, is called a prime number. Any integer exceeding 1
which is not a prime number is called a composite number.

Theorem 3.2 (Factorisation into primes). Every integer n exceeding 1 may be written as
a product of prime numbers.

Proof. The theorem plainly holds for n = 2. Suppose that the theorem holds for 1 < n <
N. The least divisor d of N + 1 with d > 1 is plainly prime, say p. But (N +1)/p < N,
so is either equal to 1, or else by hypothesis is a product of prime numbers. Then N + 1
is also a product of prime numbers. Consequently, by induction, we find that all integers
exceeding 1 are a product of prime numbers. 0

Given a factorisation of an integer n into prime numbers, one may collect together like
primes and order the primes by size so as to give a factorisation

n= if[p?y
=1

where p; < py < -+ < ps are prime numbers, and r; € N (1 < i < s). We will call this the
canonical prime factorisation of n. Note that the empty product of (no) primes is equal
to 1. If the choice of sign, the primes p;, and the exponents r;, are uniquely determined,
we say that n has a unique factorisation into primes.
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Lemma 3.3. Suppose that p is a prime number, and pla;...a;. Then pla; for some i
with 1 <1 < t.

Proof. We prove first that if m and n are natural numbers and p|mn, then p|m or p|n.
For if p t m, then (p,m) = 1, and then it follows from Theorem 2.13 that p|n. Moving
now to the general case, the latter argument shows that when pla; ... a;, then either p|a;
or plas . ..a;. The conclusion of the lemma therefore follows by induction on . O

Theorem 3.4 (The Fundamental Theorem of Arithmetic). Positive integers n > 1 have
unique factorisations into primes.

Proof. Suppose, by way of deriving a contradiction, that n > 1 is the smallest natural
number that fails to have a unique factorisation into primes. Let p be a prime factor of
n. It follows from Lemma 3.3 that all factorisations of n contain p as one of the prime
factors. One cannot have p = n, since then n factors uniquely into primes. Consequently,
the integer ny = n/p satisfies 1 < ny < n, and hence possesses a unique factorisation into
primes. But then n = png likewise has a unique factorisation into primes, contradicting
our opening hypothesis. It therefore follows that all positive integers n > 1 have a unique
factorisation into primes. O

Remark 3.5. The unique factorisation theorem enables one to determine greatest common
divisors and least common multiples simply. At least, that is the case when prime factori-
sations are available, which is computationally expensive data to assemble (the Euclidean
Algorithm, on the other hand, is computationally very cheap). Suppose that

a= f[p? and b= f[p?,
=1 i=1

with the p; distinct prime numbers and the exponents r; and ¢; non-negative integers.
Then on has

(a,b) = [[p™"*"" and [a,8] = [] o,
i=1 i=1
Moreover, since min{r;, ¢;} + max{r;, t;} = r; +1;, it follows from the latter formulae that
(a,b)[a,b] = |ab|, as has already been established in Theorem 2.19(ii).

Theorem 3.6 (Euclid). There are infinitely many prime numbers, and hence also arbi-
trarily large prime numbers.

Proof. Suppose to the contrary that there are only finitely many prime numbers, say
P1y- .-y Pn. None of py,...,p, divides the auxiliary integer @),, = p1...p, + 1, so either
@, is itself prime, or else it is divisible by a prime different from py, ..., p,. This yields a
contradiction, and the theorem follows. O

Note that, writing p,, for the n-th prime number, the expression pips...p, + 1 is not
always prime. Thus, for example, we have 2-3-...- 13+ 1 = 30031 = 59 - 509. It is
conjectured that, starting with ¢; = 2, if one defines ¢, 1 to be the least prime divisor of
the integer ¢ . .. ¢, + 1, then the sequence (g,) should consist of all the prime numbers. A
forthcoming homework exercise proves a result related to this conjecture. Thus, writing
pp, for the n-th prime, one can prove that p,,; is the smallest prime divisor of the integer

(py ... py)PL-Pr) gy

(p1---Pn
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Theorem 3.7. The n-th smallest prime number p,, satisfies p, < 22".

Proof. Since p; = 2, the conclusion claimed in the theorem holds for n = 1. Suppose that
N is a natural number, and that the conclusion holds when 1 < n < N. Then by the
argument of the proof of Theorem 3.6, one finds that

Pyt Spipe...py+1 <2227 22V 41 <02V 02"

Then the conclusion holds also for N + 1, and so the desired conclusion follows by induc-
tion. U

Now define the function 7(x) for positive numbers = by putting

m(x) = Z 1.

P
p prime

Thus one has 7(2) = 1, 7(3) = 2, 7(v/10) = 2, and so on.
Corollary 3.8. One has w(x) > loglogx for x > 2.
Proof. One can verify this assertion using the conclusion of Theorem 3.7. O

The “exercise” at the end of this section shows that there are constants ¢; and ¢y with
0 < ¢1 <1 < ¢y such that for each number z with > 2, one has

cx/logr < w(x) < cox/logx.

In fact, using complex analysis and the Riemann zeta function, defined for Re(s) > 1 by

means of the series
((s)=> n=]Ja-p)"
n=1

p
and by analytic continuation for s # 1, one can prove that

w(x) ~z/logz, as x — oo.

This asymptotic formula was proved by Hadamard and de la Vallée Poussin in 1896 (for
a detailed account of this work, see E. C. Titchmarsh, The theory of the Riemann zeta-
function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Claren-
don Press, Oxford University Press, Oxford, 1986). Thus the nth prime number has size
about nlogn. One of the list of 7 Millenial Problems proposed by the Clay Mathematics
Institute is the resolution of the Riemann Hypothesis, which asserts that the analytic
continuation of {(s) to the complex plane has, aside from the trivial zeros at s = —2, —4,
..., only zeros on the half-line Re(s) = 1/2 (see http://www.claymath.org/millennium).
An accessible conclusion equivalent to this assertion is that a positive number C exists
for which the upper bound

vode 1/2 1000000
m(x) — — 1
(x) /2 Toal < Cz'/*(log x)

holds for x > 2. The sharpest unconditional result in this direction has the function

x exp (—A(log )3/ (log log x)_1/5)
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in place of z'/2(log x)'°%%%  wwherein A is a suitable positive constant. This was proved

independently by I. M. Vinogradov and Korobov in 1958 (see the book by Titchmarsh for
an account of this work).

Given an interesting sequence such as the prime numbers, number theorists are inter-
ested in analysing features of their distribution. We begin with arithmetic progressions,
about which we will say more as the course progresses.

Theorem 3.9. There are infinitely many prime numbers of the shape 4k + 3, with k a
non-negative integer.

Proof. Suppose that there are only finitely many prime numbers of the shape 4k + 3 with
k > 0, say p1,...,p,. Consider the integer () = 4p;...p, — 1. The integer @) is odd,
and of the shape 4k 4+ 3, so cannot be divisible exclusively by primes of the shape 4k + 1.

Moreover, none of the primes py,...,p, divide ). Thus @ is divisible by a new prime
of the shape 4k + 3 not amongst py,...,p,, contradicting our initial hypothesis. This
completes the proof of the theorem. O

One can imitate the above proof to show that there are infinitely many prime numbers
of the shape 6k + 5 (k € N). But the corresponding proof for 4k + 1 is not so easy.
What about proving that there are infinitely many primes of the shape 5k + 47 See a
forthcoming homework problem for a proof that there are infinitely many prime numbers
of the shape 4k + 1 (k € N).

At the time of writing, the largest known prime is 2136279841 1 a number with 41024320
decimal digits. The primality of this number was established through the efforts of GIMPS
(see Great Internet Mersenne Prime Search, at http://www.mersenne.org/) on 19th Oc-
tober 2024. One can check that the integer 2" — 1 can be prime only when n is prime
(why?). The integers 2P — 1 with p a prime number are known as Mersenne primes, and
an industry of efficient primality tests for these special numbers is reflected in the GIMPS
effort. On the other hand, it is conjectured that there are only finitely many Fermat
primes, that is to say, integers of the shape 22" + 1 which are prime numbers. These
integers are known to be prime for n = 0,1, 2, 3,4, and at the time of writing known to
be composite for 5 < n < 32.

Now we consider gaps between consecutive prime numbers.

Theorem 3.10. There are arbitrarily large gaps between consecutive prime numbers.

Proof. Consider the sequence n!+ 2, n! + 3, ..., n! +n of n — 1 consecutive integers. The
first of these integers is divisible by 2, the second by 3, and so on, with the last divisible
by n. None of these integers can be prime, therefore, and so there are gaps of length at
least n — 1, for any natural number n, between consecutive prime numbers. 0

This theorem shows that one can find gaps between consective primes p,, and p, 1 at
least as large as C'logp,,/loglog p,, for a suitable positive constant C', infinitely often. It
was shown in December 2014 by Ford, Green, Konyagin, Maynard and Tao that there is
a positive number C' with the property that the gaps can be as large as

c (log py) (log log py, ) (log log log log p,, )
log log log p,,
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infinitely often (see arXiv:1412.5029). On the other hand, in July 2014 the mathemat-
ics consortium D. H. J. Polymath, led by Terry Tao, has built on the pivotal work of
Yitang Zhang and James Maynard to prove that p,.1 — p, < 246 infinitely often (see
arXiv:1407.4897), thus providing an approximation to the Twin Prime Conjecture that
Pni1 — Pn = 2 infinitely often.

A natural question is whether there are simple ways to produce prime numbers. The
next theorem shows that polynomials, at least, cannot take prime values all the time.

Theorem 3.11. There is no non-constant polynomaial which takes only prime values.

Proof. Suppose that f(¢) is a polynomial with integral coefficients. Then for every pair of
large integers n and m, an examination of the Taylor expansion (which for polynomials is
equivalent to a binomial expansion) reveals that f(n) is a proper divisor of f(n+mf(n))
exceeding 1. Thus we see that f(n+ mf(n)) is composite. O

Matijasevich showed in 1970 that there exist polynomials f(ny,...,nx), all of whose
positive values are prime numbers, and indeed such polynomials exist in 12 variables.
Moreover, there are infinitely many prime numbers of the shape 2% + y* (Friedlander and
Iwaniec, 1998; see J. B. Friedlander and H. Iwaniec, The polynomial X*+Y* captures its
primes. Ann. of Math. (2) 148 (1998), 945-1040), and also of the form z* + 2y* (Heath-
Brown, 2001; see D. R. Heath-Brown, Primes represented by x3 + 2y>. Acta Math. 186
(2001), 1-84). For linear polynomials, much more is known, as we shall see later in the
course. When a and b are natural numbers with (a,b) = 1, Dirichlet proved that an + b
is prime for infinitely many integers n (this was proved in 1830).

Adventurous students may wish to follow the steps below to obtain information about
the asymptotic behaviour of 7(z) previously advertised:

(a) For each n > 1, and each prime p, prove that p”||n!, where h = > °°_ [n/p™|, and
| 2| denotes max{n € Z : n < z}.

(b) Prove that, for each x € R, we have |z| —2|z/2| < 1. Hence prove that

H p divides (2n)!/(n!)* divides Hp“’ (n > 2),

n<p<2n p<2n

where 7, is the largest integer such that p» < 2n. Deduce that
(7(2n) — m(n))logn < log ((2n)!/(n!)?) < 7(2n) log(2n).

(c) Prove that 2" < (2n)!/(n!)? < 22" for n > 2. Deduce that there are constants ¢y, co > 0
such that 7(n) > ¢;n/logn and 7(2n) — w(n) < cen/logn.

(d) Deduce from part (c) that when y > 2, there is a constant ¢ > 0 such that
m(y) — m(y/2) < c3y/logy. Infer that there is a constant ¢, > 0 such that 7(y)logy —
m(y/2)log(y/2) < cay.

(e) Apply the last inequality with y = /2™ to show that when m > 0 and 2™ < x/2, one
has 7(z) < csx/logx for a constant ¢; > 0. Infer from part (c) that for z > 2, one has
m(xz) > cgx/logx for a suitable constant ¢g > 0. Hence there are constants ¢; > 0 and
cg > 0 for which cgz/logx < 7(x) < csx/logx.
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4. CONGRUENCES

We begin by introducing some definitions and elementary properties.

Definition 4.1. Suppose that a,b € Z and m € N. We say that a is congruent to b
modulo m, and write a = b (mod m), when m/|(a — b).
We say that a is not congruent to b modulo m, and write a #Z b (mod m), when

m+1 (a—Db).

Theorem 4.2. Let a, b, ¢, d be integers. Then

(i) a =0 (mod m) <= b=a (mod m) <= a—b=0 (mod m);

(ii) a = b (mod m) and b = ¢ (mod m) = a = ¢ (mod m);

(#i) a = b (mod m) and ¢ = d (mod m) = a+c¢ =b+d (mod m) and ac = bd (mod m);
(iv) If a = b (mod m) and d|m with d > 0, then a = b (mod d);

(v) If a = b (mod m) and ¢ > 0, then ac = be (mod mc).

Proof. Try this as an exercise. You can check that congruence modulo m is an equivalence
relation on Z, and the ring properties of Z are preserved under congruence modulo m. [

Corollary 4.3. When p(t) is a polynomial with integral coefficients, it follows that when-
ever a = b (mod m), then p(a) = p(b) (mod m).

Proof. Use induction to establish that whenever a = b (mod m), then a' = b' (mod m)
for each 7 € N. O

The next theorem indicates how factors may be cancelled through congruences.

Theorem 4.4. Let a,x,y € Z and m € N. Then

(i) ax = ay (mod m) <= z =y (mod m/(a,m));

(i) If ax = ay (mod m) and (a,m) =1, then x =y (mod m);
(1)) v =y (mod m;) (1<i<r) < xz=y (mod [my,...,m,]).

Proof. Observe first that when (a,m) = 1, then m|a(z —y) <= m|(x —y). Then the
conclusion of part (ii) follows, and this also delivers part (i) whenever (a, m) = 1. When
(a,m) > 1, on the other hand, one does at least have (a/(a,m), m/(a,m)) = 1, so that

m a m

mla(zr —y) < (x—y) <~

) (l’—y)

(@ m) | am) @m
This establishes the conclusion of part (i) of the theorem.
We now consider part (iii) of the theorem. Observe first that whenever m;|(z — y) for
(1 <i<r),then [my,...,m;]|(z —y). On the other hand, if [m4,...,m,]|(x — y), then
O

m;|(z —y) for (1 <i < r). The conclusion of part (iii) is now immediate.
Now we examine the set of equivalence classes with respect to congruence modulo m.

Definition 4.5. (i) If x = y (mod m), then y is called a residue of x modulo m;

(ii) We say that {x1,...,z,,} is a complete residue system modulo m if for each y € 7Z,
there exists a unique z; with y = z; (mod m);

(iii) The set of integers « with = a (mod m) is called the residue class, or congruence
class, of @ modulo m.

