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Abstract. Let S denote the set of integers representable as a sum of two squares. Since S can be described

as the unsifted elements of a sieving process of positive dimension, it is to be expected that S has many

properties in common with the set of prime numbers. In this paper we exhibit “unexpected irregularities”
in the distribution of sums of two squares in short intervals, a phenomenon analogous to that discovered

by Maier, over a decade ago, in the distribution of prime numbers. To be precise, we show that there are

infinitely many short intervals containing considerably more elements of S than expected, and infinitely many
intervals containing considerably fewer than expected.

1. Introduction

Until recently it was widely believed that sequences of integers prescribed by reasonable multiplicative
constraints should be well-distributed, even amongst intervals short relative to the size of those integers.
Thus, for example, it was expected that the number of prime numbers of size about x, lying inside an
interval of length y, should be asymptotic to y/ log x provided only that y is at least as large as some
fixed power of log x. A little over a decade ago Maier [9] shattered this belief by proving that, for
any fixed positive number N , there are arbitrarily large values of x with the property that the interval
[x, x+ logN x] contains a positive proportion more than the expected number, logN−1 x, of primes, and
similarly such intervals exist containing a positive proportion fewer than the expected number of primes.
After a decade of intense effort by a number of authors (see, for example, Granville [4] for a survey
of this work), extensive investigations concerning the distribution of primes in short intervals, lying
in various sequences, have lifted our platform of knowledge to the position where, with the luxury of
hindsight, we may now describe these “unexpected irregularities” in the distribution of prime numbers
rather as “expected deviations”. In this paper we pursue the philosophy implicit in the latter statement
by exhibiting “expected deviations” in the distribution of sums of two squares in short intervals. As far
as we are aware, this is the first instance in which such deviations have been investigated for sequences
other than those consisting of prime numbers, or special subsequences thereof. We suggest that such
deviations are to be expected in the short-scale distribution of integers in any sequence described as
the unsifted elements of a sieving process of positive dimension.

Before describing our main theorem it will be useful to discuss some simple properties of the global
distribution of sums of two squares, and this will require some notation. Let S denote the set of
integers representable as a sum of two squares. From time to time it will be convenient to abbreviate
the condition that n is representable as a sum of two squares by simply writing n = � + �. For large
x one has the classical asymptotic formula (see, for example, Landau [8, pp. 55–68])

card{1 ≤ n ≤ x : n = � + �} ∼ Bx√
log x

, (1.1)

where

B =
1√
2

∏
p≡−1 (mod 4)

(
1− 1/p2

)−1/2
. (1.2)
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When x is large and y is not too small, therefore, the number of elements of S lying in the interval
(x, x + y] is expected to be asymptotic to By/

√
log x. Recent work of Hooley provides firm evidence

that the latter expectation is not too far from the truth. Provided only that y/
√

log x→∞ as x→∞,
Hooley [6] shews that in almost all of the intervals (x, x + y], the number of sums of two squares has
precise order y/

√
log x. Thus there exist positive constants A1 and A2 so that, in the sense of natural

density, for almost all y one has

A1y/
√

log x ≤ card {x < n ≤ x+ y : n = � + �} ≤ A2y/
√

log x. (1.3)

For the historical record, it seems appropriate here to remark that the upper bound aspect of this
conclusion is contained in earlier work of Friedlander [2], [3]. Moreover, the lower bound aspect of this
conclusion was claimed in flawed work of Plaksin [11], which was, however, subsequently claimed to be
corrected [12] shortly before the cited work of Hooley [6].

Since our results are intimately related to the theory of the half-dimensional sieve, it is helpful to
define some functions associated with the latter sieve in order to announce our conclusions. When s is
a positive number, we define the functions F (s) and f(s) to be the unique continuous solutions of the
pair of simultaneous differential-difference equations{

(s1/2F (s))′ = 1
2s
−1/2f(s− 1), when s > 2,

(s1/2f(s))′ = 1
2s
−1/2F (s− 1), when s > 1,

(1.4)

subject to the initial conditions{
F (s) = 2

√
eγ/πs−1/2, when 0 < s ≤ 2,

f(s) = 0, when 0 < s ≤ 1.
(1.5)

Here, and in the sequel, γ = 0.577 . . . is Euler’s constant. It may be verified that F (s) and f(s) are
respectively monotone decreasing, and monotone increasing, functions of s, that for positive values of
s one has

0 ≤ f(s) < 1 < F (s), (1.6)

and moreover that when s is large,

F (s) = 1 +O(e−s) and f(s) = 1 +O(e−s) (1.7)

(see, for example, Halberstam and Richert [5] or Iwaniec [7]). We remark that one may easily refine
(1.7) to show that F (s) and f(s) each tend to 1 with speed e−s log s.

The conclusion of Section 4 of this paper yields the following theorem.

Theorem 1. Let N > 0 be fixed. There is a sequence of real numbers, x+, tending to infinity, such
that with y = (log x+)N one has

card
{
x+ < n ≤ x+ + y : n = � + �

}
>

By√
log x+

(F (N) + o(1)).

There is also a sequence of real numbers, x−, tending to infinity, such that with y = (log x−)N one has

card
{
x− < n ≤ x− + y : n = � + �

}
<

By√
log x−

(f(N) + o(1)).

On recalling the inequalities (1.6), the conclusion of Theorem 1 shows that the expectation expressed
above, to the effect that

card {x < n ≤ x+ y : n = � + �} ∼ By√
log x

,
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cannot always hold when y is bounded by a fixed power of log x. It follows that Hooley’s result (1.3)
is best possible, in the sense that one cannot remove the phrase “almost all” from the conclusion, and
obtain an asymptotic result at the same time.

