
ESTIMATES FOR SMOOTH WEYL SUMS ON MAJOR ARCS

JÖRG BRÜDERN AND TREVOR D. WOOLEY

Abstract. We present estimates for smooth Weyl sums of use on sets of major arcs
in applications of the Hardy-Littlewood method. In particular, we derive mean value
estimates on major arcs for smooth Weyl sums of degree k delivering essentially optimal
bounds for moments of order u whenever u > 2⌊k/2⌋+ 4.

1. Introduction

The introduction by Vaughan [10, 11] of smooth numbers into the armoury of the circle
method practitioner created a flexible new tool for the analysis of diagonal problems
involving k-th powers, and indeed the sharpest bounds currently available in Waring’s
problem require the use of smooth Weyl sums (see [2, 14, 15, 16, 17, 18], for example).
While powerful mean value estimates for these modified Weyl sums are available for
handling the minor arc contributions in applications of the circle method, the absence of
correspondingly powerful major arc estimates is a source of technical complication with
the potential to block certain applications. Our goal in this note is to derive estimates
for smooth Weyl sums of major arc type sufficiently powerful that the vast majority of
technical complications may be avoided. Indeed, our recent work on sums of squares and
higher powers has already made use of these new major arc estimates (see the discussion
surrounding [3, equation (3.15)]).

In order to proceed further we must introduce some notation. We employ the letter p
to denote a prime number, and as usual, we abbreviate e2πiz to e(z). When P and R are
real numbers with 2 ⩽ R ⩽ P , we write

A (P,R) = {n ∈ [1, P ] ∩ Z : p |n⇒ p ⩽ R}.
Also, when ν > 1, we put Aν(P,R) = A (P,R) ∩ (P/ν, P ]. In addition, fixing an integer
k ⩾ 2, we define the smooth Weyl sums

gν(α;P,R) =
∑

x∈Aν(P,R)

e(αxk) and g(α;P,R) =
∑

x∈A (P,R)

e(αxk).

Finally, we define the multiplicative function κ(q) = κk(q) by putting

κ(puk+v) =

{
kp−u−1/2, when u ⩾ 0 and v = 1,

p−u−1, when u ⩾ 0 and 2 ⩽ v ⩽ k.
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We note that, as in [9, Lemma 3], when k ⩾ 3 one has q−1/2 ⩽ κ(q) ≪ q−1/k. When k = 2
we have the slightly weaker bounds q−1/2 ⩽ κ(q) ⩽ 2ω(q)q−1/2. Here ω(q) is the number
of distinct primes dividing q, and the implicit constant in Vinogradov’s notation depends
on k.

In §2 we establish the estimates for the exponential sums gν(α) = gν(α;P,R) and
g(α) = g(α;P,R) contained in the following theorem. Here and throughout, we find it
useful to introduce the notation

L = logP, L2 = log log(3R) and L = log(2 + P k|α− a/q|). (1.1)

Theorem 1.1. Let k be a natural number with k ⩾ 2, and let ν and ε be real numbers
with ν > 1 and ε > 0. Suppose that R and P are real numbers with 2 ⩽ R ⩽ P . Then,
whenever α ∈ R, a ∈ Z and q ∈ N satisfy (a, q) = 1, one has

gν(α) ≪
qεκ(q)1/2PL(L2L )1/2

(1 + P k|α− a/q|)1/2
+ qεP 3/4R1/2(LL2)

1/4
(
q + P k|qα− a|

)1/8
.

Moreover, under the same conditions, one has

g(α) ≪ qεκ(q)1/2PLL
1/2
2

(1 + P k|α− a/q|)1/k
+ qεP 3/4R1/2(LL2)

1/4
(
q + P k|qα− a|

)1/8
(k ⩾ 3)

and

g(α) ≪ qεκ(q)1/2PLL
1/2
2 L 3/2

(1 + P 2|α− a/q|)1/2
+ qεP 3/4R1/2(LL2)

1/4
(
q + P 2|qα− a|

)1/8
(k = 2).

We note that when q + P k|qα − a| > P 2R−4(LL2)
−2, the estimates supplied by this

theorem are worse than trivial. There is thus no loss of generality in assuming henceforth
that R ⩽ P 1/2(LL2)

−1/2, and that 1 + P k|α− a/q| ⩽ P 2. We then have

L = log
(
2 + P k|α− a/q|

)
≪ L. (1.2)

This estimate allows one to remove the annoying presence of L from the bounds provided
by Theorem 1.1. Alternatively, one may observe that for each ε > 0 one has L ≪
(1 + P k|α− a/q|)ε. Hence, subject to the hypotheses of Theorem 1.1, one has

gν(α) ≪
qεκ(q)1/2PLL

1/2
2

(1 + P k|α− a/q|)1/2−ε
+ qεP 3/4R1/2(LL2)

1/4
(
q + P k|qα− a|

)1/8
, (1.3)

a bound that often suffices in practice.
In order to put into context previous work on this subject, we introduce a fairly general

Hardy-Littlewood dissection of the unit interval. Let Q be a real number with 1 ⩽ Q ⩽
P k/2. When q ∈ N and a ∈ Z, we take

M(q, a;Q) = {α ∈ [0, 1) : |qα− a| ⩽ QP−k}.

We write M(Q) for the union of the intervals M(q, a;Q) over coprime integers a and q
with 0 ⩽ a ⩽ q ⩽ Q, and we put m(Q) = [0, 1) \ M(Q). In applications of the circle
method, the most frequently encountered model Hardy-Littlewood dissection is that into
major arcs M(P ) and minor arcs m(P ) thus defined. On noting that whenever α ∈ M(Q),
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one has q + P k|qα − a| ⩽ 2Q, we discern from Theorem 1.1 and the bound (1.2) that
whenever α ∈ M(q, a;P ) ⊆ M(P ), one has

gν(α;P,R) ≪
qεκ(q)1/2P (logP )3/2+ε

(1 + P k|α− a/q|)1/2
+ P 7/8+εR1/2. (1.4)

In the special case k = 3, a related conclusion is available from [1, Lemma 2.2], though with
the exponent 9/10 in place of 7/8. We note, however, that the estimate obtained in [1] is
applicable for a wider set of parameters α. Rather than attempt to generalise the argument
underlying the proof of this lemma to general exponents k, which would in any case yield
substantially weaker estimates than we derive in (1.4), we instead turn to earlier work
of the second author joint with Vaughan [13] for inspiration. As enhanced in [6, Lemma
5.4], this approach shows that whenever 2 ⩽ R ⩽M ⩽ P and q+P k|qα−a| ⩽ TM , then

g(α;P,R) ≪ qε(logP )3
( P

(q + P k|qα− a|)1/(2k)
+ (PMR)1/2 + PR1/2

( T
M

)1/4)
.

Experts will recognise that a factor q−1/(2k) in this estimate is replaced in Theorem 1.1
by a factor κ(q)1/2, an enhancement that offers substantially stronger control of mean
value estimates restricted to sets of major arcs. There is also a useful improvement in the
dependence on 1 + P k|α− a/q|.

Very recently, using methods quite different from those that we apply here, Shparlinski
[7, Theorem 1.3] estimated g(α;P,R) in the special case where the argument is a rational
number with prime denominator p. In his work, it is assumed that p > (4P )3/4. Then,
for a ∈ Z with (a, p) = 1 and 2 ⩽ R ⩽ p1/2, it is shown that for each ε > 0 one has

g(a/p;P,R) ≪ p5/48+εP 29/32R3/104.

Note that this estimate is worse than the trivial bound when p > P 9/10 so that we may
concentrate on the situation with (4P )3/4 < p ⩽ P 9/10. In this range, Theorem 1.1
supplies the estimate

g(a/p;P,R) ≪ Ppε−1/4 + P 3/4+εp1/8R1/2 ≪ P 3/4+εp1/8R1/2.

In the most interesting case where R is a very small power of P , our bound is decidedly
smaller, and our bound is non-trivial for p almost as large as P 2.
We turn our attention now to the factor logP occurring in the first term on the right

hand side of our estimate for gν(α) in Theorem 1.1. This has the potential to prevent
the immediate use of this theorem in pursuit of near optimal bounds for moments of
smooth Weyl sums over major arcs of the shape M(Q), when Q is no larger than a
modest power of logP . In §3 we obtain estimates for smooth Weyl sums that eliminate
this deficiency. The bounds feature Euler’s totient, denoted ϕ(q), as well as the closely
associated multiplicative function

ψ(q) = q/ϕ(q) =
∏
p | q

(1− 1/p)−1.