We also wish to consider residue classes containing integers coprime to the modulus,
and this prompts the following observation.
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Theorem 4.6. Whenever b = ¢ (mod m), one has (b,m) = (¢, m).

Proof. If b = ¢ (mod m), then m|(b—c), whence there exists an integer = with b = c+muz.
But then (b, m) = (¢ + mz, m) = (¢, m), as desired. O

Definition 4.7. (i) A reduced residue system modulo m is a set of integers rq,...,r,
satisfying (a) (r;,m) =1 for 1 < i < n, (b) r; # r; (mod m) for ¢ # j, and (c) whenever
(x,m) =1, then = r; (mod m) for some i with 1 <i < n;

(ii) The number of elements in a reduced residue system modulo m is denoted by ¢(m)
(Euler’s totient, or Euler’s ¢-function).

Theorem 4.8. The number ¢(m) is equal to the number of integers n with 1 < n < m
and (n,m) = 1.

Proof. This is immediate from the definition of the Euler totient. 0
Theorem 4.9. Suppose that (a,m) = 1. Then whenever {ry,...,r,} is a complete (re-
spectively, reduced) residue system modulo m, the set {ary,...,ar,} is also a complete

(respectively, reduced) residue system modulo m.

Proof. When (a,m) = 1, it follows from Theorem 4.4(ii) that
ar; = arj (mod m) <= r; =r; (mod m).

Hence the sets {rq,...,r,} and {ar{,...,ar,} are in bijective correspondence. Thus
{ary,...,ar,} must be a complete residue system whenever {r,...,r,} is such (because
these sets have the same number of elements). Moreover, since (a, m) = 1, it follows that
whenever (r;,;m) = 1 one has (ar;, m) = 1, and so each element ar; is a reduced residue.
Since the two sets in question have the same number of elements, we find that whenever
{ry,...,mn} is a reduced residue system, then so is {ary,...,ar,}. O

Theorem 4.10 (Euler, 1760). If (a,n) = 1, then a®™ =1 (mod n).

Proof. Let {ri,72,...,r4mm)} be any reduced residue system modulo n, and suppose that
(a,n) = 1. By Theorem 4.9, the system {ary, ..., argm)} is also a reduced residue system
modulo n. Then there is a permutation o of {1,2,... ,¢(n)} with the property that
ri = ary; (mod n) (1 < i < ¢(n)). Consequently, one has

b(n) $(n) p(n) $(n)
ri= || (ary;) = H(arj) = %" H r; (mod n).
i=1 i=1 j=1 j=1
But (r1...74),n) = 1, and thus a®™ =1 (mod n). O

Corollary 4.11 (Fermat’s Little Theorem, 1640). Let p be a prime number, and suppose
that (a,p) = 1. Then one has a?~! = 1 (mod p). Meanwhile, for all integers a one has
a’ = a (mod p).

Proof. Note that the set {1,2,...,p — 1} is a reduced residue system modulo p. Thus
¢(p) = p—1, and the first part of the theorem follows from Theorem 4.10. When (a, p) = 1,
the second part of the theorem is immediate from the first part. Meanwhile, if (a,p) > 1,
one has pla, and then one plainly has a”? = a (mod p). This completes the proof of the
theorem. O
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Fermat’s Little Theorem, and Euler’s Theorem, ensure that the computation of powers
is very efficient modulo p (or modulo m).

Example 4.12. Compute 52°%° (mod 41). Observe first that ¢(41) = 40, and so it follows
from Fermat’s Little Theorem that 5% =1 (mod 41), and hence

52025 — (540)50525 = 525 (mOd 41)

Note next that powers which are themselves powers of 2 are easy to compute by re-
peated squaring (the “divide and conquer” algorithm). Thus one finds that 5% = 25 =
—16 (mod 41), 5 = (5%)2 = (—16)? = 10 (mod 41), 5* = (5*)? = (10)? = 18 (mod 41),
516 = (58)2 = 18%2 = 324 = —4 (mod 41). In this way we deduce that

5202 = 510. 5% .51 = (—4) .18 -5 = —-360 = 9 (mod 41).

The strategy of computing power of 2 powers of residues is one that is effective in
general. The residue of a” (mod m) may be computed by writing the base 2 expansion
of r, computing the relevant power of 2 powers that occur in this binary expansion by
repeated squaring, and then multiplying together to obtain the rth power.

Euler’s Theorem provides one (rather inefficient) method of computing multiplicative
inverses modulo m. An efficient method is based on the Euclidean Algorithm.

Theorem 4.13. Suppose that (a, m) = 1. Then there exists an integer x with the property
that ax = 1 (mod m). If xy and xo are any two such integers, then xy = x5 (mod m).
Also, if (a,m) > 1, then there exists no integer x with ax =1 (mod m).

Proof. Suppose that (a,m) = 1. Then by the Euclidean Algorithm, there exist in-
tegers x and y such that ax + my = 1, whence ax = 1 (mod m). Meanwhile, if
ar; = 1 = axs (mod m), then a(x; — z3) = 0 (mod m). But (a,m) = 1, and thus
x1 — xg = 0 (mod m). We have therefore established both existence and uniqueness of
the multiplicative inverse for residues a with (a,m) = 1. If (a,m) > 1, then (az,m) > 1
for every integer x. But if one were to have ax = 1 (mod m), then (ax,m) = (1,m) =1,
which yields a contradiction. This establishes the last part of the theorem. U

We have just shown that the congruence classes of a reduced residue system modulo m
form a group under multiplication modulo m.

Theorem 4.14 (Wilson’s Theorem; Waring 1770, Lagrange). For each prime number p,
one has (p —1)! = —1 (mod p).

Proof. The proof for p = 2 and 3 is immediate, so suppose henceforth that p is a prime
number with p > 5. Observe that when 1 < a < p — 1, one has (a,p) = 1, so there
exists an integer @ unique modulo p with a@ = 1 (mod p). Moreover, there is no loss in
supposing that @ satisfies 1 < a@ < p—1, and then @ is a uniquely defined integer. We may
now pair off the integers a with 1 < a < p—1 with their counterparts @ with 1 <a < p—1,
so that aa = 1 (mod p) for each pair. Note that a # @ so long as a® # 1 (mod p). But
a’> =1 (mod p) if and only if (a — 1)(a + 1) = 0 (mod p), and the latter is possible only
when a = £1 (mod p). Thus we find that

1:[@ = H(aa) =1 (mod p),
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whence
a=(p—1)=-1 (mod p).

O

Notice that when m is a composite integer exceeding 4, then the product expansion of
(m — 1)! necessarily contains two factors a and b with m|ab, whence one has (m — 1)! =
0 (mod m). Wilson’s Theorem therefore provides the world’s worst primality test. On
the other hand, the proof of Wilson’s Theorem does motivate a proof of a criterion for
the solubility of the congruence z2 = —1 (mod p).

Theorem 4.15. When p = 2, or when p is a prime number with p = 1 (mod 4), the
congruence r?> = —1 (mod p) is soluble. When p = 3 (mod 4), the latter congruence is
not soluble.

Proof. When p = 2, the conclusion is clear. Assume next that p = 1 (mod 4), and write
r = (p—1)/2 and x = r!. Then since r is even, one has

P12 (-1 (=2 (p=1) = (p— DI= 1 (mod p).

Thus, when p = 1 (mod 4), the congruence 2 = —1 (mod p) is indeed soluble. Suppose
then that p = 3 (mod 4). If it were possible that an integer x exists with 22 = —1 (mod p),
then one finds that (22)P~1/2 = (=1)?=1/2 = —1 (mod p), yet by Fermat’s Little Theo-
rem, one has (22)?~1/2 = 27=1 = 1 (mod p) whenever (z,p) = 1. We therefore arrive at
a contradiction, and this completes the proof of the theorem. 0

The observation that —1 is not a square modulo p when p = 3 (mod 4) can be exploited
to provide simple irrationality proofs.

Theorem 4.16. /2 is irrational.

Proof. Suppose that v/2 is rational, so there exist € Z and y € N with (x,y) = 1 such
that (z/y)*> = 2. Then 2? = 2y?, so that in particular one has z? = 2y*> = —y* (mod 3).
But since 12 = 22 = 1 (mod 3) and 0> = 0 (mod 3), it follows that the congruence
r? = —y? (mod 3) is soluble only when 3|z and 3|y, and this contradicts the condition
(z,y) = 1. We are therefore forced to conclude that v/2 is irrational. O

Proof. (Novelty version) Suppose that V/2 is rational, and let k be the smallest positive in-
teger with kv/2 € Z. Then kv/2 —k is a smaller such integer, contradicting the minimality
of k£ and establishing the corollary. O

It may be worth expanding on the last line of this proof. Since v/2 may be verified to lie
between 1 and 2, and k+v/2 is supposed to be an integer, the number kv/2 — k is a positive
integer smaller than k. Moreover, since (v/2)? = 2 (it is here that the definition of /2 is
used), one has (k\/§ — k)\/§ = 2k — k+/2, and this is an integer because kv/2 is again an
integer. This is a proof that has been “rediscovered” many times (see, for example, T.
Estermann, The drrationality of v/2, Math. Gaz. (408) 59 (1975), 110).
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5. THE CHINESE REMAINDER THEOREM

We now seek to analyse the solubility of congruences by reinterpreting their solutions
modulo a composite integer m in terms of related congruences modulo prime powers.

Theorem 5.1 (Chinese Remainder Theorem). Let my,...,m, denote positive integers
with (m;, m;) =1 fori# j. Also, let ay,...,a, € Z. Then the system of congruences
r=a; (modm;) (1<i<r) (5.1)

18 soluble simultaneously for some integer x. If xy is any one such solution, then x is a
solution of (5.1) if and only if x = xy (mod myims...m,).

Proof. Let m = mymgy...m,, and n; = m/m; (1 < j < r). Then for each j with
1 < j < ronehas (mj,n;) = 1, whence by Theorem 4.13 there exists an integer b; with
n;b; =1 (mod m;). Moreover,
my... My o
n;jb; = (Wb]) m; = 0 (mod m;)
whenever ¢ # j. Then if we put o = nib1ay + - - - + n,b.a,, we find that xqg = n;b;a; =
a; (mod m;) (1 <4 < r). Thus we may conclude that z( is a solution of (5.1).

In order to establish uniqueness, suppose that z and y are any two solutions of (5.1).
Then one has x = y (mod m;) (1 <4 < r) and (m;,m;) =1 (i # j). Then by Theorem
4.4(iii), it follows that z =y (mod [my,...,m,]), and so x =y (mod m). O
Example 5.2. Find the set of solutions to the system of congruences

4r =1 (mod 3), =2 (mod5), 2z =5 (mod7).
We first convert this into a form where the leading coefficients are all 1. Thus, multiplying

the final congruence through by 4 (the multiplicative inverse of 2 modulo 7), we obtain
the equivalent system

r=1 (mod 3), x=2(modb5), =6 (mod7).

We next put m; = 3, mg = 5, mg = 7, so that (m;,m;) = 1 for i # j. Define m =
3-5-7 =105, and n; = 105/3 = 35, ny = 105/5 = 21, ng = 105/7 = 15. We compute
integers b; with n;b; =1 (mod m;) (j = 1,2,3) by means of the Euclidean Algorithm (or
directly, if the numbers are small enough). Thus we find that

3561 =1 (mod 3) = 2b; =1 (mod 3) = b; =2 (mod 3),
21by =1 (mod 5) = by =1 (mod 5),
15b3 =1 (mod 7) = b3 =1 (mod 7).
So take
To=35-2-1421-1-2415-1-6
= 70 + 42 + 90 = 202 = 97 (mod 105).

Then we find that xq = 97 satisfies the given congruences, and the complete set of solutions
is given by © = 97 + 105k (k € Z).

Example 5.3. Find the set of solutions, if any, to the system of congruences
=1 (mod 15), z =2 (mod 35).
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In this example, the moduli of the two congruences are not coprime, since (35,15) = 5.
In order to determine whether or not the system is soluble, we therefore need to examine
the underlying congruences, extracting as a modulus this greatest common divisor. Thus
we find that any potential solution x of the system must satisfy

r=1(mod 15) = x=1(mod3) and z =1 (mod 5),
and at the same time
r=2(mod 35) = x=2(modb) and x =2 (mod 7).

But then one has x =1 (mod 5) and = 2 (mod 5), two congruence conditions that are
plainly incompatible. We may conclude then that there are no solutions of the simulta-
neous congruences r = 1 (mod 15) and z = 2 (mod 35).

We wish to investigate further the properties of the Euler totient, and so pause to
introduce the concept of a multiplicative function.

Definition 5.4. (i) We say that a function f : N — C is an arithmetical function;
(ii) An arithmetical function f is said to be multiplicative if (a) f is not identically zero,
and (b) whenever (m,n) = 1, one has f(mn) = f(m)f(n).

Note that if f(n) is multiplicative, then necessarily one has f(1) =1 (Why?).

Theorem 5.5. The function ¢(n) is multiplicative. Thus, whenever (m,n) =1, one has
p(mn) = ¢(m)p(n). Moreover, if n has canonical prime factorisation [, p}*, then

o(n) =[Ipi " 0i—1) =n]J-1/p).
i=1 oln

Proof. Let n and n’ be natural numbers with (n,n’) = 1, and let a and @’ run through
the reduced residues modulo n, and modulo n’ respectively. The total number of choices
for @ and a' is plainly ¢(n)¢(n’). We examine the integer an’ 4 a’'n, and aim to show that
this is a reduced residue modulo nn’, and moreover that distinct choices for (a,a’) yield
distinct values of an’ + a’n (mod nn’). This shows that the number of reduced residues
modulo nn’ is at least as large as the number of pairs (a,a’), which is to say that one has
p(nn') > B(n)o().

Now, whenever (a,n) = (a’,n’) = 1, one has
(an' + a'n,nn')|n'(an’ + a'n,n) = n'(an’,n) = n'(a,n) =/,
and likewise (an’ + a'n,nn’)|n, whence (an' + a’'n,nn’)|(n,n') = 1. We therefore deduce
that (an’+a’'n,nn’) = 1, and so any integer of the shape an’+a'n, with (a,n) = (a’,n’) = 1,
is a reduced residue modulo nn/. But any two distinct numbers of the latter form are
incongruent modulo nn/, for if (a;,n) = (a,n') =1 (i = 1,2), and
ain’ + ajn = agn’ + ayn (mod nn'),

then

(a1 —ax)n’ =0 (mod n) = a1 = ay (mod n),
and similarly @} = a} (mod n’). Thus we obtain a; = ay and a] = a). Distinct choices
for (a,a’) do indeed lead to distinct values of an’ 4+ a’n (mod nn’), therefore, and we have
achieved the objectives described in the first paragraph of our proof.
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We next seek to establish that whenever (b, nn’) = 1, then there exist reduced residues
a modulo n and &’ modulo n’ with b = an’ + a'n (mod nn'). But (n,n') = 1, so by
the Euclidean Algorithm, there exist integers m and m’ with mn’ + m'n = 1. Now
(m,n) = (m/,n') =1, and so (bm,n) = (bm/,n') = 1, and thus there exist integers a and
a’ with (a,n) = (a’,n’) = 1 satisfying an’+a'n = b, namely a = bm and o’ = bm/. Distinct
choices for b generate distinct choices for a and @’ modulo n and modulo n’, respectively.
For if b; generates (a;,a;) for i = 1,2, and a1 = ay (mod n) and a) = a), (mod n'), then
bym = a3 = ay = bym (mod n), whence by = by (mod n), since (m,n) = 1. Similarly,
one has by = by (mod n’), and thus b; = by (mod nn’), which shows that b; = by. It
therefore follows that the number of pairs (a, a’) with a a reduced residue modulo n, and
a’ a reduced residue modulo n/, cannot be smaller than the number of reduced residues
modulo nn/. This establishes that ¢(nn') < ¢(n)é(n'). Together with the inequality
o(nn') = ¢(n)o(n’) that we established earlier, this yields the relation ¢(nn') = ¢(n)p(n')
whenever (n,n’) = 1. Then the Euler totient is indeed a multiplicative function.