Our proof of Theorem 1 avoids explicit application of the half-dimensional sieve in favour of a direct
proof which, although a little longer, yields some interesting additional consequences. For example, in
the course of our proof we derive an asymptotic formula for the number of y-smooth numbers in S up
to x, which is to say the number of integers up to x whose prime factors are all bounded by y. In order
to describe this asymptotic formula, we will require some additional notation. Define σ(s) to be the
unique continuous solution of the differential-difference equation

sσ′(s) = − 1
2 (σ(s) + σ(s− 1)) , when s > 1, (1.8)

subject to the initial condition

σ(s) = s−1/2, when 0 < s ≤ 1. (1.9)

The integral equation

sσ(s) = 1
2

∫ s

s−1
σ(t)dt (s > 1),

corresponding to (1.8) reveals that the function σ(s) is positive, decreasing, and satisfies σ(s) =
O(e−s log s) for large s. We remark also that a simple calculation shows that when 1 ≤ s ≤ 2, one
has

σ(s) =
1√
s

(
1− log(

√
s+
√
s− 1)

)
= 1−

√
s− 1 +O(s− 1). (1.10)

Theorem 2. Let y and z be real numbers with y ≥ 2 and z ≥ 2. Denote by A(y, z) the number of
integers n ∈ S with 1 ≤ n ≤ y, n ≡ 1 (mod 4), and satisfying the condition that whenever p is prime
and p|n, then p ≤ z. One has

A(y, z) = 1
2σ

(
log y

log z

)
By√
log z

+O

(
y

log z
+

y

log3/2 y

)
. (1.11)

Here the implied constant is absolute.

It is well-known that n ∈ S if and only if n can be written in the form n = md2, where m has no
prime factor congruent to −1 modulo 4, and d has all of its prime factors in the latter congruence class.
It follows easily that the congruence condition n ≡ 1 (mod 4) may be deleted from the definition of
A(y, z) in the statement of Theorem 2, so long as the factor 1

2 is deleted from the conclusion (1.11).
A conclusion similar to the latter is contained in work of Moree [10]. We note also that the first error
term in (1.11) would appear to be close to best possible, in the sense that a second main term of this
size is expected.

In order to relate the sieving function σ(s) to the functions F (s) and f(s) defined above, we are
forced to derive some integral identities involving Buchstab’s function ω(s), defined for s ≥ 1 by the
differential-difference equation

sω′(s) = ω(s− 1)− ω(s), when s > 2, (1.12)

subject to the initial condition
ω(s) = 1/s, when 1 ≤ s ≤ 2. (1.13)

It is convenient to define ω(s) to be zero when 0 < s < 1. As is well-known (see, for example, Halberstam
and Richert [5]), when s is large one has

ω(s) = e−γ +O(e−s log s).

In Section 3 we derive the identities contained in the following theorem.
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Theorem 3. When s is a positive real number one has√
π/eγF (s) = 2σ(s) +

∫ s

0

ω(t)σ(s− t)dt, (1.14)

and √
π/eγf(s) =

∫ s

0

ω(t)σ(s− t)dt. (1.15)

In view of the extensive literature concerning the properties of sieve functions associated with
differential-difference equations, it would be surprising if the identities (1.14) and (1.15) were genuinely
new. However, the authors have been unable to identify any source in the literature which establishes
these identities (but see, for example, Wheeler [16] and references cited therein for a discussion of related
properties of such functions). It may be interesting to note that on considering the limit as s tends
to infinity in (1.15), and making use of the growth properties of f(s), σ(s) and ω(s), one obtains the
formula ∫ ∞

0

σ(t)dt =
√
πeγ . (1.16)

We begin, in Section 2, by establishing Theorem 2 using an identity related to that of Buchstab. Next,
in Section 3, we derive the identities described in Theorem 3. Having completed these preliminaries,
we are equipped to develop an analogue of Maier’s matrix method in Section 4. Unfortunately, since
the sieving function σ(s) associated with sums of two squares does not have the oscillatory behaviour
demonstrated by the function ω(s) stemming from Maier’s treatment of the prime numbers, we are
forced to develop separate treatments in order to obtain the positive and negative deviations in the
distribution described in Theorem 1. For this purpose we employ an idea of Richards [13], originally
used to deduce the existence of unusually large gaps between successive sums of two squares.

Throughout, implicit constants in Vinogradov’s notation � and �, and in Landau’s notation, will
depend at most on the quantities occurring as subscripts to the notation, unless otherwise indicated. We
adopt the convention throughout that any variable denoted by the letters p or q is implicitly assumed
to be a prime number. Finally, we write pr‖n to denote that pr|n but pr+1 - n.

2. The distribution of smooth sums of two squares

Before embarking on the proof of Theorem 2, the main objective of this section, we require an
asymptotic formula for the number of sums of two squares in arithmetic progressions. For the latter
purpose we appeal to the estimate contained in Lemma 2.1 below, which follows from Iwaniec [7,
Corollary 1] and Rieger [14, Satz 1].

Lemma 2.1. Let k be a positive integer, and let l be an integer satisfying the conditions (k, l) = 1 and
l ≡ 1 (mod (4, k)). Then uniformly in k one has∑

1≤n≤x
n≡l (mod k)
n=�+�

1 =
(4, k)

(2, k)k

∏
p|k

p≡−1 (mod 4)

(1 + 1/p)
Bx√
log x

(
1 +O

(
log(2k)

log x

)1/5
)
.

If k is a fixed integer, moreover, then the exponent 1/5 arising in the error term may be replaced by the
exponent 1.