We note for future reference that ψ(q) = O(log log q) for q ⩾ 3 (see [5, Theorem 2.9], for
example).
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Theorem 1.2. Let k be a natural number with k ⩾ 2, and let ν be a real number with
ν > 1. Suppose that R and P are real numbers with 2 ⩽ R ⩽ P 1/2. Then, for each A ⩾ 1,
there is a positive number c with the following property. Whenever a ∈ Z, q ∈ N and
α ∈ R satisfy (a, q) = 1 and q ⩽ (logP )A, one has

gν(α;P,R) ≪
κ(q)ψ(q)P

1 + P k|α− a/q|
+ P exp

(
−c(logP )1/2

)(
1 + P k|α− a/q|

)
and

g(α;P,R) ≪ κ(q)ψ(q)P

(1 + P k|α− a/q|)1/k
+ P exp

(
−c(logP )1/2

)(
1 + P k|α− a/q|

)
.

By way of comparison, the earlier work of the second author joint with Vaughan [13,
Lemma 8.5] provides a conclusion of similar type, though with the factor κ(q) replaced by
qε−1/k. While this previous approach certainly addresses the issue raised in the preamble
to Theorem 1.2, our new conclusion permits control of major arc moments in which the
number of generating functions can be very nearly halved.

Following the proof of an auxiliary pruning lemma in §4, we obtain estimates for mean
values of the smooth Weyl sum gν(α;P,R) on sets of major arcs in §5. These estimates
provide near optimal upper bounds for corresponding moments of the exponential sum
g(α;P,R).

Theorem 1.3. Let k and t be natural numbers with k ⩾ 3 and t ⩾ ⌊k/2⌋. Furthermore,
let ω < k/2 and ω′ be positive numbers with

ω <
2t+ 4

t+ 10
and ω′ <

2k

k + 4
,

and put Ω = min{ω, ω′}. Then, for any ε > 0 there is a real number η > 0 with the
property that whenever 2 ⩽ R ⩽ P η, one has∫

M(Pω)

|g(α;P,R)|2t+4 dα ≪ P 2t+4−k+ε. (1.5)

Moreover, when u is a real number with u > 2t+ 4, then provided that

1 ⩽ Q ⩽ PΩ and τ < (u− 2t− 4)/(2k),

one has ∫
M(PΩ)\M(Q)

|g(α;P,R)|u dα ≪ P u−kQ−τ .

This theorem delivers the near optimal estimate (1.5). Moreover, one may allow the
exponent ω to approach 2 as t → ∞. By contrast, earlier treatments would restrict ω to
satisfy the constraint 0 ⩽ ω ⩽ 1. Furthermore, when k ⩾ 4 one has t ⩾ 2, and in such
circumstances ω can be nearly as large as 2/3. One finds that ω can be taken to be any
number with 0 ⩽ ω < 1 as soon as t ⩾ 6, and this is assured when k ⩾ 12. When k = 3
and t = 1, the estimate (1.5) was demonstrated in [1, Corollary 3.2] with ω < 2/5. Our
new result covers the range ω < 6/11.

We next record a corollary to Theorem 1.3 that is employed in our recent work [3] on
the representation of integers as sums of a square and a number of k-th powers. Here,
and throughout, we define

N(Q) = M(Q) \M(Q/2). (1.6)



SMOOTH WEYL SUMS 5

Corollary 1.4. Let k be a natural number with k ⩾ 3, put t = ⌊k/2⌋, and suppose
that u is a real number with u > 2t + 4. Furthermore, let τ be a real number with
0 < τ < (u − 2t − 4)/(2k). Then, there is a real number η > 0 with the property that
whenever 2 ⩽ R ⩽ P η and 1 ⩽ Q ⩽ P 1/2, one has∫

N(Q)

|g(α;P,R)|u dα ≪ P u−kQ−τ .

We finish this memoir in §6 with an account of the consequences of our new estimates
for Waring’s problem. We are able to establish lower bounds for the contribution of
the major arcs in Waring’s problem of the expected order, provided that the number of
variables available is at least 2⌊k/2⌋ + 5, when k ⩾ 3. In the classical situation in which
variables are not restricted, and in particular are not restricted to be smooth, analogous
conclusions would require at least k+2 variables. Previous work using smooth Weyl sums,
meanwhile, would require at least 2k+3 variables. The superiority of our new conclusions
is clear. We refer the reader to Theorems 6.1 and 6.2 for details of these new results.

In this memoir, our basic parameter is P , a sufficiently large positive number. We
adopt the usual convention that, whenever a statement involves the letter ε, then it is
asserted that the statement holds for any positive value of ε. Implicit constants in the
notations of Vinogradov and Landau may depend on ε, as well as ambient parameters
implicitly fixed, such as k and u. We write ph∥n to denote that ph |n, but ph+1 ∤ n.

The authors are grateful to the referees for their careful reading and comments useful
in improving the exposition of this paper.

2. An enhanced major arc estimate

Our goal in this section is the proof of Theorem 1.1. In order to establish the bounds for
gν(α;P,R) recorded therein, we adapt the analysis of [13, §7], taking advantage of more
precise auxiliary estimates deemed unnecessary in this earlier treatment. Our account,
nonetheless, follows closely the argument of the proof of [13, Lemma 7.2]. Throughout,
in order to ease our exposition, we make use of the notation recorded in (1.1). We begin
with a lemma concerning the multiplicative function κ(q) required later in this section.

Lemma 2.1. Let q ∈ N and suppose that d | q. Let e0 be a divisor of d, and write
d/e0 = d1d

2
2 · · · dkk, where d1, . . . , dk−1 are pairwise coprime and squarefree. Then

κ(q/d) ⩽ k4ω(q)κ(q)e0d1 · · · dk.

Proof. We claim that whenever a and b are non-negative integers with a+ b ⩾ 1, then

κ(pa)κ(pb) ⩽ k2κ(pa+b). (2.1)

In order to establish this assertion, we note that in view of the definition of κ(q), it
suffices to consider the situation in which 1 ⩽ a, b ⩽ k. We divide into three cases. When
2 ⩽ a, b ⩽ k, we have

κ(pa)κ(pb) = p−2 and κ(pa+b) ⩾ p−2.

When a = 1 and 2 ⩽ b ⩽ k, and also when b = 1 and 2 ⩽ a ⩽ k, we have

κ(pa)κ(pb) = kp−3/2 and κ(pa+b) ⩾ p−3/2.
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Finally, when a = b = 1, one has

κ(pa)κ(pb) = k2p−1 and κ(pa+b) = p−1.

This confirms the upper bound (2.1) in all cases.
The multiplicative property of κ(q) now confirms that whenever q ∈ N and d | q, one

has

κ(d)κ(q/d) ⩽ k2ω(q)κ(q),

and similarly

κ(e0)κ(d1d
2
2 · · · dkk) ⩽ k2ω(d)κ(d).

But κ(e0) ⩾ e−1
0 and κ(d1d

2
2 · · · dkk) ⩾ (d1d2 · · · dk)−1. Hence, we conclude that

(e0d1d2 · · · dk)−1κ(q/d) ⩽ k2ω(d)+2ω(q)κ(q) ⩽ k4ω(q)κ(q).

The conclusion of the lemma follows immediately. □

Next, we provide two simple estimates for auxiliary sums.

Lemma 2.2. Suppose that X and J are positive numbers. Then∑
1⩽j⩽J

(1 + jX)−1 ⩽ 2J(1 +XJ)−1
(
1 + log(1 + JX)

)
.

Proof. When X and J are positive numbers with X ⩽ J−1, then∑
1⩽j⩽J

(1 + jX)−1 ⩽ J ⩽ 2J(1 +XJ)−1.

When instead J−1 < X, then∑
1⩽j⩽J

(1 + jX)−1 ⩽ X−1
(
1 + log(1 + JX))

⩽ 2J(1 +XJ)−1
(
1 + log(1 + JX)

)
.

