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Abstract. Estimates are provided for small moments of exponential sums over smooth numbers substan-

tially sharper than available hitherto. These bounds arise from the author’s recent breaking of “classical

convexity” in Waring’s problem. The methods underlying these new estimates provide guidance on good
choices of parameters in the new iterative methods for smaller exponents.

1. Introduction. Even moments of exponential sums have a natural interpretation in terms of the
number of solutions of associated diophantine equations. This simple observation underlies almost all
of the progress achieved in the theory of the circle method since the pioneering work of Hardy and
Littlewood. Rather recently, the author has devised an extension of Vaughan’s new iterative method
(see [15]; Vaughan’s work is described in [11], [12]) which permits odd and fractional moments of
exponential sums over smooth numbers to be estimated non-trivially, thereby breaking away from the
bounds following from “classical convexity” (that is, bounds arising from the application of Hölder’s
inequality to interpolate between even moments). Moreover, the new methods permit substantially
greater flexibility in the iterative methods for bounding mean values of smooth Weyl sums. On one
hand, this flexibility leads to particularly sharp upper bounds for small moments of these exponential
sums, close indeed to the lower bounds stemming from a consideration of diagonal solutions alone. On
the other hand, when it comes to calculating upper bounds for mean values of smooth Weyl sums of
smaller degree, this increased flexibility causes difficulty in obtaining an optimal choice of parameters,
and explicit calculations therefore involve an inordinate expenditure of computational effort. Given
the growing list of applications of these new bounds for smooth Weyl sums (see [1], [2], [3], [4], [5],
[6]), the latter problem is not inconsequential. In response to this difficulty, the object of the present
paper is to report on investigations concerning very small moments of smooth Weyl sums, and the
choice of parameters in the associated application of the iterative method. These investigations lead to
significantly sharper bounds than available hitherto for the latter moments, and offer heuristic guidance
on where to seek optimal parameters in the iterative method.

In order to describe our conclusions, we must first introduce some notation. Let P be a large real
number, let R be a real number with 2 6 R 6 P , and denote by A(P,R) the set of R-smooth numbers
up to P , that is

A(P,R) = {n ∈ [1, P ] ∩ Z : p prime and p|n⇒ p 6 R}.

Let k be a fixed positive integer exceeding 2, and define the smooth Weyl sum f(α) = f(α;P,R) by

f(α;P,R) =
∑

x∈A(P,R)

e(αxk),

where e(z) denotes e2πiz. Further, when s is a positive real number, define the mean value Us(P,R) =

U
(k)
s (P,R) by

Us(P,R) =

∫ 1

0

|f(α;P,R)|sdα.
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We say that an exponent µs = µs,k is permissible whenever the exponent has the property that for each
ε > 0, there exists a positive number η = η(ε, s, k) such that whenever R 6 P η, one has

Us(P,R)�ε,s,k P
µs,k+ε.

Permissible exponents certainly exist, since for each s the estimate Us(P,R) � P s is trivial. It is
convenient also to define an exponent δs = δs,k to be associated whenever the exponent µs = 1

2s+ δs is
permissible.

In view of work of Hooley, Greaves and Skinner and Wooley concerning sums of two kth powers (see
[7], [8], [9], [10] for the sharpest available conclusions), when k > 2 one knows that for each η1 and η2
with η1 > η2 > 0, whenever P η2 6 R 6 P η1 , one has

P 2 �
∫ 1

0

|f(α;P,R)|4dα� P 2.

As a consequence of Hölder’s inequality, therefore, one readily deduces that under the same conditions
on R, for each real number s with 0 < s 6 4,

P s/2 � Us(P,R)� P s/2. (1)

On accounting for the underlying diagonal contribution, a formal application of the Hardy-Littlewood
method suggests that when k > 2, for each positive real number s, one should have

P s/2 + P s−k �s,k Us(P,R)�s,k P
s/2 + P s−k,

whence, in particular, the inequalities (1) should hold for each real number s with 0 < s 6 2k. While
for 0 < s 6 4, we have seen already that this conjectured conclusion does indeed hold, the sharpest
conclusion currently available for intermediate values of s is that

δs,k =
8k1/2

es
exp
(
− 16k

e2s2

)
is an associated exponent for 4 < s 6 4e−1k1/2 (see [15, Theorem 1.3]). Thus, when ψ(k) is a monotonic
increasing function of k tending to infinity as k tends to infinity, and s is a real number with 4 < s 6
k1/2/ψ(k), then there exists a positive number η = η(s, k) such that whenever R 6 P η, one has

Us(P,R)� P s/2+δs,k ,

where δs,k −→ 0 as k −→ ∞. We have previously referred to these asymptotically diagonal upper
bounds as exhibiting quasi-diagonal behaviour (see the introduction of [14]).