The proof of Theorem 2. Let z0 be a sufficiently large, but fixed, positive number. Then the conclusion
of Theorem 2 is trivial for z ≤ z0 (although, plainly, the implicit constant may depend on our choice of
z0). When z ≥ y/z0, on the other hand, Lemma 2.1 implies that

A(y, z) =
∑

1≤a≤y
a≡1 (mod 4)
a=�+�

1 +O

 ∑
z<p≤y

1



=
By

2
√

log y
+O

(
y

log3/2 y
+

y

log z

)
.
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On recalling (1.9) and (1.10), we therefore deduce that

A(y, z) = 1
2σ(s)

By√
log z

+O

(
y

log3/2 y
+

y

log z

)
,

where s = (log y)/(log z), and thus the theorem follows also in this case. Henceforth, therefore, we may
suppose that z0 < z < y/z0.

We now develop an iteration procedure based on an identity similar to that of Buchstab [1]. We
start by observing that when p ≡ 1 (mod 4), one has that bp = � + � if and only if b = � + �. On
the other hand, when p ≡ −1 (mod 4), one has that bp = � + � if and only if p|b and b/p = � + �.
Suppose that z1 is a real number satisfying z < z1 ≤ y/z0. Then by collecting together terms according
to their largest prime factor, and making use of the aforementioned criteria, one has

A(y, z) = A(y, z1)−
∑

z<p≤z1

∑
1≤b≤y/p
q|b⇒q≤p

bp≡1 (mod 4)
bp=�+�

1

= A(y, z1)−
∑

z<p≤z1
p≡1 (mod 4)

A(y/p, p)−
∑

z<p≤z1
p≡−1 (mod 4)

A(y/p2, p). (2.1)

But a trivial estimate yields ∑
z<p≤z1

p≡−1 (mod 4)

A(y/p2, p) ≤
∑
n>z

y/n2 � y/z,

and on substituting the latter bound into (2.1) we obtain

A(y, z) = A(y, z1)−
∑

z<p≤z1
p≡1 (mod 4)

A(y/p, p) +O(y/z). (2.2)

We derive the asymptotic formula (1.11) by iterating (2.2). We begin by considering the situation
in which

√
y ≤ z < y/z0, and apply (2.2) with z1 = y/z0. Write

s =
log y

log z
and s1 =

log y

log z1
. (2.3)

We note first that when y/p ≤ p, one may estimate A(y/p, p) directly by using Lemma 2.1. Thus we
deduce that

∑
z<p≤z1

p≡1 (mod 4)

A(y/p, p) =
∑

z<p≤z1
p≡1 (mod 4)

(
By

2p
√

log(y/p)
+O

(
y

p log3/2(y/p)

))
. (2.4)

By partial summation, moreover, one obtains from the Prime Number Theorem for arithmetic progres-
sions the conclusion that for r = 1

2 or 3
2 ,

∑
z<p≤z1

p≡1 (mod 4)

1

p logr(y/p)
= 1

2

∫ z1

z

dx

x log x logr(y/x)
+O

(
1

log z

)

=
Ir(s, s1)

2 logr y
+O

(
1

log z

)
, (2.5)
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where here we recall the notation (2.3), and write

Ir(s, t) =

∫ s

t

du

u(1− 1/u)r
. (2.6)

Of course, the error term in (2.5) can be substantially improved by using a version of the Prime Number
Theorem with a suitably strong error term, but such is unnecessary in the application at hand.

On recalling (2.3), we have that

s1 = 1 +
log z0

log(y/z0)
,

and thus it follows from (2.6) that

I3/2(s, s1) =

∫ s

s1

u1/2

(u− 1)3/2
du ≤ s1/2

∫ s

s1

(u− 1)−3/2du

�
(

log y

log z

)1/2(
log z0

log(y/z0)

)−1/2
.

We therefore deduce from (2.5) that

∑
z<p≤z1

p≡1 (mod 4)

1

p log3/2(y/p)
� 1

log z
. (2.7)

Further, a modest calculation reveals that

I1/2(s, s1) =

∫ s

s1

du√
u(u− 1)

= 2 log

( √
s+
√
s− 1

√
s1 +

√
s1 − 1

)
,

so that whenever 1 ≤ s1 < s ≤ 2, one deduces from (1.10) and (2.5) that

∑
z<p≤z1

p≡1 (mod 4)

1

p log1/2(y/p)
=

√
s1σ(s1)−

√
sσ(s)√

log y
+O

(
1

log z

)
. (2.8)

On combining (2.4), (2.7) and (2.8), we obtain the estimate

∑
z<p≤z1

p≡1 (mod 4)

A(y/p, p) =
By

2
√

log y

(√
s1σ(s1)−

√
sσ(s)

)
+O

(
y

log z

)
,

whence by (2.2), together with the asymptotic formula (1.11) already established when z = z1, we may
conclude that whenever 1 < s ≤ 2,

A(y, z) = 1
2σ(s1)

By√
log z1

− 1
2By

(
σ(s1)√
log z1

− σ(s)√
log z

)
+O

(
y

log z

)
= 1

2σ(s)
By√
log z

+O

(
y

log z

)
.

Thus far we have established (1.11) in the range z ≥ √y. We now establish (1.11) in the range
2 ≤ z <

√
y through an inductive argument. When y ≥ 2 and z ≥ 2, define ∆(y, z) by means of the

equation

A(y, z) = 1
2σ(s)

By√
log z

+
y

log z
∆(y, z), (2.9)
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where s is defined as in (2.3). When k is a natural number, define

∆(k) = max

{
1, sup
z0≤z≤y≤zk

|∆(y, z)|

}
.