The desired conclusion therefore follows in both cases. □

Lemma 2.3. Let k and J be integers with k ⩾ 2 and 1 ⩽ 2J ⩽ P , and let λ be a real
number with 1/k < λ ⩽ 1. When j is a non-negative integer, put Xj = 2−jP . Then, for
all real numbers β, one has∑

0⩽j⩽J

Xj(1 +Xk
j |β|)−λ ≪

P

(1 + P k|β|)1/k
(2.2)

while ∑
0⩽j⩽J

Xj(1 +Xk
j |β|)−1/k ≪ P log(2 + P k|β|)

(1 + P k|β|)1/k
. (2.3)

Proof. Suppose that 1/k ⩽ λ ⩽ 1, and let Kλ denote the sum on the left hand side of
(2.2) (or (2.3) when λ = 1/k). If |β| ⩽ P−k, then

Kλ ⩽
∑
j⩾0

2−jP ⩽ 2P,
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which is acceptable. Next suppose that |β| ⩾ 1. Then, writing J0 for the largest integer
satisfying 2J0 ⩽ P , we find that

Kλ ⩽
∑
2j⩽P

X1−λk
j |β|−λ = P 1−λk|β|−λ

∑
0⩽j⩽J0

2(λk−1)j.

When λ > 1/k, we conclude that Kλ ≪ |β|−λ, which is superior to our claim in (2.2).
Further, noting that J0 ⩽ 2 logP , we find that K1/k ≪ |β|−1/k logP . This confirms (2.3)
when |β| ⩾ 1.

We may now suppose that P−k ⩽ |β| ⩽ 1. Then, there is an integer I with I ⩽ J0 and

2−IP ⩾ |β|−1/k ⩾ 2−I−1P.

The contribution of the summands in Kλ where j > I (if any) does not exceed∑
j>I

2−jP ⩽ 2−IP ⩽ 2|β|−1/k.

When j ⩽ I, one has Xk
j |β| ⩾ 1, and hence we see that

Kλ ⩽ 2|β|−1/k + |β|−λ
∑
0⩽j⩽I

X1−λk
j ⩽ 2|β|−1/k + |β|−λP 1−λk

∑
0⩽j⩽I

2(λk−1)j.

We now proceed as in the case |β| ⩾ 1 to estimate the rightmost sum over j, and this
completes the proof of the lemma. □

We are now equipped to prove our first estimate for gν(α;P,R). In this context, we
remind the reader of the notation introduced in (1.1).

Lemma 2.4. Let k be a natural number with k ⩾ 2, and let ν be a real number with
ν > 1. Suppose that R, P and M are real numbers with

2 ⩽ R ⩽M ⩽ P/ν.

Then, whenever α ∈ R and a ∈ Z, q ∈ N are coprime, one has

gν(α;P,R) ≪
qεκ(q)1/2PL(L2L )1/2

(1 + P k|α− a/q|)1/2
+ qε(LL2)

1/2(PMR)1/2

+ qεP (R/M)1/2
(
q + P k|qα− a|

)1/4
. (2.4)

Proof. In this discussion, we provide certain details of the account of the proof of [13,
Lemma 7.2] that could be suppressed at the cost of opacity of exposition. We begin with
an initial decomposition of the exponential sum gν(α;P,R) into pieces equipped with a
bilinear structure. For each prime number π with π ⩽ R, we define

Bπ = {v ∈ A (Mπ,R) : v > M , π | v, and p | v ⇒ p ⩾ π}.
Then, as a consequence of [10, Lemma 10.1], one has

gν(α;P,R) =
∑
π⩽R

∑
v∈Bπ

∑
u∈Aν(P/v,π)

e(α(uv)k). (2.5)

Next, write

W = {(2j, 2iM) : i ⩾ 0, j ⩾ −1, 2i < R and P/ν < 2i+jM < P},
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and define

S1(U, V ) =
∑
π⩽R

∑
V <v⩽2V
v∈Bπ

∣∣∣∣ ∑
u∈Aν(P/v,π)
U<u⩽2U

e(α(uv)k)

∣∣∣∣.
Then, much as in the analogous treatment of [13], we see that∣∣∣∣∑

π⩽R

∑
v∈Bπ

∑
u∈Aν(P/v,π)

e(α(uv)k)

∣∣∣∣ ⩽ ∑
(U,V )∈W

S1(U, V ). (2.6)

We note for future reference that for each pair (U, V ) ∈ W , one has

M ⩽ V < MR and P/(νV ) < U < P/V. (2.7)

Furthermore, since the elements of Bπ are integers divisible by π, all of whose prime
divisors are at least as large as π, it follows from [8, Chapter III.6, Theorem 3] that∑

π⩽R

∑
V <v⩽2V
v∈Bπ

1 ≪
∑
π⩽R

V

π log π
≪ V. (2.8)

By Cauchy’s inequality, one has

S1(U, V )2 ⩽

(∑
π⩽R

∑
V <v⩽2V
v∈Bπ

1

)∑
π⩽R

∑
V <v⩽2V
v∈Bπ

∣∣∣∣ ∑
u∈Aν(P/v,π)
U<u⩽2U

e(α(uv)k)

∣∣∣∣2.
Thus, on isolating the implicit diagonal terms, we discern by means of (2.8) that

|S1(U, V )|2 ≪ V 2U + V |S2(U, V )|, (2.9)

where
S2(U, V ) =

∑
π⩽R

∑
u1,u2∈Aν(P/V,π)
U<u1<u2⩽2U

T1(απ
k(uk2 − uk1)), (2.10)

in which we write
T1(γ) =

∑
V/π<t⩽2V/π

P/(νπu1)<t⩽P/(πu2)

e(γtk).

On collecting together the estimates (2.5), (2.6) and (2.9), we may conclude thus far that

gν(α;P,R) ≪
∑

(U,V )∈W

(
V U1/2 + V 1/2|S2(U, V )|1/2

)
. (2.11)

It is at this point that our treatment begins to diverge further from the path laid down
in [13]. We again view S2(U, V ), as defined in (2.10), as an exponential sum over k-th
powers of t. For a typical summand on the right hand side of (2.10), we write

D = (q, πk(uk2 − uk1)), (2.12)

and then put
c = aπk(uk2 − uk1)/D, r = q/D, γ = απk(uk2 − uk1). (2.13)

Thus, we have

γ − c

r
= πk(uk2 − uk1)

(
α− a

q

)
, (2.14)
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with
(c, r) = (aπk(uk2 − uk1), q)/D = (a, q/D) = 1.

We now apply [12, Theorem 4.1]. Thus, in view of Lemmata 4.3, 4.4, 4.5 and 6.2 of [12],
we find that

T1(γ) ≪
κ(r)V/π

1 + (V/π)k|γ − c/r|
+ r1/2+ε

(
1 + (V/π)k|γ − c/r|

)1/2
. (2.15)

Next, write

S3(U, V ) =
∑
π⩽R

∑
U<u1<u2⩽2U

κ
(
q/(q, πk(uk2 − uk1))

)
π(1 + V k(uk2 − uk1)|α− a/q|)

. (2.16)

Then on recalling (2.10), we deduce from (2.12)-(2.15) that

S2(U, V ) ≪ V S3(U, V ) +RU2qε
(
q + (UV )k|qα− a|

)1/2
.

On substituting this estimate into (2.11) and recalling (2.7), we infer thus far that

gν(α;P,R) ≪ (PMR)1/2+
∑

(U,V )∈W

V S3(U, V )1/2+P (R/M)1/2qε
(
q+P k|qα−a|

)1/4
. (2.17)

We next analyse the sum S3(U, V ) defined in (2.16). First, by separately considering
the contributions arising from summands in which π | q and π ∤ q, and applying the bound
uk2 − uk1 ⩾ (u2 − u1)U

k−1, we find that

S3(U, V ) ≪ L2q
ε

∑
U<u1<u2⩽2U

κ(q/(q, uk2 − uk1))

1 + Uk−1V k(u2 − u1)|α− a/q|
.

Here, we have made use of the bound κ(πh) ⩾ k−1π−1κ(πh−l), valid for 0 ⩽ l ⩽ k and
h ⩾ l.

Now write d = (q, uk2 − uk1) and β = |α − a/q|. Also, put m = (u1, u2) and ti = ui/m
(i = 1, 2). Then, we obtain the upper bound

S3(U, V ) ≪ L2q
ε
∑
d | q

κ(q/d)
∑

1⩽m⩽2U

∑
U/m<t1<t2⩽2U/m

(t1,t2)=1

d |mk(tk2−tk1)

(
1 + Uk−1V km(t2 − t1)β

)−1
.

We follow the analogous argument of [13] once again. For a given pair of integers d and
m occurring in the latter sum, we put d0 = (d,mk) and e0 = d/d0. Then we see that

S3(U, V ) ≪ L2q
ε
∑
d | q

κ(q/d)
∑
d0e0=d

∑
1⩽m⩽2U
d0 |mk

S4(U, V ), (2.18)

in which we write

S4(U, V ) =
∑

U/m<t1<t2⩽2U/m
(t1,t2)=1

e0 | (tk2−tk1)

(
1 + Uk−1V km(t2 − t1)β

)−1
.