It should be apparent from the above discussion that the smallest values of s that retain interest
are those close to 4. The main conclusion of this paper, which we establish in §3 below, is that as s

converges to 4 from above, and independently as k increases to infinity, the mean values U
(k)
s (P,R)

approach diagonal behaviour extremely rapidly.

Theorem 1. Let k be an integer with k > 60, and let σ be a positive number with σ 6 8e/(k + 1).
Then the exponent δ4+σ = δ4+σ,k is associated, where

δ4+σ =
(kσ

24

)1+(k+1)/(2e)

.

It follows, in particular, that whenever the hypotheses of Theorem 1 are satisfied, then one has

δ4+σ �k σ
1+(k+1)/(2e). (2)

For comparison, the conclusion of the corollary to [15, Theorem 1.1] yields an associated exponent

δ4+σ = eσ
log(k+1)

log 2 δ6. (3)

When k is large and σ is sufficiently small in terms of k, the superiority of Theorem 1 is clear.
The condition in Theorem 1 that σ 6 8e/(k + 1) may give the impression that our methods are

ineffective when σ > 8e/(k+1). We therefore record a consequence of our methods concerning associated
exponents δ4+σ with σ of intermediate size.
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Theorem 2. Let k be an integer with k > 3, and let σ0 and σ1 be positive numbers with

8e

k + 1
6 σ1 6

4σ0
4 + σ0

6 2.

Then whenever δ4+σ0
is an associated exponent, one has that δ4+σ1

is also associated, where

δ4+σ1

δ4+σ0

= e2(k + 1)
(σ1
σ0

)2+(4/σ0) log((k+1)σ0/16)

.

The conclusion of Theorem 1 shows that associated exponents δ4+σ exist satisfying (2), at least, that
is, when k is large. We are also able to derive conclusions for smaller k, and these we record in the
following theorem.

Theorem 3. When k is an integer with k > 8, define the parameter ξ = ξ(k) to be the real solution of
the equation

(1− ξ) log(1− ξ) + ξ log ξ + ξ log
(k + 1

2

)
= 0.

Define ξ(k) to be 1/2 when 3 6 k 6 7. Further, for each integer k with k > 3, define the exponent
α = α(k) by

α(k) =

{
log(k + 1)/ log 2, when 3 6 k 6 7,

1 + 1/ξ(k), when k > 8.

Finally, suppose that σ0 and σ1 are positive numbers with σ1 6 σ0(1 − ξ) 6 4ξ. Then whenever δ4+σ0

is an associated exponent, one has that δ4+σ1 is also associated, where

δ4+σ1
= e2(k + 1)

(σ1
σ0

)α
δ4+σ0

.

In particular, there is an associated exponent δ4+σ satisfying δ4+σ �k σ
α.

We record in the table below the exponents α(k), for 3 6 k 6 20, that arise in the statement of
Theorem 3. The relevant data is recorded to five decimal places, with the final digit rounded down.
For comparison, the corollary to Theorem 1.1 of [15] yields (3), which is of similar strength to the
conclusion of Theorem 3 for 3 6 k 6 7, but weaker for k > 8.

Table of exponents.

k 2ξ(k) α(k) k 2ξ(k) α(k) k 2ξ(k) α(k)
3 1.00000 2.00000 9 0.84669 3.36213 15 0.57850 4.45721
4 1.00000 2.32192 10 0.78616 3.54399 16 0.54940 4.64031
5 1.00000 2.58496 11 0.73362 3.72620 17 0.52307 4.82351
6 1.00000 2.80735 12 0.68759 3.90868 18 0.49915 5.00678
7 1.00000 3.00000 13 0.64696 4.09136 19 0.47731 5.19013
8 0.91711 3.18074 14 0.61083 4.27422 20 0.45729 5.37353

Oversimplifying our argument considerably, the iterative method used to obtain the conclusion of
Theorem 3 involves bounding the mean value Us(P,R) in the shape

Us(P,R)� (P θR)s−3t
(
P t(1+θ)Us−2t(P

1−θ, R) + Ts,t

)
,

where t and θ are suitably chosen real numbers with 0 6 θ 6 1/k and 0 < t 6 1, and

Ts,t =

∫ 1

0

|F (α)tf(α;P 1−θ, R)s−2t|dα,
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where
F (α) =

∑
u∈A(P θR,R)

u>P θ

∑
z1,z2∈A(P,R)

z1≡z2 (mod uk)
z1 6=z2

e(αu−k(zk1 − zk2 )).