We establish by induction that for each natural number k one has

∆(k) ≤ 3∆(2). (2.10)

That such is the case when k = 1, 2 is immediate from our deliberations thus far. Suppose then that k
is an integer with k ≥ 2, and that (2.10) holds. Consider a fixed value of z satisfying the condition

z20 ≤ z2 ≤ y ≤ zk+1.

On applying (2.2) with z1 =
√
y and recalling the inductive hypothesis, we obtain from (2.9) the

equation

A(y, z) = 1
2σ(s1)

By√
log z1

+
y

log z1
∆(y, z1)

−
∑

z<p≤z1
p≡1 (mod 4)

(
1
2σ(sp − 1)

By

p
√

log p
+

y

p log p
∆(y/p, p)

)
+O(y/z), (2.11)

where s1 is defined as in (2.3), and

sp =
log y

log p
< s ≤ k + 1.

On making the change of variable y = xu and applying partial summation, it follows from the Prime
Number Theorem for arithmetic progressions that

∑
z<p≤z1

p≡1 (mod 4)

σ(sp − 1)

p
√

log p
= 1

2

∫ z1

z

σ(sx − 1)

x log3/2 x
dx+O

(
1

log2 z

)

=
1

2
√

log y

∫ s

s1

σ(u− 1)√
u

du+O

(
1

log2 z

)
. (2.12)

The equation (1.8), moreover, implies that

√
s1σ(s1)−

√
sσ(s) = 1

2

∫ s

s1

σ(u− 1)√
u

du, (2.13)

and thus, collecting together (2.9) and (2.11)-(2.13) we arrive at the relation

y

log z
∆(y, z) = A(y, z)− 1

2σ(s)
By√
log z

=
y

log z1
∆(y, z1)−

∑
z<p≤z1

p≡1 (mod 4)

y

p log p
∆(y/p, p) +O

(
y

log2 z

)
. (2.14)

But when z < p ≤ z1 one has
log(y/p)

log p
= sp − 1 ≤ k,
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and thus |∆(y/p, p)| ≤ ∆(k). Also, by partial summation, it follows from the Prime Number Theorem
for arithmetic progressions that∑

z<p≤z1
p≡1 (mod 4)

1

p log p
= 1

2

∫ z1

z

dx

x log2 x
+O

(
1

log2 z

)
=

1

2 log z
− 1

2 log z1
+O

(
1

log2 z

)
.

Thus, by (2.14),
|∆(y, z)| ≤ |∆(y, z1)|+ 1

2∆(k) +O(1/ log z). (2.15)

But z0 was chosen sufficiently large, and |∆(y, z1)| ≤ ∆(2). Then on recalling the inductive hypothesis
(2.10), we deduce from (2.15) that

|∆(y, z)| ≤ ∆(2) + 3
2∆(2) +O(1/ log z0) ≤ 3∆(2),

whence

∆(k + 1) ≤ max

{
∆(2), sup

z20≤z2≤y≤zk+1

|∆(y, z)|

}
≤ 3∆(2).

Consequently the inductive hypothesis (2.10) holds with k + 1 in place of k, and the induction is
complete. This completes the proof of Theorem 2.

We note that a refinement of the above rather crude approach would permit us to establish asymptotic
exponential decay of ∆(k), thereby extending the range in which Theorem 2 is non-trivial.

3. Some sieve function identities

In order to establish Theorem 3 one has, in principle, merely to check that the sum and difference of
the functions on the right hand side of (1.14) and (1.15) satisfy the same differential-difference equations,
subject to the same initial conditions, as the functions on the left hand side of the latter equations.
However, neither ω(t) nor σ(t) is differentiable at t = 1, and thus one is forced to negotiate certain
complications in order to execute such a plan. This exercise will be the object of the present section.

We first handle the difference of the functions F (s) and f(s).

Lemma 3.1. For each s > 0 one has

F (s)− f(s) = 2
√
eγ/πσ(s). (3.1)

Proof. In view of equations (1.5) and (1.9), the equation (3.1) is satisfied trivially for 0 < s ≤ 1. When
1 < s ≤ 2, moreover, the equations (1.4) yield(

s1/2f(s)
)′

=

√
eγ/π√

s(s− 1)
,

whence by (1.5) and (1.10),

s1/2f(s) =
√
eγ/π

∫ s

1

dt√
t(t− 1)

= 2
√
eγ/π log

(√
s+
√
s− 1

)
= 2
√
eγ/π

(
1− s1/2σ(s)

)
.

On recalling (1.5), therefore, one finds that equation (3.1) holds also in the range 1 < s ≤ 2. Finally,
when s > 2 the equations (1.4) yield

s
d

ds
((F − f)(s)) = − 1

2 ((F − f)(s) + (F − f)(s− 1)) .

Thus F (s)−f(s) is identical with 2
√
eγ/πσ(s) for 0 < s ≤ 2, and, by (1.8), satisfies the same differential-

difference equation as does the latter function for s > 2. The desired conclusion therefore follows from
the continuity of the respective functions.

Next we investigate the sum of the functions F (s) and f(s).
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Lemma 3.2. For each s > 0 one has

F (s) + f(s) = 2
√
eγ/π

(
σ(s) +

∫ s

0

ω(t)σ(s− t)dt
)
.

Proof. We begin by extending the definition of σ(s) provided in the introduction by taking σ(s) = 0
for s ≤ 0. It then follows from (1.8) and (1.9) that

sσ′(s) = − 1
2 (σ(s) + σ(s− 1)) (3.2)

for s ∈ R \ {0, 1}. Similarly, if we extend the definition of ω(s) provided in the introduction by taking
ω(s) = 0 for s < 1, then it follows from (1.12) and (1.13) that

sω′(s) = ω(s− 1)− ω(s) (3.3)

for s ∈ R \ {1, 2}. It will be convenient in our argument also to extend the definitions of σ′(s) and ω′(s)
so that σ′(1) = − 1

2 , ω′(1) = −1, ω′(2) = 0 and σ′(0) = ω′(0) = 0. This latter convention results in
only cosmetic consequences, the occurrences of these values of the derivatives being smoothed away by
integration.