This sum is analysed (under the name S5) in the discussion following [13, equation (7.8)],
though in the latter case the inner sum has argument with exponent −1/k in place of −1.



10 JÖRG BRÜDERN AND TREVOR D. WOOLEY

This difference in detail does not impact the argument that follows in any material way,
and thus we may conclude that

S4(U, V ) ≪ qε
∑

e1f1=e0

∑
1⩽j⩽U/(me1)

( U

mf1
+ 1

)(
1 + Uk−1V kmje1β

)−1

. (2.19)

By applying the upper bound supplied by Lemma 2.2 within (2.19), and then recalling
(2.7), we find that

S4(U, V ) ≪ qε
∑

e1f1=e0

( U

mf1
+ 1

)( U

me1

)1 + log(1 + (UV )kβ)

1 + (UV )kβ

≪ L qε
∑

e1f1=e0

( U2

m2e0
+

U

me1

)
(1 + P kβ)−1.

Since e0 | q, we therefore infer that

S4(U, V ) ≪ L q2ε
( U2

m2e0
+
U

m

)
(1 + P kβ)−1.

By substituting this upper bound into (2.18), therefore, we deduce that

S3(U, V ) ≪ L2L q3ε

1 + P kβ

∑
d | q

κ(q/d)
∑
d0e0=d

(( ∑
1⩽m⩽2U
d0 |mk

U2

m2e0

)
+ LU

)
.

We now write d0 = d1d
2
2 · · · dkk, where d1, . . . , dk−1 are squarefree and pairwise coprime,

and we recall the conclusion of Lemma 2.1. Then we see that

S3(U, V ) ≪ LL2q
4εU +

L2L q4εκ(q)

1 + P kβ
T2(q)U

2,

where

T2(q) =
∑
d | q

∑
e0d1d22···dkk=d

e0d1 · · · dk
∑

1⩽n⩽2U/(d1···dk)

1

(nd1 · · · dk)2e0
.

But we have

T2(q) ≪
∑
d | q

∑
e0d1···dk | d

1

d1 · · · dk
≪ qε,

and hence we conclude that

S3(U, V ) ≪ LL2q
4εU +

L2L q5εκ(q)U2

1 + P kβ
. (2.20)

On substituting (2.20) into (2.17), and again recalling (2.7), we arrive at the upper
bound

gν(α;P,R) ≪
q3εκ(q)1/2P (logR)(L2L )1/2

(1 + P k|α− a/q|)1/2
+ (LL2)

1/2q2ε(PMR)1/2

+ P (R/M)1/2qε
(
q + P k|qα− a|

)1/4
.

The upper bound (2.4) asserted in the statement of the lemma now follows. □

We are now equipped to complete the proof of our first theorem.
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The proof of Theorem 1.1. As already detailed in the discussion leading to (1.2), it suffices
to establish Theorem 1.1 with the additional hypotheses

R ⩽ P 1/2(LL2)
−1/2 and q + P k|qα− a| ⩽ P 2R−4(LL2)

−2.

We may consequently apply Lemma 2.4 with

M = (LL2)
−1/2P 1/2(q + P k|qα− a|)1/4,

since in these circumstances one has R ⩽M < P/ν whenever P is sufficiently large. With
this choice for M , the second and third terms on the right hand side of (2.4) satisfy the
bound

qε(LL2)
1/2(PMR)1/2 + qεP (R/M)1/2(q + P k|qα− a|)1/4

≪ qε(LL2)
1/4P 3/4R1/2(q + P k|qα− a|)1/8,

and the first conclusion of Theorem 1.1 is therefore immediate from (2.4).
The second conclusion of Theorem 1.1 requires that we remove the condition on the sum

gν(α;P,R) that its summands come from a truncated set of smooth numbers. Assume
the hypotheses of the statement of the theorem, and suppose that X is a parameter with
P 3/4 ⩽ X ⩽ P . Then R ⩽ P 1/2 ⩽ X, according to current hypotheses. With the first
conclusion of the theorem already in hand, we may apply its corollary (1.3) with X in
place of P . This supplies the bound

g2(α;X,R) ≪
qεκ(q)1/2XLL

1/2
2

(1 +Xk|α− a/q|)3/8
+ qε(LL2)

1/4X3/4R1/2
(
q +Xk|qα− a|

)1/8
.

We put J = ⌈(logP )/(4 log 2)⌉, and sum the contributions from g2(α;X,R) forX = 2−jP ,
with 0 ⩽ j < J . Then, by applying Lemma 2.3 with λ = 3/8, and making use of the
trivial estimate g2(α; 2

−JP,R) = O(P 3/4), we find that when k ⩾ 3, one has

g(α;P,R) ≪ P 3/4 +
qεκ(q)1/2PLL

1/2
2

(1 + P k|α− a/q|)1/k
+ qε(LL2)

1/4P 3/4R1/2
(
q + P k|qα− a|

)1/8
.

When k = 2, the argument is different. We invoke the estimate for g2(α;P,R) that is
provided by Theorem 1.1. Then, since X ⩽ P , we have

g2(α;X,R) ≪
qεκ(q)1/2XL(L2L )1/2

(1 +X2|α− a/q|)1/2
+ qε(LL2)

1/4X3/4R1/2
(
q + P 2|qα− a|

)1/8
.

Here L, L2 and L are still given by (1.1). We now sum over X = 2−jP as before, but
now the application of Lemma 2.3 produces an extra factor L as one sums the first term
on the right hand side. The proof of Theorem 1.1 is now complete. □

3. Another enhanced major arc estimate

The conclusion of Theorem 1.1 provides relatively powerful estimates for gν(α;P,R)
whenever a ∈ Z, q ∈ N and α ∈ R satisfy (a, q) = 1 and the condition that q+P k|qα− a|
is neither too small nor larger than about P 2. However, when this latter quantity is
smaller than (logP )5, these estimates are worse than trivial. Our goal in this section is
to address these very small values of q + P k|qα− a| via an analogue of [13, Lemma 8.5].
Fortunately, the argument of the proof of the latter conclusion requires relatively little
refinement in order that our more precise estimates be confirmed.
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We begin with some auxiliary lemmata.

Lemma 3.1. Suppose that X and Y are real numbers with 0 < Y < X, and that
f : [Y,X] → R is monotonic and differentiable on (Y,X). Suppose further that f ′ is
continuous on (Y,X), and that f ′(Y+) and f ′(X−) both exist. Then, for all real numbers
γ, one has ∣∣∣ ∫ X

Y

f(t)e(γtk) dt
∣∣∣ ⩽ (

|f(X−)|+ |f(Y+)|
) 2X

1 + Y k|γ|
.

Proof. The conclusion is trivial when |γ| ⩽ Y −k, so we may assume henceforth that
|γ| > Y −k. By integrating by parts, we find that∫ X

Y

f(t)e(γtk) dt =
f(X−)e(γXk)

2πiγkXk−1
− f(Y+)e(γY k)

2πiγkY k−1

+

∫ X

Y

(
(k − 1)f(t)

ktk
− f ′(t)

ktk−1

)
e(γtk)

2πiγ
dt,

and hence∣∣∣ ∫ X

Y

f(t)e(γtk) dt
∣∣∣ ⩽ |f(X−)|+ |f(Y+)|

2πk|γ|Y k−1
+

1

2πk|γ|

∫ X

Y

(k − 1)
|f(t)|
tk

+
|f ′(t)|
tk−1

dt. (3.1)

But ∫ X

Y

(k − 1)|f(t)|
tk

dt ⩽ (|f(X−)|+ |f(Y+)|)
∫ X

Y

k − 1

tk
dt

⩽ (|f(X−)|+ |f(Y+)|)Y 1−k

and ∫ X

Y

|f ′(t)|
tk−1

dt ⩽
∣∣∣ ∫ X

Y

f ′(t) dt
∣∣∣Y 1−k ⩽ (|f(X−)|+ |f(Y+)|)Y 1−k.

On substituting the last two bounds into (3.1), the desired inequality is readily confirmed
in the case |γ| > Y −k. □

The next lemma summarises well-known properties of the sum

W (q, a) =

q∑
r=1

(q,r)=1

e(ark/q). (3.2)

Lemma 3.2. For each natural number k with k ⩾ 2, the exponential sum W (q, a) satisfies
the following properties.

