WELL-DISTRIBUTION MODULO ONE AND THE PRIMES

J. CHAMPAGNE, T. H. LÊ, Y. R. LIU, AND T. D. WOOLEY

Abstract. Let $\left(p_{n}\right)$ denote the sequence of prime numbers, with $2=p_{1}<p_{2}<\ldots$. We demonstrate the existence of an irrational number α having the property that the sequence $\left(\alpha p_{n}\right)$ is not well-distributed modulo 1 .

1. Introduction

Consider a real sequence $\left(s_{n}\right)$ and the associated fractional parts $\left\{s_{n}\right\}=s_{n}-\left\lfloor s_{n}\right\rfloor$. This sequence is said to be equidistributed (or uniformly distributed) modulo 1 when, for each pair a and b of real numbers with $0 \leqslant a<b \leqslant 1$, one has

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{card}\left\{n \in[1, N] \cap \mathbb{Z}: a \leqslant\left\{s_{n}\right\} \leqslant b\right\}}{N}=b-a
$$

A stronger notion than equidistribution is obtained by insisting that, for each natural number m, the sequence $\left(s_{n+m}\right)$ should be equidistributed modulo 1 , uniformly in m. This property of being well-distributed modulo 1 was introduced by Petersen [5] in 1956. More concretely, we say that the sequence $\left(s_{n}\right)$ is well-distributed modulo 1 when, for each pair a and b with $0 \leqslant a<b \leqslant 1$, one has

$$
\lim _{N \rightarrow \infty} \sup _{m \in \mathbb{N}}\left|\frac{\operatorname{card}\left\{n \in[1, N] \cap \mathbb{Z}: a \leqslant\left\{s_{n+m}\right\} \leqslant b\right\}}{N}-(b-a)\right|=0 .
$$

It is a consequence of pioneering work of Weyl [9] that, given a polynomial

$$
\psi_{d}(t ; \boldsymbol{\alpha})=\alpha_{d} t^{d}+\ldots+\alpha_{1} t+\alpha_{0} \in \mathbb{R}[t]
$$

with an irrational coefficient α_{l} for some $l \geqslant 1$, the sequence $\left(\psi_{d}(n ; \boldsymbol{\alpha})\right)$ is equidistributed modulo 1. Moreover, Lawton [3, Theorem 2] established that, under the same conditions, this sequence satisfies the stronger property of being well-distributed modulo 1. We refer the reader to Bergelson and Moreira [2, §3] for further discussion on sequences welldistributed modulo 1 .

In this note, we focus on the sequence $\left(p_{n}\right)$ of prime numbers with $2=p_{1}<p_{2}<\ldots$. It was famously proved by Vinogradov that when α is irrational, then the sequence (αp_{n}) is equidistributed modulo 1 (see [8], for example). Subsequently, a relatively simple proof of this conclusion was presented by Vaughan [7]. It is natural to enquire whether this equidistribution extends to a corresponding well-distribution property. The purpose of this note is to answer this question in the negative.

[^0]Theorem 1.1. There exists an irrational number α having the property that the sequence $\left(\alpha p_{n}\right)$ is not well-distributed modulo 1.

At first sight, this conclusion may seem surprising, since the primes are undeniably equidistributed at large scales. However, as first discerned by Maier [4], the primes exhibit irregularities in their distribution at very small scales. When it comes to generating a failure of well-distribution, the most convenient manifestation of such irregularities of which to avail oneself is that established in work of Shiu [6, Theorem 1]. The latter author shows, in particular, that for each natural number q, there exist arbitrarily long strings of prime numbers p_{n+1}, \ldots, p_{n+k} with $p_{n+1} \equiv \ldots \equiv p_{n+k} \equiv 1(\bmod q)$. By carefully constructing an associated irrational number α, this congruential bias amongst consecutive primes may be shown to generate a corresponding failure of well-distribution modulo 1 in the sequence $\left(\alpha p_{n}\right)$. It will be evident from our proof of Theorem 1.1, which we present in $\S 2$, that many such numbers α can be constructed, each of which is transcendental.

As is usual, we write $e(z)$ for $e^{2 \pi \mathrm{i} z}$, and for $\theta \in \mathbb{R}$ we define $\|\theta\|=\min \{|\theta-t|: t \in \mathbb{Z}\}$.