Define the function G(s) for real s by

G(s) = σ(s) +

∫ s

0

ω(t)σ(s− t)dt. (3.4)

Then one has G(s) = 0 for s ≤ 0 and G(s) = s−1/2 for 0 ≤ s ≤ 1. Moreover when 1 < s ≤ 2, the
equations (1.4) and (1.5) together imply that(

s1/2F (s)
)′

= 1
2s
−1/2f(s− 1),

whence (
s1/2(F + f)(s)

)′
= 1

2s
−1/2 (F + f) (s− 1)

for 1 < s ≤ 2. It follows that F (s) + f(s) = 2
√
eγ/πG(s) for 0 < s ≤ 1, and that to complete the

proof of the lemma it suffices to show that G(s) satisfies the differential-difference equation satisfied by
F (s) + f(s). Thus we aim to show that for s > 1,

sG′(s) = − 1
2 (G(s)−G(s− 1)) . (3.5)

Let s be any real number exceeding 1, and consider

I(s) =
d

ds

∫ s

0

ω(t)σ(s− t)dt. (3.6)

One has

I(s) =
d

ds

(
s

∫ 1

0

ω(su)σ(s(1− u))du

)
=

∫ 1

0

ω(su)σ(s(1− u))du+ s lim
h→0

J(h)

h
, (3.7)

where

J(h) =

∫ 1

0

ω((s+ h)u)σ((s+ h)(1− u))du−
∫ 1

0

ω(su)σ(s(1− u))du.
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Now ω(t) is zero for t < 1, and σ(t) is differentiable for t 6= 0, 1. Thus, when h > 0 one has

J(h) =

∫ 1

1/s

ω((s+ h)u)σ((s+ h)(1− u))− ω(su)σ(s(1− u))du

+

∫ 1/s

1/(s+h)

ω((s+ h)u)σ((s+ h)(1− u))du,

whence

lim
h→0+

J(h)

h
=

∫ 1

1/s

uω′(su)σ(s(1− u)) + (1− u)ω(su)σ′(s(1− u))du+
σ(s− 1)

s2

=
1

s2

∫ s

1

tω′(t)σ(s− t) + (s− t)ω(t)σ′(s− t)dt+
σ(s− 1)

s2
. (3.8)

For positive values of t, define

ω̃(t) =

{
1/t, when 0 < t < 1,

ω(t), when t ≥ 1.

When h is a small number with h < 0, one has

J(h) =

∫ 1

1/s

ω̃((s+ h)u)σ((s+ h)(1− u))− ω(su)σ(s(1− u))du

−
∫ 1/(s+h)

1/s

1

(s+ h)u
σ((s+ h)(1− u))du,

and thus one similarly obtains

lim
h→0−

J(h)

h
=

1

s2

∫ s

1

tω′(t)σ(s− t) + (s− t)ω(t)σ′(s− t)dt+
σ(s− 1)

s2
. (3.9)

On combining (3.8) and (3.9), and invoking (3.2) and (3.3), we deduce that

s2 lim
h→0

J(h)

h
=σ(s− 1) +

∫ s

1

(ω(t− 1)− ω(t))σ(s− t)dt

− 1
2

∫ s

1

ω(t) (σ(s− t) + σ(s− t− 1)) dt

= σ(s− 1)− 3
2

∫ s

1

ω(t)σ(s− t)dt+ 1
2

∫ s−1

0

ω(u)σ(s− 1− u)du.

We may therefore conclude from (3.7) that

sI(s) = σ(s− 1)− 1
2

∫ s

0

ω(t)σ(s− t)dt+ 1
2

∫ s−1

0

ω(u)σ(s− 1− u)du.

On recalling (3.2), (3.4) and (3.6), therefore, we deduce that when s > 1 one has

sG′(s) + 1
2G(s) = sσ′(s) + 1

2σ(s) + sI(s) + 1
2

∫ s

0

ω(t)σ(s− t)dt

= 1
2σ(s− 1) + 1

2

∫ s−1

0

ω(t)σ(s− 1− t)dt = 1
2G(s− 1).

The equation (3.5) is thus satisfied for s > 1, and the lemma follows.

Theorem 3 is immediate from the conclusions of Lemmata 3.1 and 3.2.
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4. Dense and sparse rectangles

Our basic strategy now is to construct a rectangle, which is to say a set of disjoint intervals of length
logN x equally spaced apart in (1, x], which contains F (N) times the expected number of sums of two
squares. It follows by a box principle that at least one of the aforementioned intervals contains F (N)
times the expected number of sums of two squares, whence the first conclusion of Theorem 1 follows.
The second conclusion of Theorem 1 follows via a conjugate argument.

Before describing the key machinery of our argument we require some technical estimates. When y
and z are positive real numbers, define

B±(y, z) =
∑

1<b≤y
b≡±1 (mod 4)
p|b⇒p>z

1.

Lemma 4.1. Uniformly for y ≥ z ≥ 2, one has

B±(y, z) =
ω(u)y − z

2 log z
+O

(
y

log2 z

)
,

where u = log y/ log z.