(i) Define the integer θ via the relation pθ∥k, and suppose that a is an integer with
(a, p) = 1. Then, when p ⩾ 3 and t ⩾ θ + 2, and also when p = 2 and t ⩾ θ + 3,
one has W (pt, a) = 0.

(ii) For all prime numbers p, one has

|W (p, a)| ⩽ 1 +
(
(k, p− 1)− 1

)√
p. (3.3)

(iii) When 1 ⩽ τ < t, one has

W (pt, apτ ) = pτW (pt−τ , a). (3.4)
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(iv) When r1 and r2 are coprime natural numbers, then for all integers c one has

W (r1r2, c) = W (r1, cr
k−1
2 )W (r2, cr

k−1
1 ). (3.5)

Proof. The vanishing property in the first clause of the lemma is [4, Lemma 8.3]. In order
to establish (3.3), we write

W (p, a) = −1 +

p∑
x=1

e(axk/p)

and apply [12, Lemma 4.3]. The identity (3.4) follows immediately from the definition of
W (pt, c). Finally, the quasi-multiplicative property (3.5) is established as the first clause
of [4, Lemma 8.1]. □

In the proof of Theorem 1.2 we require an estimate for the sum

S (q, a) =
1

q

∑
d | q

ψ(d)|W (d, a(q/d)k−1)|, (3.6)

in which ψ(d) denotes the previously defined multiplicative function d/ϕ(d).

Lemma 3.3. Let k be a natural number with k ⩾ 2. Then, whenever q ∈ N and a ∈ Z
are coprime, one has S (q, a) ⩽ 6kκ(q)ψ(q).

Proof. We first consider the case where q is a power of the prime p, say q = pl with l ⩾ 1.
We suppose throughout that p ∤ a. By (3.6), one has

S (pl, a) =
l∑

j=0

p−j

ϕ(pl−j)
|W (pl−j, apj(k−1))|. (3.7)

We begin by estimating the contribution to S (pl, a) arising from the summands in (3.7)
with j(k−1) ⩾ l−j. In this situation, one sees from (3.2) thatW (pl−j, apj(k−1)) = ϕ(pl−j).
Adopting the formulation employed already in the definition of the function κ, we write
l = uk + v with u ⩾ 0 and 1 ⩽ v ⩽ k. Then, the integers j with j(k − 1) ⩾ l − j
are precisely those characterised by the condition j > u. The contribution from these
summands on the right hand side of (3.7) is exactly

l∑
j=u+1

p−j ⩽ p−u−1 p

p− 1
.

On recalling the relation (3.4), we therefore obtain the upper bound

S (pl, a) ⩽ T + p−u−1ψ(pl), (3.8)

where

T =
u∑
j=0

p−j

ϕ(pl−jk)
|W (pl−jk, a)|.

We temporarily suppose that p ∤ 6k and proceed to show that in this case one has

S (pl, a) ⩽ κ(pl)ψ(pl). (3.9)



14 JÖRG BRÜDERN AND TREVOR D. WOOLEY

Indeed, if 2 ⩽ v ⩽ k, then for all 0 ⩽ j ⩽ u we have l − jk ⩾ 2, and we may apply the
first clause of Lemma 3.2 with θ = 0 to confirm that T = 0. In the current context, we
have κ(pl) = p−u−1, so that (3.9) now follows from (3.8).

This leaves the case v = 1. By using the same reasoning we now find that the only
term that contributes to the sum T is that in which j = u, whence

T =
|W (p, a)|
pu(p− 1)

.

By (3.3) and (3.8), it therefore follows that

S (pl, a) ⩽ p−u−1ψ(pl)
(
2 + (k − 1)

√
p
)
.

In the current discussion, moreover, we have p ⩾ 5, and thus

2 + (k − 1)
√
p ⩽ k

√
p = pu+1κ(pl).

Consequently, the upper bound (3.9) follows in the case v = 1.
Next suppose that p | 6k. In this case we prove that

S (pl, a) ⩽ p κ(pl)ψ(pl). (3.10)

We begin with the case where p ⩾ 3. When p | k, we find that Lemma 3.2 applies with
θ ⩾ 1 and shows that whenever W (pl−jk, a) is non-zero, then l− jk ⩽ θ+1. This implies
that (u − j)k ⩽ θ + 1 − v ⩽ θ. However, the upper bound pθ ⩽ k implies that θ < k.
Hence, it is again the case that the only summand that contributes to T is that with
j = u, and then a trivial bound for |W (pv, a)| leads to the relation

T = p−u
|W (pv, a)|
ϕ(pv)

⩽ p−u = (p− 1)p−u−1ψ(pl).

We therefore deduce from (3.8) and the definition of κ(pl) that

S (pl, a) ⩽ p−uψ(pl) ⩽ pκ(pl)ψ(pl). (3.11)

If p = 3 but 3 ∤ k, meanwhile, then θ = 0 and the above argument still applies with some
obvious modification to deliver (3.11). Thus, the bound (3.10) holds whenever p ⩾ 3.

This leaves the prime p = 2 for consideration. We first consider the situation in which
k ⩾ 3. When k is odd, we have θ = 0. When k is even and k ⩾ 4, meanwhile, we have
θ ⩾ 1 and 2θ ⩽ k. It follows that in both scenarios we have θ ⩽ k − 2. Here, when
0 ⩽ j ⩽ u and W (2l−jk, a) is non-zero, it follows from Lemma 3.2 that l− jk ⩽ θ+2 ⩽ k.
This implies that (u− j)k ⩽ k − v ⩽ k − 1. Thus, we again see that the only summand
that contributes to T is that with j = u, and the proof of (3.10) runs as before via (3.11).
The final case left is that where p = k = 2. We now have θ = 1, and Lemma 3.2 shows

that when 1 ⩽ j ⩽ u, one has W (2l−2j, a) = 0 unless l − 2j ⩽ 3. Thus, we may restrict
the range of summation in T to those values of j with 2(u − j) ⩽ 3 − v. In case we
have v = 2 or u = 0, we conclude that j = u and may then one last time appeal to the
foregoing argument to verify (3.10). We are then reduced to the situation where v = 1
and u ⩾ 1. This case is different, for now the summands with j = u and j = u− 1 make
non-zero contributions to T , and we find that

T = 2−u
|W (2, a)|
ϕ(2)

+ 21−u
|W (8, a)|
ϕ(8)

⩽ 3 · 2−u = 3 · 2−u−1ψ(2l).
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By (3.8), one now finds that S (2l, a) ⩽ 21−uψ(2l). Meanwhile, since l is odd, one has
κ(2l) = 2−u+1/2 > 2−u, and (3.10) follows.

With (3.9) and (3.10) in hand, the proof of the lemma is swiftly completed. The
convolution (3.6) passes the quasi-multiplicative property (3.5) on to S (q, a), delivering
the formula

S (q1q2, a) = S (q1, aq
k−1
2 )S (q2, aq

k−1
1 )

that is valid for all coprime natural numbers q1, q2 and all integers a. When (q, a) = 1,
one may repeatedly apply this identity to reduce to the exact prime powers dividing q.
Then, by (3.9) and (3.10), one finds that

S (q, a) ⩽ κ(q)ψ(q)
∏
p|6k

p.

The conclusion of the lemma now follows with a trivial estimate for the final product. □

The proof of Theorem 1.2. We are now fully equipped to embark on the proof of Theorem
1.2. Suppose then that the hypotheses of this theorem are satisfied. We begin with the
special case where

2 ⩽ R ⩽ exp
(
(logP )1/3

)
.

Here, a straightforward estimation is enough. In fact, it follows easily from [8, Chap-
ter III.5, Theorem 1] that, uniformly for 2 ⩽ R ⩽ P , one has

card(A (P,R)) ≪ P exp
(
− logP

2 logR

)
.

In the range for R that is currently under consideration, it therefore suffices to remark
that by means of a trivial estimate one has

|g(α)|+ |gν(α)| ≪ card(A (P,R)) ≪ P exp
(
− 1

2
(logP )2/3

)
.

This upper bound is stronger than those claimed in Theorem 1.2.
From now onwards, we shall suppose that

exp
(
(logP )1/3

)
⩽ R ⩽ P 2/3, (3.12)

and proceed to establish the estimate for gν(α) contained in Theorem 1.2. A considerable
part of our argument is largely identical with the demonstration of [13, Lemma 8.5]. We
therefore opt for a guided tour through the necessary changes and refinements. The reader
is expected to be familiar with the exposition in [13], and we take the liberty to apply the
notation of the latter source without reintroducing it here.