2. The application of Shiu's theorem

Our strategy for proving Theorem 1.1 depends on the careful selection of a sequence $\left(n_{k}\right)$ of natural numbers with $1 \leqslant n_{0}<n_{1}<\ldots$, and the associated real number

$$
\begin{equation*}
\alpha=\sum_{k=0}^{\infty} 2^{-n_{k}} \tag{2.1}
\end{equation*}
$$

The sequence $\left(n_{k}\right)$ is defined iteratively in terms of a consequence of Shiu's theorem on strings of congruent primes. Thus, for each $n \in \mathbb{N}$, there exists an integer $m=m(n)$ with

$$
\begin{equation*}
p_{m+1} \equiv \ldots \equiv p_{m+n} \equiv 1\left(\bmod 2^{n}\right) \tag{2.2}
\end{equation*}
$$

The conclusion of [6, Theorem 1(i)] shows that, when n is sufficiently large, such an integer $m(n)$ exists with $m(n)<\exp _{4}(n)$, where $\exp _{r}(x)$ denotes the r-fold iterated exponential function. We define the sequence $\left(n_{k}\right)$ as follows. We put $n_{0}=1$, and then define

$$
m_{k}=m\left(n_{k}\right), \quad \pi_{k}=p_{m_{k}+n_{k}}, \quad n_{k+1}=4 \pi_{k} \quad(k \geqslant 0)
$$

We investigate the well-distribution of the sequence $\left(\alpha p_{n}\right)$ by means of an analogue of Weyl's criterion for equidistribution. Thus, as a consequence of [5, Theorems 2 and 3], we see that $\left(\alpha p_{n}\right)$ is well-distributed modulo 1 if and only if, for each $h \in \mathbb{N}$, one has

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{m \in \mathbb{N}}\left|N^{-1} \sum_{n=1}^{N} e\left(h \alpha p_{n+m}\right)\right|=0 . \tag{2.3}
\end{equation*}
$$

Before embarking on the proof of Theorem 1.1 in earnest, we pause to confirm that the real number α defined in (2.1) is irrational.

Lemma 2.1. The number α is transcendental, and hence is irrational.
Proof. For each $k \in \mathbb{N}$, put

$$
q_{k}=2^{n_{k}} \quad \text { and } \quad a_{k}=2^{n_{k}} \sum_{l=0}^{k} 2^{-n_{l}}
$$

Then we see that $a_{k} \in \mathbb{N}$ and $\left(q_{k}, a_{k}\right)=1$. Moreover, one has

$$
\left|q_{k} \alpha-a_{k}\right| \leqslant \sum_{l>k} 2^{n_{k}-l_{k}}
$$

It is evident from the definition of the function $m(n)$ via (2.2) that $\pi_{k}>2^{n_{k}}$, whence $n_{k+1}>2^{n_{k}}$. Consequently, whenever k is large enough and $l>k$, one has

$$
0<\sum_{l>k} 2^{n_{k}-n_{l}}<\sum_{l>k} 2^{-l-k n_{k}}<q_{k}^{-k}
$$

We therefore deduce that $\left|q_{k} \alpha-a_{k}\right|<q_{k}^{-k}$. By Liouville's theorem (see [1, Theorem 1.1], for example), it therefore follows that α cannot be algebraic. Thus, we conclude that α is transcendental, and hence irrational.

We next show that, for each positive integer h, the real number $\left\|h \alpha\left(p_{n}-1\right)\right\|$ is infinitely often very small for long strings of consecutive primes p_{n}.

Lemma 2.2. Let h be a positive integer. Then for each sufficiently large positive integer k, one has

$$
\left\|h \alpha\left(p_{i+m_{k}}-1\right)\right\|<\pi_{k}^{-2} \quad\left(1 \leqslant i \leqslant n_{k}\right) .
$$

Proof. Given a positive integer h, when k is sufficiently large and $1 \leqslant i \leqslant n_{k}$, one has

$$
0<h\left(p_{i+m_{k}}-1\right) \sum_{l>k} 2^{-n_{l}} \leqslant \sum_{l>k} h \pi_{k} 2^{-l-3 \pi_{k}}<\pi_{k}^{-2}
$$