The selection of the optimal parameter t is one of the difficulties in the execution of this version of the
new iterative method mentioned in the introduction. In the proof of Theorem 3, this parameter t is
equal to 2ξ(k), and so it is apparent that when s is very close to 4, the parameter t should be about
2ξ(k). It is an empirical fact, based on extensive computations of workers in this area, that the optimal
methods tend to be more biased in favour of the use of mean value estimates which are predominantly
diagonal in nature for smaller values of s. Thus the analysis involved in the proof of Theorem 3 suggests
strongly that optimal use of the iterative method for any value of s will necessitate a choice for the
parameter t at least as large as 2ξ(k). In particular, one should take t = 1 for 3 6 k 6 7.

Throughout, k will be an integer exceeding 2, and s will be a positive real number. We use ε and
η to denote sufficiently small positive numbers, and P to denote a large positive number depending at
most on k, s, ε and η. The implicit constants in Vinogradov’s well-known notation, � and �, will
depend at most on k, s, ε and η. Also, we write [x] for the greatest integer not exceeding x. We adopt
the following convention concerning the numbers ε and R. Whenever ε or R appear in a statement,
either implicitly or explicitly, we assert that for each ε > 0, there exists a positive number η(ε, s, k)
such that the statement holds whenever R 6 P η. Note that the “value” of ε, and η, may change from
statement to statement, and hence also the dependency of implicit constants on ε and η. We observe
that since our iterative methods will involve only a finite number of statements (depending at most on
k, s and ε), there is no danger of losing control of implicit constants through the successive changes in
our arguments.

2. Mean value estimates for smooth Weyl sums. A discussion of the themes underlying the
calculation of permissible exponents µs may be found in [15]. The particular cases of cubic and bi-
quadratic smooth Weyl sums are discussed in detail in [1, §2], [4] and [6], respectively. In order to
provide a basis for the methods of interest to us within this paper, we return to the methods of [15],
taking the opportunity to update the latter in the light of subsequent developments.

Lemma 1. Let k be an integer with k > 3, and define the integer τ = τ(k) to be 1 when k = 3, and to
be 0 otherwise. Let u and t be real numbers with 0 < t 6 1 and u+ 2t > 4. Also, let v be a real number
with

u

1− t/4
6 v 6

u

1− t/2
,

and write w = 1−u/v. Finally, suppose that µu,k and µv,k are permissible exponents. Then the exponent
µu+2t,k is permissible, where

µu+2t = µu(1− θ) + t+ uθ

and

θ =
t/2− w + (1− w)µv − µu

k(t− w) + w − τ(t/2− w) + (1− w)µv − µu
.

Proof. Suppose that u and v satisfy the hypotheses of the statement of the lemma, and write s = u+2t.
Take φ to be a real number with 0 6 φ 6 1/k to be chosen later, and write

M = Pφ, H = PM−k and Q = PM−1. (4)

On following the argument of [15, §4] surrounding equations (4.2) and (4.3) of that paper, we find that
our choice for φ is determined from the equation

(PM)tQµu = P t/2Ht−wM t−w+τ(t/2−w)Q(1−w)µv . (5)

Here we note that our definition of τ(k) differs from that employed in [15] in that τ(k) is now 0 even
in the cases in which k > 8 and k is even, whereas in the latter source one has τ(k) = 1 in these
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circumstances. On inspecting [15, §4], and examining the proof of [15, Lemma 3.4], one finds that this
enhanced definition of τ(k) will be justified on establishing an estimate of the shape∑

16e6P

∫ 1

0

|Fd,e(α)|4dα� dAP 2+ε(MH)3, (6)

for a suitable positive number A = A(k), in which we write

Fd,e(α) =
∑

16z62P/(de)

∑
16h6Hdk−1e−1

∑
M/d<u6MR/d

e(αΨ1(z, h, u)),

and
Ψ1(z, h, u) = u−k((z + huk)k − (z − huk)k).