In [13] it is assumed that P and R are linked via the equation R = P η, for some fixed
η ∈ (0, 1/2). Here, we read this relation as a definition for η and check the argument
given in [13, pp. 56–58] for uniformity as R ranges over the interval (3.12). We begin by
noting that

gν(α;P,R) = g(α;P,R)− g(α;P/ν,R) (3.13)

and apply the initial decomposition of g(α) leading up to [13, equation (8.3)]. We recast
the latter equation in the form

g(α;P,R) =
∑
d | q

q/d∈A (R)

W (d, a(q/d)k−1)
Md(Q)

ϕ(d)
+O

(
P (1 + P k|β|)e−c

√
logP

)
.
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Here Q = Pd/q, we write β = α − a/q, and c is a certain positive constant. Moreover,
we use Md(Q) to denote the expression Md that is defined in the display following [13,
equation (8.3)], and we write A (R) for the set of natural numbers free of prime factors
exceeding R. Note that in [13, equation (8.3)] the sum over d | q is constrained to satisfy
q/d ∈ A (P,R), but since P is large and q ⩽ P ε, this makes no difference. By (3.13), we
now find that

gν(α;P,R) =
∑
d | q

q/d∈A (R)

W (d, a(q/d)k−1)
Md(Q)− Md(Q/ν)

ϕ(d)
+O

(
P (1 + P k|β|)e−c

√
logP

)
.

(3.14)
Next, for 1 ⩽ j ⩽ 3, we denote by Nj(Q) the expressions Nj that are defined in the

displays following [13, equation (8.4)]. On applying the latter reference, we then have

Md(Q)− Md(Q/ν) =
3∑
j=1

(−1)j+1
(
Nj(Q)− Nj(Q/ν)

)
. (3.15)

As in [13, p. 57], we have

2∑
j=1

(−1)j+1
(
Nj(Q)− Nj(Q/ν)

)
=
ϕ(d)

d

∫ Q

Q/ν

e(γXk) dX +O
(
dε(1 +Qk|γ|)

)
≪ Q(1 +Qk|γ|)−1 + dε(1 +Qk|γ|). (3.16)

Here, we applied Lemma 3.1 to estimate the exponential integral.
We now consider the expression N3(Q) − N3(Q/ν). Again, we follow the pattern of

[13] and invoke the integral representation

N3(Q) =

∫ log(Q/R)/ logR

0

Nd(R
v)
(
N4(Q; v)− e(γRk(v+1))Rv+1

)
dv

that occurs on [13, p. 58], and the function

N4(Q; v) =

∫ Q

Rv+1

e(γXk)
(
ρ1

( logX
logR

− v
)
+ (logR)−1ρ2

( logX
logR

− v
))

dX (3.17)

is featured here. It also occurs (under the name N4(v)) on [13, p. 58]. Now

N3(Q)− N3(Q/ν) = −N ∗
3 + N †

3 + N ‡
3 , (3.18)

where

N ∗
3 =

∫ log(Q/R)/ logR

log(Q/(νR))/ logR

Nd(R
v)e(γRk(v+1))Rv+1 dv,

N †
3 =

∫ log(Q/(νR))/ logR

0

Nd(R
v)
(
N4(Q; v)− N4(Q/ν; v)

)
dv,

N ‡
3 =

∫ log(Q/R)/ logR

log(Q/(νR))/ logR

Nd(R
v)N4(Q; v) dv.
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The quantity N ∗
3 corresponds to the expression N5 in [13]. We substitute w = Rv+1 and

import the asymptotic relation Nd(X) = ϕ(d)/d + O(dεX−1) from [13, p. 57, inter alia]
to confirm that

N ∗
3 = (logR)−1

∫ Q

Q/ν

Nd(w/R)e(γw
k) dw

=
ϕ(d)

d logR

∫ Q

Q/ν

e(γwk) dw +O(dεR).

Now Lemma 3.1 supplies the bound

N ∗
3 ≪ Q(1 +Qk|γ|)−1 + dεR. (3.19)

Thus far, we have followed the arguments from [13] closely, replacing [13, Lemma 8.2]

by Lemma 3.1 when appropriate. The treatment of N †
3 requires more care. By (3.17),

we find that

N4(Q; v)−N4(Q/ν; v) =

∫ Q

Θ(v)

e(γXk)

(
ρ1

( logX
logR

−v
)
+

1

logR
ρ2

( logX
logR

−v
))

dX, (3.20)

where Θ(v) = max{Rv+1, Q/ν}. Note that Lemma 3.1 immediately supplies an upper
bound of order Q(1 +Qk|γ|)−1 for the expression on the right hand side of (3.20). When
R is a fixed power of P , then the range of integration in the definition of N † is an interval
of length O(1), and one arrives at the acceptable bound N † ≪ Q(1 + Qk|γ|)−1. This
is the argument in [13]. However, with R now ranging over the interval described by
(3.12), this line of attack is no longer of strength sufficient to press the method home. We
therefore apply Lemma 3.1 with more precision. The functions −ρ1 and ρ2 (defined in
[13]) are positive and decreasing, with continuous derivatives, on the range of integration,
and thus we may apply Lemma 3.1. For j = 1 and 2, this gives∫ Q

Θ(v)

e(γXk)ρj

( logX
logR

− v
)
dX ≪ Q(1 +Qk|γ|)−1

∣∣∣ρj( log Θ(v)

logR
− v

)∣∣∣.
From the definition of N4(Q; v) and properties of ρ1 and ρ2, we see that N4(Q; v)

vanishes for v > log(Q/R)/ logR. Since Nd(X) is bounded, we deduce that

N †
3 ⩽

∫ ∞

0

Nd(R
v)|N4(Q; v)− N4(Q/ν; v)| dv ⩽ IQ(1 +Qk|γ|)−1, (3.21)

where

I =

∫ log(Q/R)/ logR

0

(∣∣∣ρ1( log Θ(v)

logR
− v

)∣∣∣+ (logR)−1ρ2

( log Θ(v)

logR
− v

))
dv.

We have Θ(v) = Rv+1 whenever v + 1 > log(Q/ν)/ logR, and otherwise Θ(v) = Q/ν.
Now, the range of integration in the integral I is 0 ⩽ v ⩽ log(Q/R)/ logR. Thus, the
part where Θ(v) = Rv+1 holds is an interval of length log ν/ logR, and in the integrand
we then have −ρ1(1+) = 1 and ρ2(1+) = 1. This part therefore contributes a bounded
amount. The contribution of the remaining range is bounded by∫ ∞

0

(|ρ1(t)|+ |ρ2(t)|) dt,
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and this integral exists owing to the exponential decay of Dickman’s function that is a
majorant for both ρ1 and ρ2. We conclude that I ≪ 1. By (3.21), it follows that

N †
3 ≪ Q(1 +Qk|γ|)−1. (3.22)

The treatment of N ‡
3 is simpler. The interval of integration in the definition of N ‡

3

is of length log ν/ logR, and therefore bounded. For each v in this interval we have
v > (log(Q/(Rν)))/ logR, whence Rv+1 ⩾ Q/ν. We may now apply Lemma 3.1 to see
that N4(Q; v) ≪ Q(1 + Qk|γ|)−1 holds uniformly for all v in the range of integration.
This gives

N ‡
3 ≪ Q(1 +Qk|γ|)−1. (3.23)

On collecting together the estimates (3.19), (3.22) and (3.23), we conclude from (3.18),
(3.16) and (3.15) that

Md(Q)− Md(Q/ν) ≪ Q(1 +Qk|γ|)−1 + dεR + dε(1 +Qk|γ|).

As in [13], we apply (3.14) and find that

gν(α;P,R) = PS (q, a)(1 + P k|β|)−1 + P (1 + P k|β|)e−c
√
logP .

The proof of the first conclusion of Theorem 1.2 is now completed by reference to Lemma
3.3, and indeed we have established this part of the theorem for 2 ⩽ R ⩽ P 2/3.