In order to complete the proof of the theorem, we observe next that when p is a prime
number, one has ¢(p") = p” — p"~!, since the total number of residues modulo p" is p", of
which precisely the p"~! divisible by p are not reduced. In this way, the final assertions
of the theorem follow by making use of the multiplicative property of ¢(-). O

Useful properties of ¢(n) that will be employed later stem easily from its multiplica-
tive property. Before establishing one such property, we establish a general result for
multiplicative functions.

Lemma 5.6. Suppose that f(n) is multiplicative, and define g(n) = -, f(d). Then
g(n) is a multiplicative function.

Proof. Suppose that n and m are natural numbers with (n,m) = 1, and suppose that
dlmn. Write d; = (d,m) and dy = (d,n). Then d = dydy and (dy,dz) = 1. Thus we

obtain

gmn) =" f(d) =33 fldids) = | Y f(dn) | [ D f(do) |

dlmn di|m d2|n dilm da|n
whence g(mn) = g(m)g(n). This completes the proof that g is multiplicative. O
Corollary 5.7. One has 3_,, ¢(d) = n.

Proof. Observe that for each prime number p, and every natural number r, one has
dood)=> s =1+> @' - ="
d|p” h=0 h=1

Thus, owing to the multiplicative property of ¢ established in Theorem 5.5, it follows
from Lemma 5.6 that >, #(d) is a multiplicative function of n, whence

Yo d =T (D e@ | =][r =n

dln pTlln \ dlp" pTlin
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To conclude this section, we examine the set of solutions of a polynomial congruence.

Definition 5.8. Let f(z) € Z[z], and suppose that ry,...,r, is a complete residue
system modulo m. Then we say that the number of solutions of the congruence f(x) =
0 (mod m) is the number of residues r; with f(r;) =0 (mod m).

Definition 5.9. Let f(z) = a,2" + a,_12" ' + -+ + ao be a polynomial with integral
coefficients. Let j be the largest integer with m { a;. Then we say that the degree of f
modulo m is j. If m|a; for every j, then the degree of f is undefined.

Theorem 5.10. Suppose that f(x) € Z[z|, and denote by N¢(m) the number of solutions
of the congruence f(x) =0 (mod m). Then Ny(m) is a multiplicative function of m, and

Ny(m) = [T Ns).

p"l|lm

Proof. Suppose that m; and mgy are natural numbers with m = mymy and (my, my) = 1.
Whenever f(a) =0 (mod m), one has also f(a) =0 (mod m;) and f(a) =0 (mod my).
Then if {ry,..., 7y, } and {s1,...,Sm,} are complete residue systems modulo m; and
my, respectively, one finds that for each integer a with f(a) = 0 (mod m) belonging
to a complete residue system modulo m, there exist unique r; and s; with f(r;) = 0
(mod my) and f(s;) = 0 (mod ms). Moreover, the residue a modulo myms satisfying
a = r; (mod my) and a = s; (mod my) is uniquely defined, as a consequence of the
Chinese Remainder Theorem. Thus there is an injective map from the set of solutions
modulo m to the set of pairs of solutions modulo m; and ms.

In the other direction, whenever there exist residues r; and s; with f(r;) =0 (mod m;)
and f(s;) =0 (mod msy), then by the Chinese Remainder Theorem there exists an integer
a with a = r; (mod my) and a = s; (mod my) such that f(a) =0 (mod m;) (i = 1,2),
and moreover the integer a uniquely defines r; modulo m; and s; modulo my. But since
(mq,mg) = 1, it follows that f(a) =0 (mod myms), whence f(a) =0 (mod m). There is
therefore an injective map from pairs of solutions (7;, s;) modulo m; and m; respectively,
to solutions modulo m.

Collecting together the above conclusions, we find that the solutions modulo m, and
pairs of solutions modulo m; and may, are in bijective correspondence, whence Ny(m) =
N¢(my)Ng(me) whenever (my, me) = 1. The desired conclusion now follows on considering
the prime factorisation of m. O

6. PuBLic-KEY CRYPTOGRAPHY: THE RSA CRYPTOSYSTEM [NON-EXAMINABLE]

Suppose that Alice wishes to securely send a message to Bob, avoiding Eve malevolently
deciphering this message. Say the message is:

“Do not spill the beans”

How do we achieve secure communication? We will provide a sketch of the RSA cryp-
tosystem, described by Rivest, Shamir and Adleman in 1977, and patented in the USA
in 1983".

ISee R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-
key cryptosystems. Comm. ACM 21 (1978), 120-126. There is an interesting history to the RSA

cryptosystem: Cliff Cocks at GCHQ devised such a method in 1973, though owing to the secrecy of
GCHQ operations, this information became publicly available only in 1997.
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Step 1: Bob publishes a pair of integers N, r (the Public Key).

As the latter name suggests, these integers are in the public domain and can be used
by anyone (including Alice) to communicate securely with Bob. Bob obtains these two
integers as follows. He picks two large primes p and ¢ in an essentially random manner,
with p # ¢. In practice, one should choose these primes to have 150 - 200 digits, but in
order to illustrate ideas, we’ll take p = 257 and ¢ = 8191. The number N is then taken
to be pg = 2105087. Bob keeps the identity of these two primes secret. It is only the
product N which is put into the public domain. The second integer r is chosen by Bob
to be a natural number coprime to ¢(N) that is not too small. Notice that since Bob
knows the prime factorisation of N, he is able to compute ¢(N) = (p — 1)(¢ — 1) quickly,
and hence obtain a suitable integer r by trial and error using the Euclidean Algorithm.
In this discussion we take r = 139. Thus the Public Key is (2105087, 139).

Step 2: Alice now needs to code her message into a numerical expression in a standard
manner. Obvious choices for a suitable scheme include the ASCII scheme (which also
offers the possibility of encoding punctuation symbols and so on). For simplicity, we’ll
encode “A” as “017, “B” as “027, ..., “Z” as “26”, and “space” as “27”. Thus Alice’s
message is encoded as

04]15|27|14|15(20|27|19]16|09]1212|27]20|08|05|27|02|05]01| 14|19

Alice now needs to break this string of numbers up into smaller substrings that can be
encrypted using Bob’s public key. Since N has seven digits, this entails breaking the
message into substrings having six digits apiece. The message becomes aqas . .. ag, where

ay; = 041527, ay = 141520, a3 = 271916, a4 = 091212,
as = 272008, ag = 052702, ay; = 050114, ag = 198888.
Notice here that the last substring ag has been padded with the digit 8 to boost it to the
correct length. The question of appropriate padding schemes is one of some subtlety if
security is to be preserved. Alice now computes the residues b; = a] (mod N) efficiently
by using the “divide-and-conquer” algorithm for 1 <17 < 8.
Step 3: Alice may now send Bob the message b1bs . .. bg, where
by = 0994340, by = 0128098, b3 = 1608212, by = 0600447,
bs = 1096537, bg = 0305539, b7 = 0137494, bg = 1528105.

Step 4: Bob now needs to decode the message, but because he knows the two primes p
and ¢ for which N = pq, he can compute

H(N) = o(pq) = (p — 1)(q — 1) = 2096 640.

Eve cannot compute ¢(NV) easily without knowing p and ¢. Thus Bob can find an integer
s such that st = 1 (mod ¢(N)), say sr — 1 = —k¢(N), for a suitable integer k. One
can compute this number s by using the Euclidean Algorithm to solve the linear equation
ar + ¢(N)y = 1. Thus Bob solves the equation

139s + 2096 640t = 1.

One may verify that (s,t) = (1689379, —112) solves this equation. Of course, Bob only
needs to solve this equation once so long as he stores the Private Key (IV, s) in a secure
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place. Now Bob computes the residues b; (mod N) for 1 < ¢ < 8 in order to recover the
original message ajas . ..as, that is

04|15(2714|15/20]27|19]16]09]|12|12|27]20]08|05]27|02|05(01|14|19]88| 88

complete with padding at the end. Bob may then of course decode the message sing the
transparent coding scheme to obtain “DO NOT SPILL THE BEANS”.

Observation 6.1. One has b = a; (mod N) for each i.
Proof. Suppose first that (a;, N) = 1. Then it follows from Euler’s Theorem that
Ok — I TRN) = g1 (mod N).

7 7

rs —

S — rs
bi:ai = q, (G

Moreover, since N = pq, it follows that when (a;, N) # 1, then one has (a;, N) = p, q or
pq. In the latter case, we have a; = pg = N, and then the conclusion is trivial. Suppose
then that (a;, N) = p, so that p|a; and (a;,q) = 1. In this situation the former condition
yields

b =a>=0=a; (mod p),
and in view of Fermat’s Little theorem, the latter yields

b = a7*(ad " )EPD = 7N = o1 (mod ).

Thus b5 = a; (mod p) and b = a; (mod ¢), whence b = a (mod pqg). The situation in
which (a;, N) = ¢ may be analysed in like manner, and so this completes the proof. [

One could argue, of course, that to send a message that contains a common factor with
N that yields the prime factorisation of N would be foolish, and something to be avoided
by using a suitable padding scheme.

It remains to discuss the feasibility and security of this cryptosystem. The first obser-
vation to make is that all of the operations required to make use of the RSA cryptosystem
are fast. The application of the Euclidean Algorithm, and the operation of taking powers
modulo N, have running time O(log N) arithmetic operations. This is proportional to the
number of digits in V. Second, we need to have available plenty of large prime numbers (p
and ¢) in order to derive good public keys. Fortunately, there are relatively fast primality
tests available. A probabilistic test is available with running time polynomial in logn
that can discern, provably, that a number n is composite. For the numbers that survive
this test, the Adleman-Pomerance-Rumely test can establish primality, or compositeness,
provably in deterministic time O((logn)clegloslosn) which is close to polynomial in log n.
More recently, Agrawal, Kayal and Saxena have devised an algorithm that has running
time polynomial in logn. Finally, the security of the RSA cryptosystem depends on the
difficulty of factoring large integers. The naive factorisation algorithm supplies a factori-
sation of a composite integer in running time O(y/n) arithmetic operations. The fastest
available factorisation algorithm for very large integers is the Number Field Sieve, with
running time exp(c(logn)'/?(loglogn)?/3) arithmetic operations to factor a large integer
n, wherein ¢ is a suitably large positive constant. This is much larger than polynomial
in logn. If a quantum computer can be built, then Shor’s Quantum Algorithm would
factor integers n in a time polynomial in logn, and would constitute a threat to the RSA
cryptosystem.
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Pollard’s rho-method [Non-examinable].
We briefly explore a factorisation algorithm that has running time significantly faster
than the naive one. Note first that on observing that a composite number n = nins has
one factor at least smaller than y/n, it is apparent that simply by testing each possible
factor smaller than /n, one obtains a factorisation algorithm with running time O(y/n).
Pollard’s rho-method, which we now describe, has expected running time about O(n'/*).
Suppose that n is a large composite number with smallest prime divisor p. Choose k
to be large compared to /p, say k = 10n'/*, and choose k integers uq,...,u; by some
“random” (or rather, quasi-random) process. Then with high probability, the u; are
distinct modulo n. The probability that two u; are mutually congruent modulo p is 1 —,
where 7 is the probability that they are all distinct. But

(D00 (5

But k = 10n'/* > 10p/?, so 7 is no larger than about e~®, which is microscopic. Thus,
almost certainly, one finds that there are two numbers u; and u; with 1 < (u; —u;,n) < n,
and hence we obtain a non-trivial factor of n.

We must now obtain a suitable pseudo-random sequence (u;) with which to put this
idea into effect. It transpires that when ¢ # 0, —2, the sequence generated with some
initial good seed up, and defined for ¢ > 1 via the relation w;y; = u? + ¢ (mod n), is
pseudo-random. Notice here that we could omit the reduction modulo n in the definition,
but that taking the numerically least residue offers computational advantages.

Example 6.2. Consider the integer n = 78 667. Make use of the pseudo-random sequence
defined by up = 3, ;41 = u? — 1 (mod n) to obtain a factorisation of n.

One may compute that the sequence {u; (mod n)} is
{3, 8, 63, 3968, 11623, 22889, 62767, 52928, 41313, 4736, 9600, ...},

and hence (ujg — us,n) = 97, giving 78 667 = 97 - 811.

This algorithm is only fast provided that we can detect the mutual congruences effi-
ciently. But using the polynomial pseudo-random generator, one can proceed as follows. If
u; = u; (mod d) for some integer d with d|n, then w1 = uf +c¢ = v} +c = w1 (mod d),
and hence the sequence (u;) is ultimately periodic modulo d, with period dividing j — i.
Put r = j — 4. Then us = u; (mod d) whenever s =¢ (mod r) and s > i, t > i. Let s be
the least multiple of r exceeding i — 1, and take ¢t = 2s. Then us; = ug, (mod d). Conse-
quently, amongst the numbers ugs — ug, we expect to find one with 1 < (ugs — ug,n) < n,
with s < 10n'/%. One can of course compute the pair (us, ugs) for successive values of
s relatively efficiently. One has (usy1, Ussi2) = (u2 + ¢, (u3, + ¢)? + ¢) (mod n), and so
the expected running time required to find a factorisation is O(n'/4). The name of the
algorithm then derives from the shape of a tree of the iterates, ultimately periodic modulo
n (see Figure 1).
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7. POLYNOMIAL CONGRUENCES TO PRIME MODULUS

At this point we know that the number of solutions of a polynomial congruence modulo
m is a multiplicative function of m, and thus it suffices to consider congruences modulo
prime powers. We begin by investigating congruences modulo p, for prime numbers p.

Theorem 7.1 (Lagrange). Let f(x) € Z|x] have degree n (modulo p), with n > 1. Then
the congruence f(x) =0 (mod p) has at most n solutions.

