***************************************************************************
T. D. Wooley, Vinogradov's mean value theorem via efficient congruencing, Annals of Math. 175 (2012), 1575--1627.
T. D. Wooley, Vinogradov's mean value theorem via efficient congruencing, II, Duke Math. J. 162 (2013), 673--730.
S. T. Parsell, S. M. Prendiville and T. D. Wooley, Near-optimal mean value estimates for multidimensional Weyl sums, Geom. Funct. Anal. 23 (2013), 1962--2024.
T. D. Wooley, Translation invariance, exponential sums and Waring's problem, Proceedings of the International Congress of Mathematicians, August 13--21, 2014, Seoul, Korea, Volume II, Kyung Moon Sa Co. Ltd., Seoul, Korea, 2014, pp. 505--529.
K. Ford and T. D. Wooley, On Vinogradov's mean value theorem: strongly diagonal behaviour via efficient congruencing, Acta Math. 213 (2014), 199--236.
T. D. Wooley, Multigrade efficient congruencing and Vinogradov's mean value theorem, Proc. London Math. Soc. (3) 111 (2015), no. 3, 519--560.
T. D. Wooley, Approximating the main conjecture in Vinogradov's mean value theorem, Mathematika 63 (2017), no. 1, 292--350.
T. D. Wooley, The cubic case of the main conjecture in Vinogradov's mean value theorem, Adv. Math. 294 (2016), 532--561.
T. D. Wooley, Discrete Fourier restriction via efficient congruencing, Internat. Math. Res. Notices 2017 (2017), no. 5, 1342--1389.
T. D. Wooley, Nested efficient congruencing and relatives of Vinogradov's mean value theorem, Proc. London Math. Soc. 118 (2019), no. 4, 942--1016; arxiv:1708.01220.
... and here are some consequences of EFFICIENT CONGRUENCING:
T. D. Wooley, The asymptotic formula in Waring's problem, Internat. Math. Res. Notices (2012), No. 7, 1485--1504.
T. D. Wooley, Rational solutions of pairs of diagonal equations, one cubic and one quadratic, Proc. London Math. Soc. (3) 110 (2015), no. 2, 325--356.
B. Wei and T. D. Wooley, On sums of powers of almost equal primes, Proc. London Math. Soc. (3) 111 (2015), no. 5, 1130--1162.
T. D. Wooley, Mean value estimates for odd cubic Weyl sums, Bull. London Math. Soc. 47 (2015), no. 6, 946--957.
T. D. Wooley, Perturbations of Weyl sums, Internat. Math. Res. Notices 2016 (2016), no. 9, 2632--2646.