But on considering the underlying diophantine equations, the argument of the proof of case (Ia) of [13,
Theorem 3.4] provides the upper bound∫ 1

0

|Fd,e(α)|4dα� P ε
(

(P/(de))2(Hdk−1e−1)3(MR/d)3

+ (P/(de))5/3(Hdk−1e−1)3(MR/d)4
)
,

whence ∑
16e6P

∫ 1

0

|Fd,e(α)|4dα� d3k−8P ε
(
P 2H3(MR)3 + P 5/3H3(MR)4

)
.

But our hypothesis that 0 6 φ 6 1/k ensures that MR � P 1/3. Then on recalling our conventions
concerning ε and R, we find that the desired upper bound (6) does indeed hold, with A = 3k− 8. This
completes our justification of the aforementioned refinement.

We now return to the equation (5), observing that the definitions (4) imply that our choice for φ
should be given by φ = min{θ, 1/k}, where θ is defined as in the statement of the lemma. We may now
mimic the proof of [15, Theorem 1.1] in order to conclude that

µ∗s = µu(1− θ) + t+ uθ

is permissible, and the conclusion of the lemma follows immediately.

In our application of Lemma 1, we make use of a special case in which certain simplifications are
possible. It is convenient to record this consequence of the lemma in the following form.

Lemma 2. Let k be an integer with k > 3, and let h and ξ be positive numbers with ξ 6 1/2 and
h(1− ξ) 6 4ξ. Then whenever δ4+h is an associated exponent, one has that δ4+h(1−ξ) is also associated,
where

δ4+h(1−ξ) =
2(1− ξ)2

(k + 1)ξ
(1 + h/4)δ4+h.

Proof. We apply Lemma 1 with u = (4 + h)(1− ξ), t = 2ξ and v = 4 + h. Since h(1− ξ) 6 4ξ, one has
u 6 4, and hence the exponent µu = u/2 is permissible. Since also the exponent µv = v/2 + δ4+h is
permissible, we find from Lemma 1 that the exponent

µ4+h(1−ξ) = µu(1− θ) + t+ uθ

is permissible, where

θ =
(1− ξ)δ4+h

ξ(k + 1) + (1− ξ)δ4+h
6

(1− ξ)δ4+h
ξ(k + 1)

.

We therefore deduce that the exponent δ4+h(1−ξ) is associated, where

δ4+h(1−ξ) =
uθ

2
6

(1− ξ)2

(k + 1)ξ
(2 + h/2)δ4+h.

The conclusion of the lemma follows immediately.
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3. Quasi-diagonal behaviour. We now exploit the recursion formula provided by Lemma 2 in order
to establish the quasi-diagonal behaviour exhibited in Theorems 1, 2 and 3. There are several possible
approaches to this objective, and we concentrate here on simple analyses significant mostly for associated
exponents δs with s close to 4. We begin by manipulating the conclusion of Lemma 2 into a form more
amenable to our subsequent discussions.

Lemma 3. Let k be an integer with k > 3, and let σ0, σ1 and ξ be positive numbers with ξ 6 1/2
and σ1 6 σ0(1 − ξ) 6 4ξ. Then whenever δ4+σ0

is an associated exponent, one has that δ4+σ1
is also

associated, where

δ4+σ1
= e2

(2(1− ξ)2

(k + 1)ξ

)N−1
δ4+σ0

,

and

N =
log(σ1/σ0)

log(1− ξ)
.

Proof. We apply Lemma 2 successively with h = σ0(1 − ξ)i for i = 0, 1, . . . , [N ] − 1. In this way we
deduce that the exponents

δ4+σ0(1−ξ)i+1 =
2(1− ξ)2

(k + 1)ξ

(
1 + σ0(1− ξ)i/4

)
δ4+σ0(1−ξ)i

are associated, whence also we have the associated exponent

δ4+σ0(1−ξ)[N] = CN

(2(1− ξ)2

(k + 1)ξ

)[N ]

δ4+σ0
, (7)

where we have written

CN =

[N ]−1∏
i=0

(1 + σ0(1− ξ)i/4).