Proof. The situation when n = 1 is clear, since we then have a linear equation to solve.
Suppose then that n > 2, and that the conclusion of the theorem holds for all degrees
smaller than n. Let f(z) € Z[x] have degree n modulo p. Either f(z) has no zeros modulo
p, or else there exists at least one zero, say x = a. Let g,(x) be defined by means of the
relation f(x) — f(a) = (x — a)g.(x). By considering the polynomials (™ — a™)/(z — a),
it is apparent that g,(x) € Z[x] and that g,(z) has degree n — 1 modulo p. It follows that
whenever f(z) =0 (mod p), one has either x = a (mod p), or g,(z) =0 (mod p). But by
our inductive hypothesis, the number of zeros of g,(x) (mod p) is at most deg g, = n —1,
and hence the number of zeros of f(z) (mod p) is at most 1+ (n — 1) = n. The desired
conclusion therefore follows by induction. ([l

Note that from what we have already discussed, it follows that the set of residues
modulo p, namely Z/pZ, forms a field under addition and multiplication modulo p. Then
the above theorem is immediate from the standard properties of fields.

Example 7.2. (i) It follows from Lagrange’s Theorem that the congruence 2% + 1 = 0
(mod p) has at most 2 solutions for any prime p. From Theorem 4.15, meanwhile, we
know that this congruence has precisely 2 solutions when p =1 (mod 4), and 0 solutions
when p =3 (mod 4).
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(ii) It follows from Lagrange’s Theorem that the congruence 2 — x4+ 1 =0 (mod p) has
at most p solutions modulo p. In fact this congruence has no solutions for any prime p,
as a consequence of Fermat’s Little Theorem (see homework sheet 4).

(iii) There is no analogue of Lagrange’s Theorem for composite moduli. Consider for
example the congruence z2 = 1 (mod 8). This is a congruence of degree 2, yet has 4

distinct solutions 1, 3, 5 and 7 modulo 8.

Continuing the inductive argument of the proof of the last theorem, we find that when-
ever ai,...,a, are zeros of a polynomial f(z) (mod p), counted with multiplicity, and
f(z) has degree n modulo p, then there exists a non-zero residue a (mod p) with the
property that

f(z)=alr —a)(r —as)...(x —a,) (mod p).
In particular, by Lagrange’s Theorem, the congruence zF~' = 1 (mod p) has at most
p — 1 solutions modulo p, and it follows from Fermat’s Little Theorem that these are
xr=1,2,...,p— 1. Thus one obtains the relation

Pt —1=@—-1)(z—-2)...(x—p+1) (mod p).

Comparing coefficients of powers of z, we find from the constant coefficient in this relation
that (p — 1)! = —1 (mod p). Moreover, on writing 1/n for the multiplicative inverse of n
modulo p, it follows by comparing the coefficients of x that

(p—1)! (3+1+---+L) =0 (mod p),

1 2 p—1
whence ] )
l+-+--+4+——=0 d p).
totot - (mod p)
More is true. One can prove (Wolstenholme’s Theorem) that
1 1
l+-+---+——=0 d p?).
+ 5 +- 4 1 (mod p*)

Corollary 7.3. Whenever d|(p — 1), the congruence % = 1 (mod p) has precisely d

solutions modulo p.

Proof. Suppose that d|(p—1). Then there exists a polynomial g(z) € Z[x] with 2P~1 —1 =
(z)P=D/d 1 = (24 — 1)g(z). But the degree of g is p — 1 — d, and so by Lagrange’s
Theorem the congruence g(z) = 0 (mod p) has at most p — 1 — d solutions modulo p.
Then since 2P~! — 1 has precisely p — 1 zeros modulo p, we see from the above relation
that ¢ — 1 has at least d zeros modulo p. But Lagrange’s Theorem shows that the latter
polynomial has at most d zeros modulo p, and thus we see that it has precisely d zeros
modulo p. This completes the proof of the theorem. O

8. CONGRUENCES TO PRIME POWER MODULI

Although there is no analogue of Lagrange’s Theorem for prime power moduli, there
is an algorithm for determining when a solution modulo p generates solutions to higher
power moduli. The motivation comes from Newton’s method for approximating roots
over the real numbers. We first present a motivating example.

Example 8.1. Solve the congruence z° + z + 4 = 0 (mod 73).
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(I) We first solve the corresponding congruence modulo 7, since any solution x modulo 73
must also satisfy 3 + 2 +4 = 0 (mod 7). By an exhaustive search (try z =0, 1,2, ...,6),
we find that the only solution is z = 2 (mod 7).

(IT) Next, we try to solve the corresponding congruence modulo 7%, since any solution x
modulo 73 must also satisfy 2® +x +4 = 0 (mod 7%). But such solutions must also satisfy
the corresponding solution modulo 7, so x = 2 (mod 7). Then we put x = 2 + 7Ty and
substitute. We need to solve

2+ 7y)° + (2+ 7y) +4 =0 (mod 7%).

Notice that when we use the Binomial Theorem to expand the cube, any terms involving
72 or 73 can be ignored. Thus we need to solve

(22 +3-22-Ty)+ (2+Ty) +4=14+13 -7y = 0 (mod 7?),

or equivalently,
1By +2=—-y+2=0 (mod 7).
Then we put y = 2 and find that z = 2 + 7y = 16 satisfies the congruence 2 + z + 4 =
0 (mod 72).
(III) We can now repeat the previous strategy (and in fact, we can repeat this as many

times as necessary). So we substitute z = 16 + 722 and solve for z to obtain a solution
modulo 73. Thus we need to solve

(16 + 7%2)° + (16 + 7*2) + 4 = (16> + 3 - 16® - 7°2) + (16 + 7*2) + 4 =0 (mod 7°).

But 16% 4 16 + 4 is divisible by 7% (why do we know this?), and in fact is equal to 84 - 72.
Then we need to solve

84-7*+(3-16*+1)- 72 =0 (mod 7°),

which is equivalent to
(3-16°+ 1)z +84 =0 (mod 7),

or 13z =0 (mod 7). So we put z = 0, and find that = 16 (mod 73) solves 2% + z + 4 =
0 (mod 73).

Theorem 8.2 (Hensel’s Lemma). Let f(x) € Z[z]. Suppose that f(a) =0 (mod p’), and
that p™|| f'(a). Then if j > 27+ 1, it follows that:

(1) whenever b= a (mod p’~7), one has f(b) = f(a) (mod p?) and p™|| f'(b);

(1) there is a unique residue t (mod p) such that f(a +tp’~7) =0 (mod p'*1).

Proof. First consider part (i) of the theorem. Let the integers a and b satisfy the hypothe-
ses of the statement of the theorem, and define the integer A by means of the relation
b—a = hp’~7. Then by the binomial theorem, which for polynomials we can interpret as
a version of Taylor’s theorem, it follows that

f(b) = fla+hp’™") = f(a) +hp’ " f'(a) + %f”(a)(hpj_T)Z +..

Despite the presence of reciprocals of factorials, the coefficients in the above Taylor ex-
pansion are necessarily integral. It is for this purpose that we regard the Taylor expansion
as an application of the binomial theorem, in which each monomial ™ occuring in f(x)
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is expanded individually. Thus the third and higher terms in the above expansion are all
divisible by p?U=7). But j > 27 + 1, whence 2(j — 7) > j + (j — 27) > j, and so
f(b) = fla) +hp’ 7 f'(a)  (mod p’).

Since p7|f’(a), the latter shows that f(b) = f(a) (mod p’). Moreover, applying the
binomial theorem in like manner, one finds that

F0) = F(a+ ™) = f(a) - (mod p/7)
= f'(a) (mod p™™),
since j — 7 > 7+ 1. Then since p7||f'(a), one obtains p7||f'(b), and this completes the
proof of the first part of the theorem.
Now we turn to the second part of the theorem. Since p”|| f'(a), we may write f'(a) =
gp™ for a suitable integer g with (g, p) = 1. Let g be any integer with gg = 1 (mod p), and

write @’ = a — gf(a)p~". Then an application of the binomial theorem on this occasion
supplies the congruence

f(@) = fla=gf(@)p™) = f(a) = p"f(@)3f (a) (mod p7),
since p~"gf(a) =0 (mod p? ) and j > 7+ 1. But 2(j — 7) = j + 1, and thus

fla) = fa) = (07" f(a)g)(gp") = f(a) = f(a)gg =0 (mod p'*).
So there exists an integer ¢ with f(a +tp’~™) = 0 (mod p’*!), and indeed one may take

t=—p7f(a)(p"f(a))”" (mod p).
In order to establish the uniqueness of the integer ¢, suppose, if possible, that two such
integers t; and ¢, exist. Then one has

fla+tp ) =0= fla+tp’ ™) (mod p’™),

whence by the binomial theorem, as above, one obtains

fla) +tp’ " f'(a) = fla) + t2p " f'(a)  (mod p*).
Thus ¢, f'(a) = t2f'(a) (mod p™'). Since p7||f'(a), we obtain t; = t5 (mod p). This
establishes the uniqueness of ¢ modulo p, completing our proof. O

Example 8.3. Let f(z) = 2> + 1. Find the solutions of the congruence f(z) = 0
(mod 5%).

Observe that the congruence z2+1 =0 (mod 5) has the solutions x = +2 (mod 5) (note
that there are at most 2 solutions modulo 5, by Lagrange’s theorem). Consider first the
solution xy = 2 of the latter congruence. One finds that f'(z¢) = 229 = —1 (mod 5). It
follows that 5°|| (), and since f(zo) =5 =0 (mod 5), we may apply Hensel’s iteration
to find integers x,, (n > 1) with f(z,) =0 (mod 5"). We obtain

f (o) 5 2
=9 — =2-—= d
1= T (o) — 7 (mod 5%),
_ 50 50 3
3250 3250

=l———=57T——= = 182 d 5%).
13 =57 0 =57~ "2- =3307=182 (mod 5')
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Thus = 182 provides a solution of the congruence 22 +1 = 0 (mod 5%). Proceeding
similarly, one may lift the alternate solution x = —2 to the congruence z>4+1 = 0 (mod 5)
to obtain the solution z = —182 (mod 5%). Note that in each instance, the lifting process
provided by Hensel’s lemma led to a unique residue modulo 5* corresponding to each
starting solution modulo 5.

Example 8.4. Let f(x) = 2* — 4z + 13. Find all of the solutions of the congruence
f(x) =0 (mod 3%).

Notice that
2’ —4dr+13=2+2r+1=(z+1)> (mod 3),

and hence z = —1 (mod 3) is the only solution of the congruence f(z) = 0 (mod 3).

Next, since f'(z) = 2z — 4, we find that 3|/ f'(—1), and so in order to apply Hensel’s

lemma, we must determine all of the solutions of the congruence f(x) =0 (mod 3?). We

proceed systematically.

(i) Observe first that any solutions satisfy x = 2 (mod 3), and so any solution z must

satisfy x = 2, 5 or 8 modulo 9. One may verify that all three residue classes satisfy

f(z) =0 (mod 9).

(ii) Next we consider all residues modulo 27 satisfying = = 2, 5 or 8 modulo 9, and find

that none of these (there are 9 such residues) provide solutions of f(z) =0 (mod 27).
So there are no solutions to the congruence 22 — 4z + 13 =0 (mod 3%).

See Figure 2 for a pictorial representation of the lifting process in these two examples.

Flqure 2.
L -9 :
Example 1. X4l 20 (mod 5") Example 2. X2 = 4x+ 13 20 (mod3")
L | .
l'
med 5* 182 —«?1 : """l* 3
| l
mod 5% 57 - 5]7 mod 3°
| [ l
mod 5% 7 —]7 4 5 8 mod 3%
I NI |
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Some concluding observations may be of assistance:
(i) Hensel’s lemma allows one to lift repeatedly. Thus, whenever

f(a) =0 (mod p’) and p7||f'(a) with j > 27+ 1
then there exists a unique residue ¢ modulo p such that, with @’ = a + tp’~7,
f(a’) =0 (mod p’) and p”||f'(a') with j +1 > 27 + 1,

and then we are set up to repeat this process.
(ii) Notice that in Hensel’s lemma, the residue ¢ modulo p is unique, and given by

t=—(p~f(a)(p~"f'(a))”" (mod p),
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so one only needs to compute (p~" f'(a)) ™! modulo p. Moreover, p~" f'(a’) = p~" f'(a) (mod p),
so our initial inverse computation remains valid for subsequent lifting processes.
(iii) If f(a) =0 (mod p’) and p”||f'(a) and j > 27 + 1, then

fla4+hp’ ™) = f(a) =0 (mod p’).

So there are p” solutions of f(z) = 0 (mod p’) corresponding to the single solution z =
a (mod p’), namely a + hp’ ™" with 0 < h < p”.

A sketch of the p-adic numbers (non-examinable). Let us begin by recalling how
the real numbers R are defined starting from Q. One begins with two ingredients: (i) the
set of rational numbers Q, and (ii) the ordinary absolute value | - |. Now consider the set
of Cauchy sequences in Q, that is, the set of sequences (a,)5°, satisfying the property
that whenever € > 0, there exists N = N(g) such that whenever n > m > N(g), one has
|y, — am| < . Define

R ={(a,)22, : a, € Q for each n, and (a,) is a Cauchy sequence}.

One can show that R forms a ring under addition and multiplication defined coordi-
natewise in the obvious fashion. Now identify two Cauchy sequences (a,) and (b,) when
lim,, o |a, — by] = 0. Modulo this equivalence, we may label Cauchy sequences, say
a = (a,), and then call the set of all of these elements the real numbers. [A more precise
treatment would show that the set AV of Cauchy sequences with limit 0 forms an ideal
in R, and then that the quotient R/A inherits the axioms for a field, and that |- | can
be extended to R/N with the usual properties for the real numbers satisfied with this
definition of | - |. But we are being sketchy here, and so we will not get bogged down in
such details.] One can prove that R is complete with respect to the absolute value | - |
inherited from Q, and we refer to R as being the completion of Q with respect to | - |.

We now define a substitute for the absolute value that measures the power of a given
prime dividing the argument.

Definition 8.5. Let p be a prime number. Any non-zero rational number o can be
written uniquely in the form o = p"u/v, where u € Z, v € N and r € Z, such that
p{uv and (u,v) = 1. We define the p-adic valuation | - |, by setting |0], = 0, and when
a € Q\ {0}, by putting |a|, = p~", with r defined as above.

Exercises (i) Show that |a|, > 0 for all & € Q, with equality only for a = 0; (ii) that
By = lalp|Blp for all o, 6 € Q; (iii) that |o 4 5], < max{[alp, |5} for all a, 5 € Q.

The last inequality is known as the ultrametric inequality, and constitutes a stronger
version of the triangle inequality.