Meanwhile, under the same conditions, one finds that since $p_{i+m_{k}} \equiv 1\left(\bmod 2^{n_{k}}\right)$, then

$$
h\left(p_{i+m_{k}}-1\right) \sum_{l=0}^{k} 2^{-n_{l}} \equiv 0(\bmod 1)
$$

By combining these conclusions, therefore, we infer that for $1 \leqslant i \leqslant n_{k}$, one has

$$
\left\|h\left(p_{i+m_{k}}-1\right)\left(\sum_{l=0}^{k} 2^{-n_{l}}+\sum_{l>k} 2^{-n_{l}}\right)\right\|<\pi_{k}^{-2}
$$

and the desired conclusion follows from (2.1).
We are now equipped to complete the proof of Theorem 1.1. Let h be a natural number. From Lemma 2.2, we find that whenever k is sufficiently large and $1 \leqslant i \leqslant n_{k}$, one has

$$
\left|e\left(h \alpha p_{i+m_{k}}\right)-e(h \alpha)\right|=\left|e\left(h \alpha\left(p_{i+m_{k}}-1\right)\right)-1\right|<\pi_{k}^{-1} .
$$

Thus, when N is an integer with $1 \leqslant N \leqslant n_{k}$, then

$$
\left|N^{-1} \sum_{n=1}^{N} e\left(h \alpha p_{n+m_{k}}\right)-N^{-1} \sum_{n=1}^{N} e(h \alpha)\right|<\pi_{k}^{-1}
$$

whence

$$
1-\pi_{k}^{-1}<\left|N^{-1} \sum_{n=1}^{N} e\left(h \alpha p_{n+m_{k}}\right)\right| \leqslant 1
$$

In particular, for each positive integer N, we infer that

$$
1-\frac{1}{N} \leqslant \sup _{m \in \mathbb{N}}\left|N^{-1} \sum_{n=1}^{N} e\left(h \alpha p_{n+m}\right)\right| \leqslant 1
$$

This relation confirms that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sup _{m \in \mathbb{N}}\left|N^{-1} \sum_{n=1}^{N} e\left(h \alpha p_{n+m}\right)\right|=1 \tag{2.4}
\end{equation*}
$$

in contradiction with Weyl's criterion for well-distribution modulo 1 given in (2.3). We are therefore forced to conclude that $\left(\alpha p_{n}\right)$ is not well-distributed modulo 1 . In view of Lemma 2.1, this completes the proof of Theorem 1.1.

Although the case $h=1$ of (2.4) suffices to prove Theorem 1.1, we gave a more general argument since it might be useful. We note also that the number α may be modified extensively without impairing the validity of our proof. Indeed, given an integer $q \geqslant 2$ and a sequence of positive integers $\left(b_{k}\right)$ not growing too rapidly, the number α defined in (2.1) could be replaced by

$$
\beta=\sum_{k=0}^{\infty} b_{k} q^{-n_{k}}
$$

and still the sequence $\left(\beta p_{n}\right)$ is not well-distributed modulo 1. Furthermore, the rapid growth of the integer n_{k} may be considerably weakened without damaging the crude bound of Lemma 2.2, and so the Liouville-type properties of α may also be relaxed.

References

[1] A. Baker, Transcendental number theory, Cambridge Math. Lib., Cambridge University Press, Cambridge, 2022.
[2] V. Bergelson and J. Moreira, Van der Corput's difference theorem: some modern developments, Indag. Math. 27 (2016), no. 2, 437-479.
[3] B. Lawton, A note on well-distributed sequences, Proc. Amer. Math. Soc. 10 (1959), no. 6, 891-893.
[4] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), no. 2, 221-225.
[5] G. M. Petersen, 'Almost convergence' and uniformly distributed sequences, Quart. J. Math. Oxford (2) 7 (1956), no. 1, 188-191.
[6] D. K. L. Shiu, Strings of congruent primes, J. London Math. Soc. (2) 61 (2000), no. 2, 359-373.
[7] R. C. Vaughan, On the distribution of αp modulo 1, Mathematika 24 (1977), no. 2, 135-141.
[8] I. M. Vinogradov, Improvement of some theorems in the theory of primes, C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942), 115-117.
[9] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313-352.
JC and Y-RL: Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

Email address: jchampag@uwaterloo.ca, yrliu@uwaterloo.ca
thl: Department of Mathematics, University of Mississippi, 305 Hume Hall, UniverSITY, MS 38677, USA

Email address: leth@olemiss.edu

TDW: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA

Email address: twooley@purdue.edu

[^0]: 2020 Mathematics Subject Classification. 11K36, 11K06.
 Key words and phrases. Well-distribution, prime numbers, equidistribution.
 The second author is supported by NSF grant DMS-2246921 and a travel award from the Simons Foundation. The third author is supported by an NSERC discovery grant. The fourth author is supported by NSF grants DMS-1854398 and DMS-2001549.