Proof. Work of Buchstab [1] would suffice to provide the asymptotic formula stated in the lemma,
though with a weaker error term. In order to obtain the stated conclusion, we note on the one hand
that by a classical estimate (see, for example, Tenenbaum [15, Theorem 3 of Chapter III.6]),

B+(y, z) +B−(y, z) =
∑

1<b≤y
p|b⇒p>z

1 =
ω(s)y − z

log z
+O

(
y

log2 z

)
, (4.1)

where s = log y/ log z, and the implicit constant is absolute. On the other hand, by using a Buchstab
iteration one has

B+(y, z)−B−(y, z) =
∑

z<p≤y

∑
1≤ν≤ log y

log p

pν≡1 (mod 4)

(
B+(y/pν , p) + 1−B−(y/pν , p)

)

+
∑

z<p≤y

∑
1≤ν≤ log y

log p

pν≡−1 (mod 4)

(
B−(y/pν , p)−B+(y/pν , p)− 1

)
. (4.2)

When z ≥ y one has B±(y, z) = 0, and when z < y ≤ z2 it follows from the Prime Number Theorem
for arithmetic progressions that

B+(y, z)−B−(y, z)� y/ log2 z.

Suppose that for some absolute constant C, whenever zn ≥ y one has

B+(y, z)−B−(y, z) ≤ Cy/ log2 z. (4.3)

Then the identity (4.2), combined with standard prime number estimates, shows that whenever zn+1 ≥ y
one has

B+(y, z)−B−(y, z) ≤ Cy
∑
p>z

1

p log2 p
+O

(y
z

)
+ o

(
y

log2 y

)
.

By making our initial choice for C sufficiently large, we may plainly suppose without loss of generality
that z is sufficiently large. In the latter circumstance, moreover, one may combine a standard partial
summation argument together with a version of the Prime Number Theorem with error term to obtain∑

p>z

1

p log2 p
=

1
2 +O(1/ log z)

log2 z
<

3

4 log2 z
.

Consequently (4.3) holds in the wider range zn+1 ≥ y. Thus, by induction, the inequality (4.3) holds
uniformly in y and z. The lemma follows on combining (4.1) and (4.3).

We next provide an estimate for weighted sums over the sets B±(y, z).
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Lemma 4.2. Let y, z and u be real numbers with 2 ≤ z ≤ u ≤ y, and let g(t) be a non-negative
continuously differentiable function of a real variable t, monotonic on (u, y). Then

∑
u<b≤y

b≡±1 (mod 4)
p|b⇒p>z

g(b)

b
− 1

2 log z

∫ y

u

g(t)

t
ω

(
log t

log z

)
dt� g(y) + g(u)

log2 z
+

∫ y

u

g(t)

t log2 z
dt.

Here the implicit constant is absolute.

Proof. When t is a real number with u ≤ t ≤ y, define

st =
log t

log z
.

By a standard partial summation argument one has

∑
u<b≤y

b≡±1 (mod 4)
p|b⇒p>z

g(b)

b
=
g(y)

y
B±(y, z)− g(u)

u
B±(u, z)−

∫ y

u

B±(t, z)

(
g(t)

t

)′
dt. (4.4)

Moreover, from Lemma 4.1,

∫ y

u

B±(t, z)

(
g(t)

t

)′
dt−

∫ y

u

ω(st)t− z
2 log z

(
g(t)

t

)′
dt�

∫ y

u

t

log2 z

∣∣∣∣∣
(
g(t)

t

)′∣∣∣∣∣ dt. (4.5)

Observe that (g(t)/t)′ = g′(t)/t− g(t)/t2. Furthermore, ω(s) is piecewise continuously differentiable for
s ∈ (1,∞), with |ω′(s)| ≤ 1, and

(ω(st)t)
′

= ω′(st)/ log z + ω(st).

Then applying integration by parts in (4.5), one obtains from (4.4) and Lemma 4.1 that

∑
u<b≤y

b≡±1 (mod 4)
p|b⇒p>z

g(b)

b
−
∫ y

u

g(t)

2t log z
(ω(st)t)

′dt� g(y) + g(u)

log2 z
+

∫ y

u

t

log2 z

∣∣∣∣∣
(
g(t)

t

)′∣∣∣∣∣ dt,

whence ∑
u<b≤y

b≡±1 (mod 4)
p|b⇒p>z

g(b)

b
−
∫ y

u

g(t)

2t log z
ω(st)dt�

g(y) + g(u)

log2 z
+

∫ y

u

g(t)

t log2 z
dt.

This completes the proof of the lemma.

In preparation for the main thrust of our argument, we pause to fix some notation. We take x to be
a large real number, and fix real numbers y and z with 2 ≤ y < x1/4 and 2 ≤ z < x1/4. We write

s = log y/ log z. (4.6)

When p is a prime number, we define αp to be the unique odd integer with the property that

pαp > 4y + 1 ≥ pαp−2,
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and then define
P =

∏
p≤z

p≡−1 (mod 4)

pαp . (4.7)

Note that by using the Prime Number Theorem for arithmetic progressions, one has

sz � logP � (s+ 1)z. (4.8)

We define the integers P± by

P± =

{ 1
4 (P ± 1), when P ≡ ∓1 (mod 4),
1
4 (3P ± 1), when P ≡ ±1 (mod 4).

(4.9)

Thus P± satisfies the congruence 4P± ≡ ±1 (mod P ). Finally we define our rectangle, M± =
M±(x, y, z), by taking

M± = {1 ≤ n ≤ x : n ≡ P± + r (mod P ), 1 ≤ r ≤ y} . (4.10)

We remark that P+ has been chosen in such a way that the chance that a residue class P+ + r
contains elements of S is increased. Thus M+ should contain more than the “expected” number of
elements of S. We undertake a similar construction, using an analogous rectangle based on the number
P−, in order to reduce the chance that a residue class P− + r contains elements of S. Such an idea has
been exploited by Richards [13] to show that there are unusually large gaps, with length the square of
the average gap, between successive sums of two squares.