Now define Cauchy sequences in Q with respect to |- |, just as in the classical situation
above. We say that (a,)%,; is Cauchy with resepct to the p-adic valuation if, whenever
e > 0, there exists a positive number N(e) such that whenever n > m > N(¢), one has
lan, — aml|, < €. Define next

9, = {(an)i2 : a, € Q for each n, and (a,) is Cauchy with respect to | - |,}.

n=1
One can show that Q, forms a ring under addition and multiplication defined coordi-
natewise in the obvious fashion. Now identify two Cauchy sequences (a,) and (b,) when
lim,, o0 |@n, — by|, = 0. Modulo this equivalence, we may label Cauchy sequences, say
a = (ay,), and then call the set of all of these elements the p-adic numbers Q,. [Again,
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a more precise treatment would show that the set A, of Cauchy sequences with limit 0
forms an ideal in Q,, and then that the quotient Q,/N,, inherits the axioms for a field,
and that | - |, can be extended to Q, /N, with properties analogous to those satisfied by
| - |, on Q enjoyed by |- |, on Q,. Again, we are being sketchy here, and so we avoid
getting bogged down in such details.] One can prove that Q, is complete with respect to
the p-adic valuation |- |, inherited from Q, and we refer to Q, as being the completion of
Q with respect to | - |,.

Example 8.6 (Conway and Sloane). We give an example of a sequence in Q with respect
to | - |5 that has a limit in Qs that can be interpreted as 2/3. Consider the sequence
(a,)32, defined by a; = 4, ay = 34, a3 = 334, ..., and in general a,, = [10™/3]. Then for
every natural number n, one has 3a,, — 2 = 10", and hence |3a,, — 2|5 = 5. Thus we see
that lim,, |3a, — 2|5 = 0, whence (a,) converges in the 5-adic sense to 2/3.

Remark 8.7. One has ZZ‘;O a, converges in Q, <= lim, ,. a, =0.

Write sy for the partial sum ij:o an. Then in order to justify this remark, note on the
one hand that if >~ a, converges, then

lim anN =

lim (sy — sy_1) = lim sy — lim sy =0.
N—o0 N—oo N 0o

—00 M—

On the other hand, if lim, _,,, a, = 0, then given any positive number ¢, there exists a
positive number N(e) such that whenever n > N(¢), then one has |a,|, < . But then
whenever N > M > N(e), one has

|sv = smlp = layri + - +anl, < puax, |anl, <,

by making use of the ultrametric inequality. Thus we see that (sy) is a Cauchy sequence
with respect to | - |,, and hence has a limit.

The set of p-adic numbers with valuation at most 1 is known as the p-adic integers Z,,
so that Z, = {a € Q, : |a|, < 1}. Notice that the set of integers Z can be naturally
embedded into Z,, and likewise Q can be naturally embedded into Q,.

Fact 8.8. If o € Q,, then for some non-negative integer IV, one can write « in the shape
o
a= Y ap"
n=—N
in which the coefficients a; lie in the set {0,1,...,p — 1}.

One can check, for example, that in Q7, one has
1/5=3+1-T+4-T*+5-7P+2-7"4+1-7+....

Theorem 8.9 (Hensel’s lemma revisited). Let f € Z,|x], and suppose that a is an integer
satisfying the condition | f(a)l, < |f'(a)[2. Then there exists a unique p-adic integer o such
that

fla)=0 and |o—al, < |f/(a)‘;;1|f(a)|p-

Example 8.10. We saw earlier that the congruence 22 +1 = 0 (mod 5) gives rise to a

chain of solutions to the congruence 2 + 1 =0 (mod 5"). On writing f(z) = 2% + 1, we
have [f(2)]s = |55 = 571, and [f'(2)]s = |2- 2|5 = 1, whence [f(2)[5 < |f'(2)3. Then
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it follows from the 5-adic version of Hensel’s lemma that there exists a € Zs for which
f(a) =0 and |a — 2|5 < 57!, If we simply choose the truncation of the 5-adic expansion
of @ modulo 5", say «,, then of course we obtain a solution x = «,, of the congruence
z? + 1 (mod 5"). In this sense, the 5-adic solution z = « of the equation z? +1 = 0
encodes information concerning all of the associated congruences modulo 5.

_E_au.re 3.
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We finish this sketch of the p-adic numbers by pointing out that the interaction between
completion and algebraic closure is not as simple for the p-adic numbers as for the real
numbers. Thus, the completion of Q with respect to the ordinary absolute value | - | is
R, and the algebraic closure of R is C, the latter being both complete and algebraically
closed. Given a prime number p on the other hand, the completion of Q with respect to
the p-adic valuation |- |, is Q,, and the algebraic closure of Q, is a larger field @p. It
transpires that @p is not itself complete (in contrast to the situation for C). It is possible
to extend the valuation | - |, to a p-adic valuation || - ||, on @,, then complete the latter

with respect to || - ||,. The result is a field Q, which is both complete and algebraically
closed. this represents the proper p-adic analogue of the complex numbers.

9. PRIMITIVE ROOTS AND POWER RESIDUES

A Dbasic issue for understanding the structure of a multiplicative group of reduced
residues is to find generators of that group, hence the idea of the order of an element
and primitive roots.

Definition 9.1. Let m denote a positive integer, and let a be any integer with (a, m) = 1.
Let h be the least positive integer with a” = 1 (mod m). Then we say that the order of
a modulo m is h (or that a belongs to h modulo m).

Lemma 9.2. Let m € N and a € Z satisfy (a,m) = 1. Then the order d of a modulo m
exists, and d|¢(m). Moreover, whenever a®* =1 (mod m), one has d|k.

Proof. By Euler’s theorem, one has a?™ =1 (mod m), and so the order of a modulo m
clearly exists. Suppose then that d is the order of @ modulo m, and further that a* =
(mod m). Then it follows from the division algorithm that there exist integers ¢ and r
with £k = dq + r and 0 < r < d. But then we obtain

a* = (aa" =a" =1 (mod m),
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whence 7 = 0. Thus we have d|k, and in particular we deduce that d|¢(m). O

Lemma 9.3. Suppose that a has order h modulo m. Then a* has order h/(h, k) modulo
m.

Proof. By Lemma 9.2, one has (a*)? = 1 (mod m) if and only if hlkj. But hlkj <=
h/(h,k)|(k/(h,k))j <= h/(h,k)|j. Thus the least positive integer j such that (a*)’ =1
(mod m) is j = h/(h, k). O

Lemma 9.4. Suppose that a has order h modulo m, and b has order k modulo m. Then
whenever (h, k) =1, it follows that ab has order hk modulo m.

Proof. Let r denote the order of ab modulo m. Then since
(ab)™ = (""" =1 (mod m),
it follows from Lemma 9.2 that r|hk. But we also have
V" = (™)™ = (ab)™ =1  (mod m),

whence k|rh. Since (h,k) = 1, moreover, the latter implies that k|r. Similarly, on
reversing the roles of a and b, we see that h|r. Then since (h,k) = 1, we deduce that
hk|r. We therefore conclude that hk|r|hk, and thus r = hk. O

Definition 9.5. If g belongs to the exponent ¢(m) modulo m, then g is called a primitive
root modulo m.

Note: If there exists a primitive root modulo m, then the multiplicative group of reduced
residues modulo m is cyclic, since we have

(Z/mZ)* = (g) = Cy(m)-

Theorem 9.6. If p is a prime number, then there exist ¢(p — 1) distinct primitive roots
modulo p.

Proof. When p = 2, the conclusion of the theorem is immediate, so we suppose henceforth
that p is an odd prime. Observe first that each of the residues 1,2,...,p — 1 belongs to
some divisor d of p — 1 modulo p. Let 1(d) denote the number of the latter residues
belonging to d modulo p. Then plainly,

> wd)=p-1.
dl(p—1)
We aim to show that for each divisor d of p — 1, one has ¥(d) < ¢(d). Given the validity
of this inequality, one obtains

p=1= > W< > dd=p-1,
dl(p—1) d|(p—1)
and so the central inequality must hold with equality for every d. The desired conclusion
then follows from the case d = p — 1 of the consequent relation ¢ (d) = ¢(d).
In order to verify our claim, suppose that d|(p — 1) and 1(d) # 0. Let a be any residue
belonging to d modulo p. It follows that a,a?,...,a? are mutually incongruent solutions
of the congruence ¢ = 1 (mod p). For certainly, for each positive integer j one has

(a)? = (a?)? = 1 (mod p). In addition, if it were the case that for two exponents i
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and j with 1 < i < j < d, one has ¢/ = a’ (mod p), then there would exist a positive
integer h = j —i < d with " = 1 (mod p), contradicting the assumption that a has
order d. By Lagrange’s theorem, meanwhile, there are at most d solutions modulo p
to the congruence ¢ = 1 (mod p), and thus the above list of residues constitutes the
entire solution set modulo p. Next, on making use of Lemma 9.3, we find that whenever
(m,d) > 1, the residue a™ has order d/(m,d) < d, and so the only reduced residues
modulo p of order d are congruent to a™ (mod p) for some integer m with 1 < m < d
and (m,d) = 1. There are consequently precisely ¢(d) such residues.

What we have shown thus far is that for each divisor d of p — 1, one has either ¢ (d) =
o(d), or else ¥(d) = 0. This is a strong form of the inequality 1(d) < ¢(d) that we sought,
and so our earlier discussion confirms that the number of distinct primitive roots modulo

pis ¢(p —1). ]

Theorem 9.7. Suppose that g is a primitive root modulo p. Then there exists v € {0,1}
such that the residue g, = g+ px is a primitive root modulo p*. When p is odd, moreover,
this residue g; is a primitive root modulo p* for every natural number k.

Proof. Let g be a primitive root modulo p. Define the integer y via the relation P~ =
1+ py, and write g; = g + pz, in which z is interpreted as a variable to be assigned in
due course. In view of the expansion

g =(g+pe) =g+ pp - Dag”  (mod p?),
one may write ¢ ' = 1 4 pz, in which
g -1
p

The coefficient of z here is not divisible by p, and so for z = 0 or 1 one has (z,p) = 1.
We fix such an integer x, and now show that for every prime p this construction ensures
that g is a primitive root modulo p?, and moreover that when p is odd, then the residue
g1 is a primitive root modulo p* for every natural number k.

Suppose that g; has order d. Then Lemma 9.2 shows that d|p*~1(p — 1). But g is
a primitive root modulo p and ¢g¢ = 1 (mod p), and so in particular one has (p — 1)|d.
Consequently, one must have d = p’(p — 1) for some integer j with 0 < j < k — 1.
But in view of our earlier observation, one has (z,p) = 1, and thus ¢" ' # 1 (mod p?).
Then g¢; is always a primitive root modulo p?. When p is odd, moreover, it follows by an
inductive argument that we may write (1 + pz)? = 1+ p/™1z;, for a suitable integer z;
with (z;,p) = 1. Indeed, the claim holds for j = 0 by our construction of g;. Moreover,
if the claim holds for 0 < j < J, then we have

(1 +p2)?"" = (1 +p*2)” = 1+ p'*22; (mod p’*?),

z

+(p-1)g" =y + (- 1)g" "z (mod p).

and thus we have (14 pz)?"" = 14 p/*2z,,; for some integer z,, satisfying (z41,p) =
(z7,p) = 1. This confirms the inductive step. Note that this conclusion relies on the fact
that (’2’) = 0 (mod p), which fails when p = 2. Thus we obtain the relation

gl = (@) = L+pl =142

Then since g; has order d modulo p*, this last expression must be congruent to 1 modulo
p¥, and hence j +1 > k. Then since j < k — 1, the only possibility is that j = k — 1, and
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we are forced to conclude that d = ¢(p*). We have shown, therefore, that g; is a primitive
root modulo p*, and this completes the proof of the theorem. [l

Corollary 9.8. The number of primitive roots modulo p is ¢(p—1), the number modulo p?
is (p—1)p(p—1), and when p is odd, the number modulo p’ (j = 3) is P’ *(p—1)p(p—1).

Proof. For each modulus in question, say m, there exists a primitive root g, and moreover
g"* is primitive modulo m if and only if (k, ¢(m)) = 1. But the ¢(m) residues ¢g* (mod m)
are all distinct for 1 < k& < ¢(m), so every reduced residue has this form. Then the
é(p(m)) residues ¢* (mod m) with (k, ¢(m)) = 1 comprise all of the primitive roots mod-
ulo m. The desired conclusion now follows on making use of the multiplicative property
of the Euler totient. O

Theorem 9.9. Let m be a natural number.
(i) There ezists a primitive root modulo m if and only if m = 1,2,4,p* or 2p*, in
which p is an odd prime number and « s a natural number.
(i) When j > 3, the order of 5 modulo 27 is 2972, Furthermore, every reduced residue
class modulo 29 may be written in the form (—1)'5™, where | € {0,1} and 1 <
m < 272, and in which the integers | and m are unique.

Proof. When m = 2, 4, the residues 1, 3, respectively, are primitive roots. When m = p®
the desired conclusion is immediate from Theorem 9.7. Suppose then that m = 2p®. If g
is a primitive root modulo p® (and such exist by Theorem 9.7), then one of g and g + p*
is an odd integer, say ¢’. The order of ¢ modulo 2p* must be at least ¢(p®), since ¢’
is primitive modulo p®. But ¢(2p*) = ¢(2)o(p®) = ¢(p®), so that the latter observation
already ensures that ¢’ is primitive modulo 2p®.

Suppose next that m is none of 1, 2, 4, p* or 2p®, for any odd prime p. Then provided
that m is not a power of 2, there exist integers ny and ny with (ny,n2) =1, ny > ny > 2
and m = nyny. But then ¢(ny) and ¢(nsy) are both even, whence

a®m/? — (a¢(”1))¢(”2)/2 =1 (mod n;) whenever (a,m) =1,

and
a®m/? — (@#M2)#()/2 = 1 (mod ny) whenever (a,m) = 1.

Then since (ni,n3) = 1 and m = niny, we find that a®™/2 = 1 (mod m) whenever
(a,m) = 1. No reduced residue modulo m, therefore, has order exceeding ¢(m)/2, and
S0, in particular, no residue can be a primitive root modulo m.

It remains to consider the situation in which m = 2/ with j > 3. We begin by
establishing that for each o with @ > 2, one has 2%||(5**"* —1). This is clear when a = 2.
Suppose then that the assertion holds when a = ¢ > 2. Then 2¢||(5* " — 1), whence
2/|(5* 7 +1), and thus 2+1||(52° —1)(5% " + 1), or equivalently, one has 2+ (5% —1).
Then the assertion that we presently seek to establish holds with o = t 4+ 1 whenever it
holds with o = ¢, whence by induction it holds for all @ > 2.