We now prove the second conclusion of Theorem 1.2 by making use of a dyadic dissec-
tion. Let J be the smallest natural number having the property that 2J > P 1/9. Then

g(α;P,R) =
J∑
j=0

g2(α; 2
−jP,R) +O(P 8/9). (3.24)

Fix a number A > 1 and apply the first conclusion of Theorem 1.2 that is already
established, but with 2A in place of A, and with 2−jP in place of P , for 0 ⩽ j ⩽ J . Notice
that we have established this consequence of Theorem 1.2 in the range 2 ⩽ R ⩽ P 2/3 that
is wider than the corresponding range 2 ⩽ R ⩽ P 1/2 claimed in the statement of the
theorem. Since one has (logX)2A > (logP )A and X2/3 > P 1/2 for P 8/9 ⩽ X ⩽ P , the
desired bound for g(α;P,R) follows via the dyadic decomposition (3.24) and an application
of Lemma 2.3. □

4. An auxiliary pruning lemma

We now discuss a pruning lemma that should be of wider utility than the immediate
applications of this paper demand. For this reason, we keep the presentation in this
section fairly self-contained. As usual, we fix a natural number k, which in this section
is assumed to satisfy k ⩾ 3, and define the function κ(q) as in the preamble to Theorem
1.1. Now choose parameters δ, Q, X, and Y with

δ > 1, Q ⩾ 1, X ⩾ 1, Y > 0, QY ⩽ 1
4
Xk. (4.1)

When 0 ⩽ a ⩽ q ⩽ Q and (a, q) = 1, the intervals defined by

M (q, a) = {α ∈ [0, 1) : |qα− a| ⩽ Y X−k}
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are disjoint. We denote the union of these intervals by M = MQ,X,Y and define the
function Υ : M → [0, 1] by putting

Υ(α) = κ(q)2(1 +Xk|α− a/q|)−δ

when α ∈ M (q, a).

Lemma 4.1. Let k and t be natural numbers with k ⩾ 3 and t ⩾ ⌊k/2⌋. Suppose that the
numbers δ, Q, X and Y satisfy (4.1). Then, for any subset Z of [1, X] ∩ Z, one has for
each ε > 0 the estimate∫

M

Υ(α)

∣∣∣∣∑
x∈Z

e(αxk)

∣∣∣∣2t dα ≪ QεX2t−k +X−kQt+1+ε.

Proof. Our treatment is a development of the argument of the proof of [15, Lemma 5.4].
We have ∫

M

Υ(α)

∣∣∣∣∑
x∈Z

e(αxk)

∣∣∣∣2t dα ⩽
∑

1⩽q⩽Q

κ(q)2
∫ Y/Xk

−Y/Xk

W (β, q,Z )

(1 +Xk|β|)δ
dβ, (4.2)

in which we write

W (β, q,Z ) =

q∑
a=1

∣∣∣∣∑
x∈Z

e(xk(β + a/q))

∣∣∣∣2t.
Write

ψ(x) =
t∑
i=1

(xk2i−1 − xk2i).

Then we find by orthogonality that

W (β, q,Z ) = q
∑

x∈Z 2t

q |ψ(x)

e(βψ(x))

⩽ q
∑

1⩽x1,...,x2t⩽X
q |ψ(x)

1

=

q∑
a=1

∣∣∣∣ ∑
1⩽x⩽X

e(xka/q)

∣∣∣∣2t. (4.3)

We now enhance the corresponding argument of [15, Lemma 5.4] by applying [12,
Theorem 4.1] to see that when (a, q) = 1, one has∑

1⩽x⩽X

e(xka/q) = Xq−1S(q, a) +O(q1/2+ε),

where

S(q, a) =

q∑
r=1

e(ark/q).

By [12, Lemmata 4.3, 4.4 and 4.5], we therefore deduce in such circumstances that∑
1⩽x⩽X

e(xka/q) ≪ Xκ(q) + q1/2+ε.
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Removing now the condition (a, q) = 1, we find that in general one has the upper bound∑
1⩽x⩽X

e(xka/q) ≪ Xκ(q/(q, a)) + (q/(q, a))1/2+ε. (4.4)

Next, we substitute (4.4) into (4.3) to obtain the estimate

W (β, q,Z ) ≪ X2t

q∑
a=1

κ(q/(q, a))2t +

q∑
a=1

(q/(q, a))t+ε

≪ X2tσ(q) +
∑
r | q

rt+1+ε, (4.5)

where

σ(q) =
∑
r | q

rκ(r)2t.

Then we find that σ(q) is the subject of the discussion of [15] leading from equation (5.9)
to the conclusion of the proof of Lemma 5.4 of the latter source. Unfortunately, the
estimations there are subject to the condition k ⩾ 4, but subject to this constraint it is
shown that ∑

1⩽q⩽Q

κ(q)2σ(q) ≪ Qε. (4.6)

This bound remains valid for k = 3, too, as we shall demonstrate momentarily. Since one
also has the bound ∑

r | q

rt+1+ε ≪ qt+1+2ε,

we see from the definition of κ(q) that there is a positive number B having the property
that ∑

1⩽q⩽Q

κ(q)2
∑
r|q

rt+1+ε ≪ Qt+1+2ε
∏
p⩽Q

(1 +Bp−1) ≪ Qt+1+3ε.

Thus, we deduce from (4.2) and (4.5) that∫
M

Υ(α)

∣∣∣∣∑
x∈Z

e(αxk)

∣∣∣∣2t dα ≪X2t−k
∑

1⩽q⩽Q

κ(q)2σ(q) +X−k
∑

1⩽q⩽Q

κ(q)2
∑
r | q

rt+1+ε,

and the conclusion of the lemma is now immediate.
It remains to confirm (4.6) when k = 3. In view of the crude estimate κ3(q) ≪ q−1/3 it

suffices to treat the case t = 1. In this case, the crude bound shows that σ(pl) ≪ lpl/3,
whence κ(pl)2σ(pl) ≪ lp−l/3. We therefore deduce that

∞∑
l=4

κ(pl)2σ(pl) ≪ p−4/3.

Meanwhile, working directly from the definition of κ(q), we find that there is a constant
C > 1 with the property that

κ(p)2σ(p) + κ(p2)2σ(p2) + κ(p3)2σ(p3) ⩽ Cp−1.
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The bound (4.6) now follows from the estimate∑
1⩽q⩽Q

κ(q)2σ(q) ⩽
∏
p⩽Q

∞∑
l=0

κ(pl)2σ(pl) ⩽
∏
p⩽Q

(
1 + Cp−1 +O(p−4/3)

)
.

□

5. Mean values on sets of major arcs

Our goal in this section is the proof of Theorem 1.3 concerning upper bounds for
moments of the smooth Weyl sum g(α;P,R) on sets of major arcs.

Lemma 5.1. Let k and t be natural numbers with k ⩾ 3 and t ⩾ ⌊k/2⌋, and let ν be a
real number with ν > 1. Suppose that R and P are real numbers with 2 ⩽ R ⩽ P η, where
η is a positive number sufficiently small in terms of k and ε. Finally, let ω < k/2 be a
positive number with

ω <
2t+ 4

t+ 10
, (5.1)

and suppose that 1 ⩽ Q ⩽ P ω. Then, there exists a positive number τ with the property
that, whenever 1 ⩽ X ⩽ P , one has∫

M(Q)

|gν(α;X,R)|2t+4 dα ≪ QεX2t+4−k(logX)4+ε + P 2t+4−k−τ .

Proof. We begin by observing that the conclusion of the lemma is trivial when X ⩽ P 1/2,
so we suppose henceforth that P 1/2 < X ⩽ P . Consider a real number α with α ∈ M(Q).
Then there exists a ∈ Z and q ∈ N with 1 ⩽ q ⩽ Q and (a, q) = 1 with |qα− a| ⩽ QP−k.
Consequently, it follows from Theorem 1.1 that

gν(α;X,R) ≪
qεκ(q)1/2X(logX)1+ε

(1 +Xk|α− a/q|)1/2−ε
+X3/4R1/2(logX)1/4+εQ1/8+ε.

Next, we prepare for an application of Lemma 4.1 where we work with X and Q as
above, and we choose Y = Q(X/P )k to arrange that M(Q) = MQ,X,Y . We define the
function Υ(α) on MQ,X,Y as in the preamble of Lemma 4.1, with δ = 3/2, and then recast
the preceding bound for gν(α;X,R) in the form

gν(α;X,R) ≪ QεX(logX)1+εΥ(α)1/4 +X3/4R1/2(logX)1/4+εQ1/8+ε.

Thus, we deduce that the mean value

I0 =

∫
M(Q)

|gν(α;X,R)|2t+4 dα (5.2)

satisfies the bound
I0 ≪ I1 + I2, (5.3)

where

I1 = Qε
(
X(logX)1+ε

)4 ∫
M(Q)

Υ(α)|gν(α;X,R)|2t dα (5.4)

and

I2 = Q1/2+εX3+εR2

∫
M(Q)

|gν(α;X,R)|2t dα. (5.5)
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In order to bound the integral occurring in (5.5), we recall (5.2) and apply Hölder’s
inequality to obtain the estimate∫

M(Q)

|gν(α;X,R)|2t dα ≪
(∫

M(Q)

dα
)2/(t+2)(∫

M(Q)

|gν(α;X,R)|2t+4 dα
)t/(t+2)

≪ (Q2P−k)2/(t+2)I
t/(t+2)
0 .