But

logCN 6
∞∑
i=0

log(1 + σ0(1− ξ)i/4) 6
σ0
4

∞∑
i=0

(1− ξ)i =
σ0
4ξ
,

so that in view of our hypotheses concerning σ0 and ξ, it follows that

CN 6 eσ0/(4ξ) 6 e1/(1−ξ) 6 e2.

Also, one has [N ] > N − 1 and σ0(1− ξ)N = σ1, and thus we deduce from (7) that the exponent δ4+σ1

is associated, where

δ4+σ1 6 δ4+σ0(1−ξ)[N] 6 e2
(2(1− ξ)2

(k + 1)ξ

)N−1
δ4+σ0

.

This completes the proof of the lemma.

The proof of Theorem 1. Suppose that k > 60 and 0 < σ 6 8e/(k + 1). We apply Lemma 3 with
ξ = 2e/(k + 1) and σ0 = 8e/(k + 1− 2e). Thus we find that the exponent δ4+σ is associated, where

δ4+σ = e2
(
(1− ξ)2/e

)N−1
δ4+σ0 ,

and

N = (log(1− ξ))−1 log
(σ(k + 1− 2e)

8e

)
.

But if δ5 is an associated exponent, then there is no loss in supposing that δ4+σ0
6 δ5. Also, one has

− log(1− ξ) =
∞∑
n=1

ξn

n
6

ξ

1− ξ
=

2e

k + 1− 2e
,
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and when k > 60, one has
k + 1− 2e

8e
>

k

24
.

Thus we deduce that

δ4+σ 6
e3

(1− ξ)2
(σk

24

)2−1/ log(1−ξ)
δ5

6 e3(1− 2e/61)−2
(σk

24

)1+(k+1)/(2e)

δ5.

The conclusion of Theorem 1 therefore follows with a modicum of computation, on noting that Theorem
1.3 of [15] supplies the associated exponent

δ5 =
8k1/2

5e
exp
(
− 16k

25e2

)
.

The proof of Theorem 2. Suppose that k > 3 and that σ0 and σ1 satisfy the hypotheses of the statement
of Theorem 2. We apply Lemma 3 with ξ = σ0/(4+σ0), deducing that the exponent δ4+σ1

is associated,
where

δ4+σ1
= e2

( (k + 1)ξ

2(1− ξ)2
)(σ1

σ0

)κ
δ4+σ0

, (8)

and

κ = 2 +
log((k + 1)ξ/2)

log(1/(1− ξ))
. (9)

But
− log(1− ξ) 6 ξ/(1− ξ) = σ0/4,

whence the upper bound σ0 6 4 leads to the lower bound

κ > 2 +
4

σ0
log
( (k + 1)σ0

2(4 + σ0)

)
> 2 +

4

σ0
log
( (k + 1)σ0

16

)
.

Also,
ξ

2(1− ξ)2
6

σ0
2(4 + σ0)

( 4

4 + σ0

)−2
=

(4 + σ0)σ0
32

6 1. (10)

On collecting together the above inequalities, we conclude that

δ4+σ1
6 e2(k + 1)

(σ1
σ0

)2+ 4
σ0

log((k+1)σ0/16)

δ4+σ0
,

and the conclusion of Theorem 2 follows immediately.

The proof of Theorem 3. We apply Lemma 3 with ξ defined as in the statement of Theorem 3, this
choice having been determined by an optimisation, the details of which we may suppress. Thus, when
σ0 and σ1 satisfy the hypotheses of the statement of the theorem, we find that the exponent δ4+σ1

is
associated, where δ4+σ1

is defined by (8) and (9). But in view of the equation defining ξ presented in
the statement of Theorem 3, we find that for k > 8, the formula (9) becomes

κ = 2 + (1− ξ)/ξ = 1 + 1/ξ,

whence the upper bound (10) leads from (8) to the estimate

δ4+σ1
6 e2(k + 1)(σ1/σ0)1+1/ξδ4+σ0

.

This completes the proof of the theorem when k > 8. When 3 6 k 6 7, meanwhile, we take ξ = 1/2,
and on combining (8)-(10) we again arrive at the conclusion claimed in the statement of Theorem 3.

We note that in our application of Lemma 3, we are restricted in our choice of ξ to the interval
0 < ξ 6 1/2. Our decision to take ξ(k) = 1/2 for 3 6 k 6 7 is consequently determined by the
observation that under the latter circumstances, the solution of the equation otherwise defining ξ
exceeds 1/2.
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