Since 2%||(52" " — 1) for a > 2, it follows that 5 has order precisely 2*~2 modulo 2%, and
this establishes the first claim of the second part of the theorem. Observe next that there
are 2°~2 distinct reduced residues modulo 2% of the shape 5%, all of which are congruent
to 1 modulo 4 (why?), and so the remaining reduced residues modulo 2* must all be
congruent to —1 modulo 4, and are hence of the shape —5%. Thus all reduced residues
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modulo 2% may be written in the form (—1)!5™, where [ = 0 or 1 and 1 < m < 2972,
Furthermore, these choices for [ and m are distinct, for the total number of residues
represented in this manner is at most 2¢~!, and yet there are precisely 297! residues to be
represented. That there are no primitive roots modulo 2% when o > 2 follows on noting
that (—1)'5™ has order at most 2272 < ¢(2%) when a > 3. O

(For the cognoscenti) We have seen thus far that
(Z/p"Z)* = Cygry, when p is odd,
(Z)272)* = (Y,
(ZJAZ)* = Cy,
(2)2"72)* = Cy x Cor—2,  when r > 3.

Then on making use of the Chinese Remainder Theorem, we infer that if

m=2"1]»"

p"l|lm
p>2
then
(@/m2)* = G x ] Copry
p"llm
p>2
where
Ch, when e =0, 1,
G. = < Oy, when e = 2,
Cy X Cye—2, when e > 3.
Put

e(ph) = #(p"),  when p is odd, and when p" = 2 or 4,
PP 460", whenp=2and h >3,
and then define the (Carmichael) function
A(n) = lem e(ph),

pIn
It is clear from the above discussion that whenever (a,n) = 1, then one has
™ =1 (mod n),

providing a refinement of Euler’s theorem. Moroever, for every natural number n, it is
apparent also that there exists an integer a with (a,n) = 1 having order precisely A(n)
modulo n.

It is apparent from the above discussion that there are finite abelian groups that are
not isomorphic to any multiplicative group of residues (Z/mZ)*, for m € N. However, if
we write the subgroup of d-th powers of (Z/mZ)* as

UD = {a:a € (Z/mZ)*},
then it is the case that every finite abelian group is isomorphic to a group of the shape
UMD for suitable m,d € N. Thus, for example, one has

Ty X Ly 2 UL and  Zg X Zyy = USRS
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10. QUADRATIC AND POWER RESIDUES

We now investigate residues with special properties of algebraic type.

Definition 10.1. (i) When (a,m) =1 and 2" = a (mod m) has a solution, then we say
that a is an nth power residue modulo m.

(ii) When (a, m) = 1, we say that a is a quadratic residue modulo m provided that the
congruence z2 = a (mod m) is soluble. If the latter congruence is insoluble, then we say
that a is a quadratic non-residue modulo m.

Theorem 10.2. Suppose that p is a prime number and (a,p) = 1. Then the congruence
2™ = a (mod p) is soluble if and only if
p—1

a®r1 =1 (mod p).
Proof. Let g be a primitive root modulo p. Then for some natural number r one has
a=g¢g" (mod p). If

At =1 (mod p),
then

r(p—1)

g0 =1 (mod p).

But since g is primitive, the latter congruence can hold only when

rip—1)

(n,p - 1) ’

whence (n,p — 1)|r. But by the Euclidean Algorithm, there exist integers u and v with
nu+ (p—1)v = (n,p — 1), so on writing r = k(n,p — 1), we obtain

a= gk(n,p—l) = (gku)n(gp—l)k’v = (gku)n (mod p)

Thus a is indeed an nth power residue under these circumstances.
On the other hand, if the congruence " = a (mod p) is soluble, then

(p—1)

a% = (xp_l)”/("’p_l) =1 (mod p),
on making use of Fermat’s Little Theorem. This completes the proof of the theorem. [J
Example 10.3. Determine whether or not 3 is a 4th power residue modulo 17.

Observe that on making use of Theorem 10.2, the congruence z* = 3 (mod 17) is soluble
if and only if 394 = 1 (mod 17), that is, if 81 = 1 (mod 17). Since this congruence is
not satisfied, one finds that 3 is not a 4th power residue modulo 17.

Definition 10.4. When p is an odd prime number, define the Legendre symbol (2)
p
by
+1, when a is a quadratic residue modulo p,
a
(—) = ¢ —1, when a is a quadratic non-residue modulo p,
p

0,  when p|a.
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Theorem 10.5 (Euler’s criterion). When p is an odd prime, one has

(ﬁ) =a" V2 (mod p).

b

Proof. If a»=1/2 = 1 (mod p), then the desired conclusion is an immediate consequence
of Theorem 10.2. The conclusion is also immediate when pla. It remains to consider
the situation in which a®~Y/2 2 1 (mod p). Let a be an integer with (a,p) = 1, write
r = a® /2 and note that in view of Fermat’s Little Theorem, one has r2 = a?~ ! = 1
(mod p), whence r = £1 (mod p). Then if r # 1 (mod p), one necessarily has r = —1
(mod p). Thus, in the situation in which a®»~Y/2 £ 1 (mod p), wherein Theorem 10.2
establishes that a is a quadratic non-residue modulo p, one has a?~%/2 = —1 (mod p), and
so the desired conclusion follows once again. This completes the proof of the theorem. [J

Theorem 10.6. Let p be an odd prime number. Then
(i) for all integers a and b, one has

() =G)G)

(7i) whenever a = b (mod p), one has

;) -():

(iii) whenever (a,p) = 1, one izas 2
()=t = (5)-()
Q)1 = ()=

Proof. These conclusions are essentially immediate from Theorem 10.5. For example, the
latter theorem shows that

(a_b) = (ab)PD/2 = -1/2p0-1)/2 = (2) (9) (mod p),
P p) \p

and so the conclusion of part (i) of the theorem follows on noting that since p is odd, one
cannot have 1 = —1 (mod p). Parts (ii) and (iv) are trivial from the last observation,
and part (iii) follows from Fermat’s Little Theorem. O

(iv) one has

Note: The number of solutions of the congruence > = a (mod p) is given by 1+ (2)
p

For when (a,p) = 1 and the congruence is soluble, one has two distinct solutions and

1+ ) =1 +1 = 2. In the corresponding case in which the congruence is insoluble, one
p
has 1 + <2> =14 (—1) = 0. When (a,p) > 1, one the other hand, one has the single
p

solution x = 0 (mod p), and then 1+ (2) =1+0=1.
p
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The above observation provides a means of analysing the solubility of quadratic equa-
tions. For if (a,p) = 1 and p > 3, then the congruence az? + bx + ¢ = 0 (mod p) is
soluble if and only if (2az + b)? = b* —4ac (mod p) is soluble, that is, if and only if either

b* — dac =0 (mod p), or else
(b2 — 4ac)
e R
p

The number of solutions of the congruence is therefore precisely

<62—4ac)
1+ —.
p

For each integer a and any natural number n, define the numerically least residue of a
modulo n as the integer o’ satisfying a = a’ (mod n) and

1 I 1
—n<a <2n.

Theorem 10.7 (Gauss’ Lemma). Let p be an odd prime number, and for each reduced
residue a modulo p, let a; denote the numerically least residue of aj (mod p). Then

a

- =1

(3) -
where | = card{1 < j < 3(p—1) : a; < 0}.

Proof. Write r = £(p — 1). Then we claim that the integers |a;| (1 < j < r) are simply
the integers 1,2,...,r in some order. In order to establish this claim, observe that for
each integer j with 1 < j < r, one has 1 < |aj| < r. Moreover, if a; = —ay, for any j
and k with 1 < j,k < r, then aj = —ak (mod p), whence a(j + k) = 0 (mod p). On
recalling that by hypothesis we have (a,p) = 1, we infer that p|(j + k), a conclusion that
contradicts our earlier assumption that 1 < j,k < r, since then 0 < 7+ k < 2r < p. Thus
we see that a; = —ay for no indices j and k& with 1 < j,k < r. Moreover, if a; = a;
for any j and k with 1 < j,k < r, then aj = ak (mod p), whence j = k (mod p). Our
hypothesis that 1 < j, k < r in this instance ensures that in fact j = k. We may therefore
conclude that when 1 < j, k < r, one has |a;| = |ay| if and only if j = &, and this suffices
to establish our original claim.

We now complete the proof of the lemma, noting in the first instance that as an imme-
diate consequence of the above claim, one has

(=)' =ajay...a, = a(2a)...(ar) = a"r! (mod p).

Here we recall that [ is the number of the reduced residues aq, as, . . . , a, that have negative
sign. But p f !, and thus we deduce that a” = (—1)" (mod p). The conclusion of the
lemma is now immediate from Euler’s criterion. 0

Corollary 10.8. When p is an odd prime number, one has

(2) _ (—1)-Vrs
p
Proof. When a = 2, one has

27, when 1 < 7 < |p/4],
a; =
7|2 - when [p/4] <j<(p—1)/2
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2
Then by Gauss’ lemma, one has (—) = (—1)!, where
p

| = card{1 <j < (p—1)/2 : a; < 0} = L(p—1) — [p/4].

We now classify the odd prime numers, and find that
p=8k+1=1=1(8k)— [2k +1/4] = 2k,
p=8k—1=1=1(8k—2)— |2k —1/4] = 2k,
p=8k+3=1=108k+2)— [2k+3/4] =2k +1,
p=8k—3=1=35(8k—4)— |2k —3/4] =2k —1.

Thus, on noting that

(8k+1)*—-1)/8=0 (mod?2) and ((8k*£3)*>—1)/8=1 (mod 2),

we find that [ = (p? —1)/8 (mod 2), and thus the conclusion of the corollary follows from
Gauss’ lemma. 0

Note also that from Euler’s criterion, one has

G?) “ 1 and (_—1>  (—1)eDrz

Thus we have simple formulae for ( ) and ( , and it is clear from the multiplicative

property of (—) that it suffices now to compute (—) for odd prime numbers ¢ in order
p p

a\ .
to calculate (—) in general.
p

11. THE LAW OF QUADRATIC RECIPROCITY

Theorem 11.1 (Gauss). Let p and q be distinct odd prime numbers. Then

()() -

Note 11.2. Rewriting the expression on the right hand side of the last equation in the

shape
(2) = gy (1),
q p

we see that <Z—?) = (2) unless p and q are both congruent to 3 modulo 4.
q p

Proof. (of the law of quadratic reciprocity) Observe that, as a consequence of Gauss’
lemma, one has that (E) = (—1)!, where [ is the number of lattice points (x,y) satisfying
q

the inequalities
0<z<gq/2 and —q/2<pzr—qy<O.



40 TREVOR D. WOOLEY

But y is an integer, and

pr 1

—+ =< 1)/2.

2 <)

Thus [ is the number of lattice points (x,y) in the rectangle R defined by 0 < = < ¢/2
and 0 < y < p/2 which satisfy —¢/2 < pr — qy < 0 (see Fig. 4). Similarly, we have

y <

(2 = (—1)™, where m is the number of lattice points in the same rectangle R with
p
—p/2 < qy — px <0 (see Fig. 5).
_Fgm ét. _Egju.f’t 5.
3 | 3
NR 1
2 P ) 2P ]
o
5" o
*{'/N A
S
,3:,,"‘ N
/y"’Q
> X —
0 1g ° i 3 7

We therefore obtain

(£))-c

and this will yield the desired conclusion

(£)() -

provided that 1(p — 1) 1(¢ — 1) — (I +m) is even. But the latter quantity is simply the
number of lattice points (z,y) contained in the shaded region in Fig. 5, namely those
lattice points satisfying

pr—qy < —q/2 or qy—px<—p/2.

These two regions are disjoint, and contain the same number of points, as can be seen
by considering the bijective correspondence

(@,y) «— (3lg+1) —2,5(p+1) —y).
Note here that %q + px — qy is in bijective correspondence with
3¢+p(3a+1) —2) —a(5lp+1) —y) =50+ qy — pa,
and that the ordered pair (3(g+ 1) — x,y) is in bijective correspondence with (z, 2 (p +
1) — y). Moreover, z = 1 is mapped to z = (¢ — 1) and likewise y = 1 to y = 3(p — 1),

and vice versa. Thus the number of lattice points in the shaded region of Fig. 5 is twice
the number contained in either shaded triangle, and hence is even. This proves that
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2(p—1)3(g—1) — (I+m) is even, as we sought to establish, and hence the conclusion of
the theorem follows as described above. U

-3
Example 11.3. Determine the value of <—)

p
By Quadratic Reciprocity we have

(?) (g) — (—1)B-DE-D/A — (_1)-D/2

p

and by Euler’s criterion, on the other hand,

(__1> (1),
b
Thus we see that

(3)-G) () - commcom (5 - ()

=1, whenp=1 (mod 3),

But

= —1, when p =2 (mod 3).

—
wis
~—
I
WIN W+~

Thus we deduce that
-3\ J1, whenp=1 (mod 3),
p /) |-1, when p=2 (mod 3).
One can use this evaluation to show that the only possible prime divisors of 22 + 3,
for integral values of x, are 3 and primes p with p = 1 (mod 3). From here, an argument

similar to that due to Euclid shows that there are infinitely many primes congruent to 1
modulo 3.

21
Example 11.4. Determine the value of (ﬁ)

Applying the multiplicative property of the Legendre symbol, followed by quadratic reci-
procity, one finds that

(3)- () () oo () (3
-BH-O0-0--

21
So (ﬁ) = —1, and hence 21 is not a quadratic residue modulo 71.
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12. THE JACOBI SYMBOL

We wish to generalise the Legendre symbol (—) to accomodate composite moduli.
p

Definition 12.1. Let () be a positive odd integer, and suppose that () = p; ... ps, where
the p; are prime numbers (not necessarily distinct). Then we define the Jacobi symbol

(%) as follows:
0 (0=

(ii) % = 0 whenever (a, Q) > 1;

(iii) (%) - (p%) (p%) (pﬁ) whenever (a, Q) = 1.

Just as in the discussion concerning the Legendre symbol, we begin with some simple
properties of the Jacobi symbol.

Theorem 12.2. Suppose that QQ and Q' are positive odd integers. Then:

-
w6 -(7)

P 2
(iii) whenever (P,Q) = 1, one has —) = <—) =1;

Proof. Part (i) is immediate from the definition of the Jacobi symbol, and part (ii) is

immediate from the properties of the Legendre symbol. Parts (iii) and (iv) follow directly

from parts (i) and (ii), since the Jacobi symbol takes values 0 or +1. For part (v) of

the theorem, observe that whenever P = P’ (mod @), one has P = P’ (mod p) for each
P P

prime number p dividing (), whence also (—) = (—) for each prime p dividing Q.

p
The desired conclusion is therefore again immediate from the definition of the Jacobi

symbol. O

Note 12.3. If the Jacobi symbol (ﬁ) = —1, then it follows that a is not a quadratic
n

residue modulo n, since for some prime p with p|n one must have that the Legendre symbol

p
restdue modulo n. For example, one has

(3w ()t e ()

a a
(—) = —1. But if (—) = 1, then it is not necessarily the case that a is a quadratic
n
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The Jacobi symbol remains useful for calculating Legendre symbols, because it satis-

fies the same reciprocity and simplifying relations as the Legendre symbol (as we now
a

demonstrate), and at the same time, whenever the Legendre symbol <—> is defined (that
n

is, provided that n is an odd prime number), then its value is the same as that of the
corresponding Jacobi symbol.