Our aim is to evaluate the number of those integers in M± representable as a sum of two squares.
Thus we evaluate the sum

S±(x, y, z) = card {n ∈M±(x, y, z) : n = � + �} . (4.11)

Lemma 4.3. With the above hypotheses and notation, one has

S+(x, y, z) =
Bxy

P
√

log x

(
F (s) +O

(
s+ 1√
log z

))(
1 +O

((
(s+ 1)z

log x

)1/5
))

and

S−(x, y, z) =
Bxy

P
√

log x

(
f(s) +O

(
s+ 1√
log z

))(
1 +O

((
(s+ 1)z

log x

)1/5
))

.

Here, the implicit constants are absolute.

Proof. Write S± for S±(x, y, z). Then by (4.10) and (4.11) one has

S± =
∑

1≤r≤y

∑
1≤n≤x

n≡P±+r (mod P )
n=�+�

1. (4.12)

Since P is odd, for each value of r counted in the first summation of (4.12) one has

(P± + r, P ) = (4P± + 4r, P ) = (4r ± 1, P ).

But if pβ‖(4r±1, P ) and β > 0, then pβ ≤ 4y±1 and p|P , whence by (4.7) one has pβ+1|P . Consequently,
for each integer n with n ≡ P± + r (mod P ), whenever pβ‖n one has either 2|β or n 6= � + �. Thus,
there is either some divisor d of P with d2|P and (P± + r, P ) = d2, or else the inner sum of (4.12) is
empty. Moreover, since the αp are odd, when d2|P the integer P/d2 has precisely the same prime factors
as does P . Furthermore, for values of r making a non-trivial contribution to the inner sum of (4.12),
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one has (P±+ r, P ) = d2 whenever d2|P and there is an integer u with 4r± 1 = d2u and (u, P ) = 1. In
this situation the conditions

n ≡ P± + r (mod P ) and n = � + �,

are equivalent to the condition that there is an integer m with

n = d2m, m ≡ (P± + r)/d2 (mod P/d2) and m = � + �.

Making use of the deliberations of the previous paragraph, we can rewrite (4.12) in the shape

S± =
∑
d2|P

∑
1≤u≤(4y±1)/d2
u≡±1 (mod 4)

(u,P )=1

∑
1≤m≤x/d2

4m≡u (mod P/d2)
m=�+�

1, (4.13)

whence by Lemma 2.1 we deduce that

S± =
∑
d2|P

∑
1≤u≤(4y±1)/d2
u≡±1 (mod 4)

(u,P )=1

∏
p|P

(1 + 1/p)
Bx

P
√

log(x/d2)

(
1 +O

((
log(2P/d2)

log(x/d2)

)1/5
))

= R±
∏
p|P

(1 + 1/p)
Bx

P
√

log x

(
1 +O

((
(s+ 1)z

log x

)1/5

+
log y

log x

))
, (4.14)

where we write
R± =

∑
d2|P

∑
1≤r≤(4y±1)/d2
r≡±1 (mod 4)

(r,P )=1

1. (4.15)

We remark for future reference that the second error term in (4.14) is majorized by the first one.
We next estimate R±. Observe first that each integer r counted in the second summation of (4.15)

may be written uniquely in the form r = a′b, where

p|a′ ⇒ p ≤ z and p|b⇒ p > z.

Further, the summation condition (r, P ) = 1 implies that (a′, P ) = 1, whence a′ is a product of primes
in the congruence class 1 modulo 4. In particular, a′ ≡ 1 (mod 4), whence b ≡ ±1 (mod 4). Finally, on
writing a = a′d2, we may rewrite the expressions rd2 occurring implicitly in the summation conditions
of (4.15) in the shape rd2 = ab, where a ≡ 1 (mod 4), p|a⇒ p ≤ z, and rd2 = ab is counted in the sum
if and only if a = � + �. Thus we arrive at the conclusion

R± =
∑

1≤b≤4y±1
b≡±1 (mod 4)
p|b⇒p>z

∑
1≤a≤(4y±1)/b
a≡1 (mod 4)
p|a⇒p≤z
a=�+�

1 =
∑

1≤b≤4y±1
b≡±1 (mod 4)
p|b⇒p>z

A((4y ± 1)/b, z). (4.16)

But when b > y one plainly has that A((4y ± 1)/b, z) is either 0 or 1, and thus by Theorem 2 and
Lemma 4.1 we have

R± =
∑

1≤b≤y
b≡±1 (mod 4)
p|b⇒p>z

A((4y ± 1)/b, z) +O(B±(4y ± 1, z)) = T±1 +O(T±2 ), (4.17)
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where

T±1 =
B(4y ± 1)

2
√

log z

∑
1≤b≤y

b≡±1 (mod 4)
p|b⇒p>z

1

b
σ

(
log((4y ± 1)/b)

log z

)
(4.18)

and

T±2 =
y

log z
+

∑
1≤b≤y

b≡±1 (mod 4)
p|b⇒p>z

(
y

b log z
+

y

b log3/2((4y ± 1)/b)

)
. (4.19)

We first estimate the contribution to R± arising from T±2 . Note first that in the summation occurring
in (4.19), one has either b = 1 or else b > z, and indeed the former case does not arise when evaluating
T−1 or T−2 . Moreover in the latter case the summation is empty unless z < y. Thus two applications of