Theorem 12.4. Suppose that (Q is a positive odd integer. Then

(%) _ (—1)@ D2 gpg (%) _ (1)@,

Proof. Suppose that () is odd, and that () = p; ... ps with each p; a prime number. Then

(_51) -11 (_1) e

i1 \ Pi i=1

But whenever n; and ny are both odd, one has $(n; —1)(ny — 1) =0 (mod 2), whence
=D +Line—1)=L(nina—1) = L(ny — 1)(n2 — 1) = $(niny — 1) (mod 2).

Iterating the latter relation, we deduce that

S

HQ-1=> (pi—1)/2 (mod?2),
i=1
—1 —1)/2
whence 9)° (—1)@=b/2,
Similarly, we have
2 (2 2 )
I — — — —1 (pi—l)/S'
(o)1)~
But whenever n; and ny are both odd, it follows that
t(nf—1)(n3 —1)=0 (mod 2),
whence

s(ni —1) +§(n3 — 1) = §(ning — 1) — §(ni — 1)(n — 1)
1
8

Thus, again iterating this relation, we find that

S

(@ —1)/8=) (p} —1)/8 (mod 2),

i=1

<%> (1)@,
O

Theorem 12.5 (Quadratic Reciprocity). Suppose that P and Q) are odd positive integers

with (P,Q) = 1. Then
(f) (Q)  (—1)PD@-D/A,
0)\P

whence
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Proof. Suppose that Q = ¢, ...qs and P = p; ... p, are factorisations of P and @), respec-
tively, into products of prime numbers. Then we have

P i
(a)-11(5) -1 ().
= i=1 j=1
Then by quadratic reciprocity for the Legendre symbol, we obtain

() =TTy (3) = - ().

where we write

>3- 00 074 (- 072 (o 02

i=1 j=1

We therefore deduce that

(g) _ (—1)P-D@-1)/1 (%) |

and the conclusion of the theorem now follows immediately. 0

Jacobi symbols are useful for calculating Legendre symbols, since they take the same
values for prime moduli, and one can skip intermediate factorisations before applying
reciprocity.

1111
Example 12.6. Calculate the Legendre symbol (8093)

2
1111 _ (1) 8093\ _ (316 _ [ 2 79
8093 1111 1111 1111 1111
1111 5 79
— _1 (1110)(78)/4 o _ _ - _ _ _1 (4)(78)/4 oY
(=1) 79 79 (=1) 5
4 2\ ?
=—(2)==-(2) =-1.
5 5

So 1111 is not a quadratic residue modulo 8093.

One has

Example 12.7. Determine whether or not the congruence z% + 6z — 50 = 0 (mod 79)
has a solution.
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Observe that 2% + 6z — 50 = (x + 3)? — 59, and hence 2? 4+ 6z — 50 = 0 (mod 79) has a

solution if and only if (%) = 1. But

5)-(F)-E)E) () -0 ()
_ _(_1)(5—1>(79—1>/4<75_9) _ _(g) _ 1

Hence the congruence z? + 6z — 50 = 0 (mod 79) has no solution.

Example 12.8. Find the number of solutions of the congruence
y* =2* +1 (mod p)

when p is an odd prime.

Observe first that this number N is equal to

3 (1 (57)) e 2 (1

=1

Next we note that
p p
1
(&) -y (9) _o
y=1 p v=1 p

For if ¢ is a primitive root modulo p, then (1%) = —1 (why?), and hence

2()-56) -5 ()50 &

v=1 v=1 =1 =1 =1

We observe next that since for (z,p) = 1 one has

(5) () -(5)-6)

then
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3 () S () S (1) (1)
S (-5
S-S ()

S () () -5 ()

We therefore conclude that
N=p-—1.

13. APPLICATION OF RESIDUE SYMBOLS TO COUNTING SOLUTIONS OF CONGRUENCES
Let p be an odd prime. One can verify that the sum over y of the quadratic residue
symbol Y is zero, either by making use of the conclusions of Question 1 on Problem
Sheet 7 (vfhich is short and direct), or as follows (which is more obscure). Write
p p—1
v-3()-2(6)
y=1 y=1

When (a,p) = 1, the mapping y — ay (mod p) permutes the reduced residues modulo
p. Moreover, a primitive root ¢ modulo p must be a quadratic non-residue, in view of
Euler’s criterion (we have g?»~1/2 £ 1 (mod p)). Then we have

=S (2= () (1) (2)n

But <Q> = —1, and so we are forced to conlcude that M = 0.

p

Theorem 13.1. Let f(z) = ax® + bx + ¢, where a, b and c are integers, and let p be an
odd prime number. Suppose that (a,p) = 1, and write d = b*> — 4ac. Then if p t d, one

has
(5= (5).
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(2)-v-1(5)

4a(ar® + bx + ¢) = (2ax + b)* — (b* — 4ac) = y* — d,

and if p|d, then

hS]

r=1

Proof. One has
say, where d = b* — 4ac and y = 2az + b. Then if p|d, we obtain

£02)-£(2)(2)-56)-o-0)

z=1 y=1 y=1

This establishes the second claim in the statement of the theorem.
Suppose then that p td. Then

(£)5(82) - (st ()

Write - - B
s =3 (%5)
Then we see that -
> (42) - () s - (2) s

z=1

z .
But since 1 + (— is non-zero only when z is a square modulo p, say 2, and is 2 when

the latter is non-zero, and 1 when zero, we find that

sw=3 () =2 (()+) (57)

y=1 z=1

() (5)

z=1

The last sum is zero, in view of the comments in the preamble to the statement of Theorem
13.1. Thus, on making the change of variable z = wd, we find that

- (=) £ () -$(57)

w=1 w=1 w=1

Thus S(d) is independent of d, say S(d) = S(1). But then we deduce that

S-S 5@ =53 (=) 555 (©) -y (L).

y=1
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We now make the change of variable u = y? — d in the first summation of the penultimate
term, and again make use of the comments at the outset of this section, and thereby

deduce that
b-1SW =33 (9) -1 =—(p-1).

p
y=1 u=1
Then S(1) = —1, whence S(d) = —1 for all d with (d,p) = 1. We may therefore conclude

that when p { d, one has
$(2)--)

=1

This completes the proof of the theorem. O

When p is an odd prime with p 1 a, the conclusion of Theorem 13.1 shows that the
number of solutions of the congruence y* = ax? + bxr + ¢ (mod p) with 1 < z,y < p is

(- () - (5):

r=1

when p 1 (b* — 4ac), and

3 (1= (5)) oo ()

r=1

when p|(b?—4ac). In both situations, the number of solutions of the congruence is positive,
and so the congruence y* = az? + bxr + ¢ (mod p) is soluble.

14. ARITHMETICAL FUNCTIONS

Recall from the preamble to the statement of Theorem 5.5 that a function f : N — C
is called an arithmetical function. Recall also that a multiplicative function f satisfies the
property that whenever (m,n) = 1, one has f(mn) = f(m)f(n). Also (Lemma 5.6), the
function g(n) = >_,,, f(d) is multiplicative whenever f(n) is multiplicative. In this section
we discuss various properties of arithmetical functions, many of them multiplicative, and
seek to understand what they “look” like.

Examples of arithmetical functions:

(i) the divisor function d(n), or 7(n), is defined for n € N by 7(n) = >_,,, 1. The divisor
function is therefore multiplicative, as a consequence of Lemma 5.6. The k-fold divisor
function di(n), or 7,(n), is defined via the relation

T(n)= Y 1 or m(n)=> 7a(d).
din

dldk:n
dy,y...,dg €N

This function is also multiplicative, as a consequence again of Lemma 5.6.

(ii) the sum of divisors function o(n) is defined by o(n) = >_,, d, and so is multiplicative
by Lemma 5.6. Similarly, the sum of kth powers of divisors function ox(n) = 3_,, d* is
also multiplicative.
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(iii) the number of distinct prime divisors function w(n) is defined by

w(n) = Z 1,
pln
p prime
so that if n = ['_, p}" is the canonical prime factorisation of n, then w(n) = t. Note that
for any non-zero complex number ¢, the function ¢“(™ is multiplicative (easy to check
this!).
(iv) the number of prime divisors function Q(n) is defined by

Q)= )
p'ln
p prime
so that if n = [['_, p}* is the canonical prime factorisation of n, then Q(n) = ry + 7y +
R 7.
(v) the Euler totient ¢(n) is a multiplicative function (Theorem 5.5).
(vi) the M6bius function u(n) is defined for natural numbers n by

(—1)*(™ when n is squarefree,
p(n) = -
0, otherwise.

Here, by a squarefree number, we mean an integer that is not divisible by the square
of any prime number. Thus, if n = pipy...pr With py, ..., pp distinct primes, one has
p(n) = (=1)%, and it follows easily that p(n) is multiplicative.

Note that, just as with our earlier discussion of the Euler totient, a function that is
multiplicative will be relatively easy to evaluate when its argument has a known prime
factorisation. For example, one can see rather easily that when p is a prime number and
h is a non-negative integer, then 7(p") = h + 1, and

h r—+1
h r p 1
g = e ,
(") TZ:OP -]
and thus
pr+1 -1
= 1 d = — .
7(n) 1][(7‘—# ) and o(n) H < P )
pn pTln

The Mdgbius inversion formulae The arithmetic function defined by (vi) above, the
Mobius function, has special properties that make it particularly useful in studying aver-
ages of other arithmetic functions (and much else besides). Recall that

(—1)*(™, when n is squarefree,
p(n) = -
0, otherwise.

We define a rather trivial multiplicative function v(n) by

1, whenn =1,
v(n) = :
0, otherwise.

Lemma 14.1. One has _,,, p(d) = v(n).
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Proof. Since p(n) is a multiplicative function of n, it follows from Lemma 5.6 that
> dn #(d) is also multiplicative. But on writing f(n) = 3_,,, #(d), one finds that

:Zu(ph)zl—le, for a > 0,

and f(1) = p(1) = 1. Thus, in view of the multiplicativity of f(n), one finds that f(n) is
zero unless n has no prime divisors, a circumstance that occurs only when n = 1. This
completes the proof of the theorem. O

We can now describe a certain duality between arithmetic functions, and functions
defined via divisor sums.

Theorem 14.2 (the M&bius inversion formulae). (i) Let f be any arithmetical function,

and define
=Y f(d)

din

Z,u g(n/d).

dln

Then one has

(i1) Suppose that g is any arithmetical function and define

Z,u g(n/d).

dln

=> ()

d|n
Proof. (i) Given that g(n) = >_,, f(d), one obtains
S u@datn/d) =50 57 wdifle) =3 fle) 3 uld)
dln din e|(n/d) eln d|(n/e)

= fle)v(n/e) = f(n).

eln

(ii) Given that f(n) = >, #(d)g(n/d), one obtains

Y S =) f/d)=) Y ule)g(n/(de))

Then one has

dln din d|n e|(n/d)
=2 D mgln/de) =, >
e|ln d|(n/e) eln d|(n/e)
=> g(d) Y ule) =Y g(dw(n/d) = g(n).
dn e|(n/d) din

O

Note that M6bius inversion applies to all arithmetical functions, without any hypothesis
concerning whether or not they are multiplicative.
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Example 14.3. Recall that we showed in the corollary to Lemma 5.6 that 3, #(d) = n.
As an immediate consequence of the Mobius inversion formulae, we deduce that

¢(n) =Y _u(d)(n/d)=nY _ u(d)/d
dn

dln
Perfect numbers.

Definition 14.4 (Perfect numbers). A natural number n, for which the sum of the
positive divisors smaller than n is equal to n, is called a perfect number.

Equivalently, the natural number n is perfect if and only if o(n) = 2n. Examples
include 6 =1+2+3,28=1+4+244+ 7+ 14, and 496.

Theorem 14.5. The natural number n is an even perfect number if and only if n =
20=1(2P — 1) for some prime number p for which 2P — 1 is prime.

Proof. In one direction, observe that under the hypotheses of the statement of the theorem,
one has

p—1 p—1
o2 —1)) =) 2@ -1+ 2"
1=0

= (gp —17+ (2P —1)=2(2""1(2* - 1)),

so that 2P~1(2P — 1) is indeed perfect.

In the other direction, suppose that n is an even perfect number, say n = 28m, with m
an odd number. Then since n is perfect, one has o(n) = 2n, and so from the multiplicative
property of o(-), one has

28l = 2(2"m) = o(28m) = 0(2")o(m) = (27 — 1)o(m),

whence 281 |o(m), say o(m) = 2571, On substituting back into the previous relation, we
deduce that m = (28 — 1)I. If [ > 1, then m has distinct divisors 1, m and [, whence
o(m) = l+m+1>1+m = 281 = g(m), which yields a contradiction. We are therefore
forced to conclude that [ = 1, whence o(m) = m + 1, and so m is prime. Thus we find
that n = (281! —1)2% with 281 — 1 prime, and the latter implies that k + 1 is itself prime
(convince youself as to why this is true!). O

Notice that Theorem 14.5 shows that any even perfect number has the form
1
§Mp(Mp +1),

where M, is the Mersenne prime 27 — 1. It is suspected that there are infinitely many
Mersenne primes, though this remains unproved, and hence infinitely many even perfect
numbers. For more on this subject, see GIMPS, the Great Internet Mersenne Prime
Search, at http://www.mersenne.org/, for more on Mersenne primes. The largest known
perfect number is 2136279840(2136279841 _ 1) (see p.2). No odd perfect numbers are known,
and it is conjectured that there are none. If an odd perfect number exists, then it has
at least nine distinct prime factors (see P. P. Nielsen, Odd perfect numbers have at least
nine distinct prime factors, Math. Comp. 76 (2007), 2109-2126) and at least 300 digits
in base ten (see R. P. Brent, G. L. Cohen and H. J. J. te Riele, Improved techniques for
lower bounds for odd perfect numbers, Math. Comp. 57 (1991), 857-868).
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15. ESTIMATES FOR ARITHMETICAL FUNCTIONS

We now explore the “population statistics” of values of arithmetical functions: what is
the maximal /minimal size of such a function, the average size, the variance, etc? In order
properly to discuss such issues, we need to recall some standard analytic notation.

Given functions f,g : R — R, with g taking positive values, we write f(x) = O(g(z))
(for x > x() when there exists some positive constant C' for which |f(z)| < Cg(z) (for
T = xg).

Example 15.1. One has z = O(z?) for x > 1, 1/2*> = O(1) for x > 1, and x = O(e®) for
x> 0.