Lemma 4.2, with g(t) = 1 and g(t) = 1/ log3/2((4y ± 1)/t), yield the conclusion

T±2 �
y

log z
+

∑
z<b≤y

b≡±1 (mod 4)
p|b⇒p>z

(
y

b log z
+

y

b log3/2((4y ± 1)/b)

)

� y

log z
+
y log y

log2 z
� (s+ 1)y

log z
. (4.20)

Next we estimate the main term T±1 . Observe that σ(s) is positive, monotone decreasing, differen-
tiable and has derivative continuous everywhere in (0,∞) except at s = 1. Thus we may divide up the
range of summation in (4.18) into at most finitely many intervals, in each of which

g±(t) = σ

(
log((4y ± 1)/t)

log z

)
satisfies the hypotheses necessary to apply Lemma 4.2. We therefore apply Lemma 4.2 and sum the
contributions from each of the latter intervals. Observe that the above choice of g±(t) is itself monotonic
on (z, y), and hence the error terms arising from our applications of Lemma 4.2 will be majorized by
the error terms arising from the whole of the interval (z, y). We may therefore conclude that∑

z<b≤y
b≡±1 (mod 4)
p|b⇒p>z

1

b
σ

(
log((4y ± 1)/b)

log z

)
= T±3 +O(T±4 ), (4.21)

where T±3 is zero unless y > z, in which case

T±3 =
1

2 log z

∫ y

z

1

t
σ

(
log((4y ± 1)/t)

log z

)
ω

(
log t

log z

)
dt (4.22)

and

T±4 =
1

log2 z

(
σ

(
log((4y ± 1)/y)

log z

)
+

∫ y

z

σ

(
log((4y ± 1)/t)

log z

)
dt

t

)
. (4.23)

Make the change of variables t = zu in (4.22), and write

ε± =
log(4± 1/y)

log z
.

One obtains

T±3 = 1
2

∫ s

1

σ(s+ ε± − u)ω(u)du,
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and thus the estimate ε± = O(1/ log z), together with the properties of σ(t) previously discussed, lead
to the asymptotic formula

T±3 = 1
2

∫ s

1

σ(s− u)ω(u)du+O(1/ log z). (4.24)

Similarly, one obtains from (4.23) together with (1.9) and (1.16) the estimate

T±4 �
1

log2 z

(√
log z + log z

∫ s

1

σ(s+ ε± − u)du

)
� 1

log z
. (4.25)

Finally, on combining (4.18), (4.21), (4.24) and (4.25), we arrive at the conclusions

T+
1 =

2By√
log z

(
σ

(
log(4y + 1)

log z

)
+ 1

2

∫ s

1

ω(u)σ(s− u)du+O

(
1√

log z

))
and

T−1 =
By√
log z

(∫ s

1

ω(u)σ(s− u)du+O

(
1√

log z

))
.

On recalling (4.17) and (4.20), we therefore obtain

R+ =
By√
log z

(
2σ(s) +

∫ s

1

ω(u)σ(s− u)du+O

(
s+ 1√
log z

))
(4.26)

and

R− =
By√
log z

(∫ s

1

ω(u)σ(s− u)du+O

(
s+ 1√
log z

))
. (4.27)

We may now insert the estimates for R± contained in (4.26) and (4.27) into (4.14), and hence, on
recalling Theorem 3, obtain

S± = CD
(√

π

eγ
F±(s) +O

(
s+ 1√
log z

))(
1 +O

((
(s+ 1)z

log x

)1/5
))

, (4.28)

where F+(s) denotes F (s) and F−(s) denotes f(s), and where we write

C =
∏
p|P

(1 + 1/p) and D =
Bx

P
√

log x

By√
log z

.

However, by combining Mertens’ formula with the formula of Leibniz for L(1, χ), where χ is the non-
principal character modulo 4, on recalling (1.2) we have

C =
∏
p|P

(1− 1/p2)1/2 · 2−1/2
∏
p≤z

(1− 1/p)−1/2
∏
p≤z

(1− χ(p)/p)1/2

= (2B)−1(eγ log z)1/2(π/4)−1/2 (1 +O (1/ log z)) .

On substituting the latter estimate into (4.28), we finally reach the conclusion

S± =
Bxy

P
√

log x

(
F±(s) +O

(
s+ 1√
log z

))(
1 +O

((
(s+ 1)z

log x

)1/5
))

,

and the lemma follows immediately.
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We are now prepared, at last, to prove Theorem 1. We take N to be a fixed positive number, and
take

y = logN x and z =
log x

log log x
, (4.29)

so that

s =
log y

log z
= N +O

(
log log log x

log log x

)
,

F (s) = F (N) +O

(
log log log x

log log x

)
and f(s) = f(N) +O

(
log log log x

log log x

)
.

Further,
N log x

log log x
� logP � (N + 1) log x

log log x
.

By Lemma 4.3, therefore,

S+(x, y, z)− S+( 1
2x, y, z) =

Bxy

2P
√

log x

(
F (N) +ON

(
(log log x)−1/5

))
(4.30)

and

S−(x, y, z)− S−( 1
2x, y, z) =

Bxy

2P
√

log x

(
f(N) +ON

(
(log log x)−1/5

))
. (4.31)

MoreoverM±(x, y, z) consists of x/P +O(1) disjoint intervals of length y. We may therefore conclude
from (4.29)-(4.31) that at least one of the intervals of length y included inM+(x, y, z), but not included
in M+( 1

2x, y, z), contains at least
By√
log x

(F (N) + oN (1))

sums of two squares, and similarly at least one of the intervals of length y included inM−(x, y, z), but
not included in M−( 1

2x, y, z), contains at most

By√
log x

(f(N) + oN (1))

sums of two squares. Theorem 1 follows immediately.
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