There are two useful strategies to keep in mind when addressing questions concerning
estimates for arithmetic functions:
(i) in order to estimate the size of a multiplicative function f(n), one should first esti-
mate f(-) on prime powers, and then combine this information with knowledge about the
distribution of prime numbers;
(ii) If one wishes to estimate the average size of an arithmetical function g(n), one can
apply the M6bius inversion formulae to write g(n) in the shape

=> [

dn

Z,u g(n/d).

dln

in which

Frequently, one finds that this new function f(n) is reasonably well-behaved, and then

one has
dogm= DD fd)=> > fd)

1<n<e 1<n<z din 1<d<z 1<m<z/d
Here, in the last summation, we made the change of variable n = md. Thus we obtain
T
St = D fd) Y 1= Y fd) |3,
1<n<z 1<d<z 1<m<za/d 1<d<z

where, as usual, we write |@] for the greatest integer not exceeding 6. Thus we see that

% S g(n)zi > f@ (Z+om) = Y @+0<§ > |f<d)|>-

1<n<zx 1<d<zx 1<d<z 1<d<zx

In many circumstances, the first term on the right hand side of the last equation is of
larger order of magnitude than the last term, and then one has the asymptotic formula

=D SRR SR
1<n<z 1<d<z

a formula that is useful provided that the new average is easier to compute than the
original average. We illustrate these ideas with some examples.

Example 15.2. The Euler totient ¢(n).
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We obtained earlier the formula

n)=n uld)/d

din

by using the Mobius inversion formulae. Following the above strategy, we find that

Yoon)= > > uldn/d= > pud) D m

1<n<z 1<n<z d|n 1<d<z 1<m<z/d
2
= X wla@- dlafdl(Lafd) 1) = 3 wtd) (55 + Oaf))
1<d<x 1<d<x
=32° Y p(d)/d®+0 ( > lpd \a:/d)
1<d<e 1<d<z
But
> uld)/d = ZM /d2+0<21/d2> = C+0(1/z),
1<d<z d>z
where C' =[] (1 - 1/p*) = 1/(( ) = 6/m? (fact!). In addition, one has
1 x
Z -<1+ d—ezO(log:v).
d 0
1<d<x
Thus

— Z = —a:—l—O(logx)

1<n<$

In some sense, this means that the average order of ¢(n) is (6/7%)n (why?). On the
other hand, the upper bound ¢(n) < n is trivial (and for every prime number p one has
¢(p) = p—1). It is possible, though harder, to show that for all natural numbers n, the
Euler totient ¢(n) is asymptotically larger than e~ "n/loglogn, where v = 0.577... is
Euler’s constant.

Example 15.3. The sum of divisors function o(n).

In this instance we have the formula o(n) = >_,, d, and so

Yo=Y Y=Y Y m

1<n<z 1<n<z dn 1<d<z 1<m<z/d
2
= > Sa/d|(|lx/d) +1) = ) (2712 +O(x/d)) .
1<d<x 1<d<x

But

> yd’ = Zl/d2+0<21/d2> =((2) +0(1/2),

1<d<z d>z
and hence )

— Z (2)x 4+ O(logx) = %x—i—O(loga:)

1<n<x
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Example 15.4. The divisor function 7(n).

In this instance, of course, one has 7(n) = -, 1, and so

2 rm=2 > 1=3 > 1

Isn<z 1<n<z din 1<d<z 1<m<z/d
= lw/dl = 3 (x/d+O(1))
1<d<x 1<d<x
=z Y 1/d+O(x).
1<d<zx

But (as a good exercise in calculus),

d+1/2
= ven 3 ([ oun)

1<d<z 1<d<z -1/2

=logz + O(1).
Thus we deduce that
1
- Z 7(n) =logz + O(1).

1<n<x

Perhaps it is worth noting that one can refine the above formula to obtain

S° 7(n) = wloga + (2 — D+ O(/),

1<n<a

where v = 0.577 ... is Euler’s constant.

Example 15.5. The number of squarefree numbers.

We turn our attention next to counting the number of squarefree numbers up to x. Define
S(z) = card{1 < n < z : n is squarefree}.

In order to analyse this sum, we need to have available a detector for squarefree numbers.
If we recall that the sum of the Mobius function over the divisors of an integer n, which
we called v(n), is non-zero precisely when n = 1, in which case it is 1, we are led to
consider the expression

> uld).

d?|n
Let m be the largest positive integer with m?|n. Then the above expression is

1, when m is equal to 1, i.e. n is squarefree,
S nld) = vim) =4 ) o !
p , when m > 1, i.e. n is not squarefree.

Thus we find that

S(x)= > > uld).

1<n<z d2|n
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But this expression has similar shape to those that we have considered before in this
section, and so we may analyse this sum similarly. By means of the change of variable
n = md?, one finds that

S@y= Y Y uld= ) wdlz/d]

1<d</z 1<m<x/d? 1<d<y/z
x pu(d)
- ¥ ,u(d)<$+0(1))::c Er+ol X1
1<d</z 1<d</x 1<d</x
But
= u(d
S ujd =3 1D o [ S| =1/¢)+ 00yv)
1<d</x d=1 d>+\/z

Thus we conclude that

1
S(z)==x (@
= %x + O0(V7).

n owm) L O(/a)

Thus the “probability” that a randomly chosen positive integer is squarefree is 6/7%. This
provides the world’s worst method of calculating 7 (or rather 72). As an exercise, consider
the problem of counting the number of cubefree integers up to x (those n satisfying the
property that whenever m? divides n, then m = 1). What about k-free numbers? (those
integers n satisfying the property that whenever m*|n, then m = 1).

Example 15.6. The number of distinct prime divisors w(n).

We observe that

S em= Y Y1=3 Y 1= Yl

1<n<x 1<n<x p\n p<z 1<n<x p<x
pln

At the end of section 3 we sketched an argument (as an exercise) for proving that there
are positive constants a and b with 0 < a < 1 < b for which one has

ax/logx < Zl <bx/logz (x=2).

psT

These inequalities show that there is a constant ¢ > 3 having the property that, for all
y = 2, the number of prime numbers between y and cy is at least y/logy and at most
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c*y/log(cy). Thus, we have

Z w(n) = xz 1/p+O(x)

1<n<Lx p<z

< Z Z —+O

1<j<1+logx ¢i— 1<p<@

1/ (jlogc)
<.ﬁ j{: ———TE:T————'+(9($)
1<j<1+log x

<o Z 1/j+ O(x).
1<j<1+log x
Hence we deduce that when x is large enough, one has

Z w(n) < zloglogx + O(x).

1<n<x

Z w(n) = xz 1/p+ O(z)

1<n<Lz p<x

mz Z—+O

1<j<logx ¢i— 1<p<cJ

>3 Z d7/(( jfl)logc)+0<x)

cJ

On the other hand,

2<j<logz
>c Z /(G —1)+ O(x).
2<j<logx

Hence
Z w(n) = ¢ *rloglogx + O(x).

1<n<x

Thus we deduce that
1
c%loglogz + O(1) < = Z w(n) < cloglogx + O(1).
1<n<x
In fact, one knows that asymptotically, one has a = b = 1, and so the average size of w(n)
between 1 and x is asymptotically loglog z.

Example 15.7. An upper bound for 7(n).

We show that for any positive number ¢, one has 7(n) = O(n®) for n € N. In order to
establish this estimate, we exploit the multiplicative property of 7(n), and investigate the
function

T(n) H Jj+1
nE - pjf':

Pn
If one has €jlogp > log(j + 1), then (j + 1)p~7¢ < 1, and moreover (log(j + 1))/j is a
decreasing function of j when j > e. Thus there exists a number C' = C(¢), depending
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at most on the choice of ¢, satisfying the property that whenever p > C(e), one has
ejlogp > log(j + 1). We therefore deduce that

<15 T

P|n p>Cl(e
p<C(e)

But since there are just finitely many primes not exceeding C'(¢) (in fact, fewer than C(¢)
of them), the values of (5 +1)p~/¢ are bounded above by some number A(e) for p < C'(¢).

Consequently,
[T Ate) < Ae)°®

p|n
p<C(e)

We therefore see that there is a positive number B = B(e), depending at most on ¢, for
which 7(n) < B(e)n® for every natural number n, that is, for each positive number ¢, one

has 7(n) = O(n®).
16. DIOPHANTINE APPROXIMATION

Many important ideas in Number Theory stem from notions of Diophantine approxima-
tion, which is to say rational approximations to real numbers with prescribed properties.

Theorem 16.1 (Dirichlet, 1842). Let 6 € R and let Q be a real number exceeding 1. Then
there exist integers p and q with 1 < ¢ < Q and (p,q) =1 such that |g0 — p| < 1/Q.

Proof. We apply the Box Principle. Write N = [@], and consider the N + 1 real numbers

0, 1, {0}, {20}, ..., {(N —1)8},

where here, and throughout, we write {z} for z — [z]. These N + 1 real numbers all lie
in the interval [0, 1]. But if we divide this unit interval into N disjoint intervals of length
1/N, it follows that there must be two numbers from the above set which necessarily lie
in the same interval. The difference between these two numbers has the shape ¢f — p,
where p and ¢ are integers with 0 < ¢ < N. Thus we deduce that there exist integers p
and ¢ with 1 < ¢ < @ and |gf — p| < 1/Q. The coprimality condition is obtained easily
by dividing through by (p, q). O

Corollary 16.2. Whenever 0 is irrational, there exist infinitely many distinct pairs p € Z
and ¢ € N with (p,q) =1 and |0 — p/q| < 1/¢>.

Proof. Let Q > 2. Then by Dirichlet’s theorem on Diophantine approximation, there
exist p € Z and ¢ € N with (p,q) =1, ¢ < Q and 0 < |0 — p/q| < 1/(qQ) < 1/¢*. Let
Q' be any real number exceeding |6 — p/q|~*. A second application of Dirichlet’s theorem
shows that there exist p’ € Z and ¢ € N with (p',¢') =1, 1 < ¢ < @’ and

6 —1'/¢1 <1/(dQ) <16 —p/al/qd <10 —p/ql.
Further, one has |0 —p'/¢'| < 1/(¢’)?. Thus, necessarily, one has p’/q’' # p/q. By iterating
this process, we obtain a sequence (p,/q,)5, of rational numbers with
0 <0 —=pu/qnl <10 = Pnr/qua] < - <|0—=p1/aq1],

and |0 — p;/q;| < 1/¢?, and hence infinitely many approximations p/q with (p,q) = 1 and
0 —p/al <1/¢*. O
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The continued fraction algorithm This provides a bijective correspondence between:
rational @ < (finite continued fractions) (ag, as, ..., a,),
n finite, a; € N (i > 1), ag € Z, a,, > 2,

irrational # < (infinite continued fractions) (ag, ay, ... ),
GQEZ,aiGN(i>1).

Algorithm: Given 6 € R, define the integers a; (j > 0) as follows.
Let ag = [0]. If ag = 0 then stop.

If ap # 0, define 6, by means of § = ag + 1/6,, so that 6; > 1.

Let a; = |01]. If a; = 0; then stop.

At step n, we suppose that the integers ag, aq, ..., a, have been defined, that 6, € R has
been defined, and that a,, = |6,]. If a,, = 6,, then stop.

If a,, # 6,,, define 6,,,1 by means of 8,, = a, + 1/0,,11, so that 0,1 > 1.

Let Api1 = LGH—FIJ' If p+1 = 0n+1 then StOp.

If this algorithm terminates, say with the sequence (ag, ay, ..., a,), then 0 is rational and

(9:CLO+ 11
ay + 1
az + ——
R
Qn

It will be apparent shortly that when 6 is rational, then necessarily the Continued Fraction
Algorithm terminates.
For the above expansion, it is usually more convenient to write

1 1 1 1
0 =ag+ — or 0=lap;ai,...,a,.
a1+ ax+ Ap-1+ Gy
If the continued Fraction Algorithm does not terminate, so that a,, # 6,, for each natural
number n, then it follows (as we will see) that 6 is irrational, and § may be written in the

form

1 1 1
a1+ as+ Qp_1+

Example 16.3. Write 57/32 as a continued fraction.
Put 6 = 57/32. Then ap = [#] =1, and

or 0 =lap;ay,as,...].

1 32
0 = +—— = —.
¥—-1 25
Then a; = [64] =1, and
1 25
02 = 5 a
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Then as = |62] = 3, and

1 7
93: == —.
2-3 4
Then a3 = |63] =1, and
0 1 4
4 = = —,
-1 3
Then a4 = |04] = 1, and
1
95: :3
$-1

Then as = 3 and 05 = a5, so stop.
In this way we find that 57/32 = [1;1,3,1,1, 3].

Example 16.4. Write V/3 as a continued fraction.
Put 6 = /3. Then ay = L\/gj =1, and

1

0, = =1(V3+1).
1 \/5_1 2( )
Then a; = [6,] =1, and
1
g = ——— =/3+1.
S VE-)
Then as = |62] = 2, and
1
05 = =1V3+1) =0,
3 \/—_1 2( ) 1

and the sequence repeats.

In this way we find that v/3 = [1;1,2,1,2,1,2,...], a periodic continued fraction that,
by convention, we write as [1;1,2].

Example 16.5. Find the continued fraction expansion of (10 — /7).
Put 6 = (10 — v/7). Then ag = |1(10 — v/7)| = 3, and

1 24+ V)

0, = = = 1(8+2V7).
10—V -3 167 o )
Then a; = |6;] =1, and
1 9(—1 — 2V/7)
0y = = = L1 4+ 2V7).
S Ieravno1o d-m a0 TRYD
Then ay = |62] = 2, and
1 3(—5 —2v/7)
0. — — =5+ 2V7.
T l142V7) -2 25 — 28
Then a3 = |05] = 10, and
1 —5—2V/7
0, = VT _ L(5 +2V7).

G+2/7)—10 25-28 3
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Then a4 = |64] = 3, and
1 3(—4 — 2V/7)
" l5+2/7) -3  16-28 2 )

Then a5 = |65] = 2, and

O = =14 +2V7).

1 2(—2 —V/7)
24V -2 4-T
Then ag = |6] = 3, and

1 3(=5 — 2V7)

0; = = =54 2V7 =0,
T la+2v7) -3 25 — 28 ’
and the sequence repeats.
In this way we find that
%(10 — ﬁ) =3;1,2,10,3,2,3,10,3,2,3,...] = [3;1,2,10, 3,2, 3].

Definition 16.6. In the above description of the continued fraction algorithm, and the
resulting continued fraction expansion of a real number 6, the integers a; are known as
the partial quotients of 0, the real numbers #; are known as the complete quotients
of A, and the rational numbers

Pn

dn
where p,, and g, are relatively prime integers with ¢, > 1, are known as the convergents
to 6.

= [aO;ab < 7an]7

Theorem 16.7. Let a,, (n > 0) be the partial quotients of a real number 0, let 0,, be the
corresponding complete quotients, and p,/q, the associated convergents. Then the integers
Pn and q, satisfy the recurrence relations

Po=1ao, qo=1, p1=aar+1, ¢ =a,
and forn > 2,
Dn = @pPp—1 + Pn—2, qn = GnGn—1 + qn—2.
Furthermore,
Pndn+1 — Pn+14n = (_1)n+1’
and when 6 has an infinite continued fraction expansion, one has q, — 00 as n — 00,
and limy, o0 Pr/qn = 0.
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