Applying Lemma 4.1 to estimate the mean value I1 defined in (5.4), we therefore deduce
from (5.3) that

I0 ≪ QεX4(logX)4+ε(X2t−k +X−kQt+1) +Q1/2+εX3+εR2(Q2P−k)2/(t+2)I
t/(t+2)
0 ,

whence

I0 ≪ QεX4(logX)4+ε(X2t−k +X−kQt+1) +Q2P−k(Q1/8+εX3/4+εR1/2
)2t+4

. (5.6)

Since we have Q ⩽ P ω with ω satisfying the bound (5.1), we find that there is a positive
number τ for which

Q2P−k(Q1/8X3/4)2t+4 = Q(t+10)/4X(3t+6)/2P−k ≪ P (t+2)/2−2τX(3t+6)/2P−k.

But X ⩽ P , and thus

Q2P−k(Q1/8+εX3/4+εR1/2
)2t+4 ≪ P 2t+4−k−τ . (5.7)

The upper bound (5.7) provides satisfactory control over the final term on the right
hand side of (5.6). We turn next to consider the second half of the first term on the
right-hand side of this relation. Our goal is to show that X4−kQt+1 < P 2t+4−k−2τ . When
k = 3 this bound is easily obtained by employing the upper bounds X ⩽ P and Q ⩽ P ω.
One has

(t+ 1)(2t+ 4)

t+ 10
= 2t− 14t− 4

t+ 10
< 2t− 2τ,

so that in view of (5.1), one has

XQt+1 < P 2t+1−2τ ,

and the desired conclusion follows. We may henceforth suppose, therefore, that k ⩾ 4.
Here, we begin by observing that a trivial estimate for gν(α;X,R) shows that when

X2t+4Q2P−k < P 2t+4−k−τ ,

then

I0 =

∫
M(Q)

|gν(α;X,R)|2t+4 dα ≪ X2t+4mes(M(Q)) ≪ P 2t+4−k−τ .

We may therefore suppose that X2t+4Q2 ⩾ P 2t+4−τ , whence

X ⩾ P 1−2/(t+10)Q−1/(t+2).

But then, on recalling (5.1) and the hypothesis Q ⩽ P ω, we find that

X4−kQt+1 ⩽ P 4−k+2(k−4)/(t+10)Qt+1+(k−4)/(t+2) ⩽ P 4−k+2Λ/(t+10),

where Λ = (t+ 1)(t+ 2) + 2(k − 4). However, since k ⩽ 2t+ 1, one finds that

Λ = t(t+ 10)− (7t− 2k + 6) ⩽ t(t+ 10)− (3t+ 4) < (t+ 10)(t− τ).
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We therefore conclude that when k ⩾ 4, we may assume that X4−kQt+1 < P 2t+4−k−2τ .
Then in all cases, we find that the bound (5.6) implies via (5.7) that

I0 ≪ QεX2t+4−k(logX)4+ε + P 2t+4−k−τ ,

and thus the proof of the lemma is complete. □

Before announcing a corollary of this conclusion, we recall the definition (1.6) of N(Q).

Corollary 5.2. Assume the hypotheses of the statement of Lemma 5.1, and let τ be the
positive number supplied by its conclusion. Also, let ω′ be a positive number with

ω′ <
2k

k + 4
, (5.8)

and put Ω = min{ω, ω′}. Then provided that 1 ⩽ Q ⩽ P ω, one has∫
M(Q)

|g(α;P,R)|2t+4 dα ≪ QεP 2t+4−k(logP )2t+8+ε.

Moreover, when u > 2t+4 and A is sufficiently large in terms of τ and u, then whenever
(logP )A ⩽ Q ⩽ PΩ, one has∫

N(Q)

|g(α;P,R)|u dα ≪ P u−kQε−(u−2t−4)/(2k).

Proof. Write ζ = 2/(t+ 10). Then by dividing the summation underlying g(α;P,R) into
dyadic intervals, we find that

|g(α;P,R)| ⩽
∞∑
j=0

2j⩽P ζ

|g2(α; 2−jP,R)|+O(P 1−ζ).

By Hölder’s inequality, therefore, we have

|g(α;P,R)|2t+4 ≪ (logP )2t+3

∞∑
j=0

2j⩽P ζ

|g2(α; 2−jP,R)|2t+4 + P (2t+4)(1−ζ).

Put

I =

∫
M(Q)

|g(α;P,R)|2t+4 dα.

Then it follows from Lemma 5.1 that there is a real number X satisfying P 1−ζ ⩽ X ⩽ P
for which

I ≪ (logP )2t+4

∫
M(Q)

|g2(α;X,R)|2t+4 dα + P (2t+4)(1−ζ)Q2P−k

≪ QεP 2t+4−k(logP )2t+8+ε + P 2t+4−k−τ/2 +Q2P (2t+4)(1−ζ)−k.

However, our hypothesis concerning Q ensures that Q2 < P (2t+4)ζ , and thus we conclude
that ∫

M(Q)

|g(α;P,R)|2t+4 dα ≪ QεP 2t+4−k(logP )2t+8+ε + P 2t+4−k.

This delivers the first mean value estimate of the corollary.
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For the second bound, we consider a typical point α ∈ N(Q). There exists a ∈ Z and
q ∈ N with (a, q) = 1 and

Q/2 ⩽ q + P k|qα− a| ⩽ 2Q.

Then we see from Theorem 1.1 that

g(α;P,R) ≪ P (logP )1+εQε−1/(2k) + P 1+ε(Q/P 2)1/8.

However, we may suppose that Q ⩽ P ω′
, and so it follows from (5.8) that there is a

positive number ξ having the property that Q ⩽ P 2k/(k+4)−16ξ. Thus, we have

(Q/P 2)1/8 ⩽ P−1/(k+4)−2ξ ⩽ P−2ξQ−1/(2k).

Since Q ⩾ (logP )A with A sufficiently large, it follows that

g(α;P,R) ≪ PQ2ε−1/(2k).

By making use of this bound in combination with the first conclusion of the corollary, we
arrive at the upper bound∫

N(Q)

|g(α;P,R)|u dα ≪ (PQε−1/(2k))u−2t−4

∫
M(Q)

|g(α;P,R)|2t+4 dα

≪ (PQε−1/(2k))u−2t−4QεP 2t+4−k(logP )2t+8+ε.

Again making use of the assumption Q ⩾ (logP )A with A sufficiently large, we see that
(logP )2t+9 ≪ Qε, and hence∫

N(Q)

|g(α;P,R)|u dα ≪ P u−kQuε−(u−2t−4)/(2k).

This completes the proof of the corollary. □

Corollary 5.2 is of strength sufficient to deliver the conclusions of Theorem 1.3 in all
cases with Q ⩾ (logP )A, for a suitably large positive number A. We now attend to the
remaining values of Q with 1 ⩽ Q < (logP )A.

Lemma 5.3. Let k be a natural number with k ⩾ 4, and let A be a positive real number.
Then, whenever Q, R and P are real numbers with 2 ⩽ R ⩽ P 1/2 and 1 ⩽ Q ⩽ (logP )A,
one has ∫

M(Q)

|g(α;P,R)|k+1 dα ≪ P logQ. (5.9)

Moreover, when u > k + 1, one also has∫
N(Q)

|g(α;P,R)|u dα ≪ P u−kQε−(u−k−1)/k. (5.10)

In the case k = 3, the bound (5.10) remains valid, while in (5.9) the upper bound for the
integral has to be replaced by P (logQ)82.
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Proof. Suppose that 1 ⩽ Q ⩽ (logP )A and α ∈ M(Q). Then it follows from Theorem 1.2
that when a ∈ Z and q ∈ N satisfy (a, q) = 1, with q ⩽ Q and |qα− a| ⩽ QP−k, one has

g(α;P,R) ≪ Pκ(q)ψ(q)

(1 + P k|α− a/q|)1/k
+ P exp

(
−c(logP )1/2

)
Q

≪ Pκ(q)ψ(q)

(1 + P k|α− a/q|)1/k
. (5.11)

Consequently, one finds that∫
M(Q)

|g(α;P,R)|k+1 dα ≪ P k+1
∑

1⩽q⩽Q

q∑
a=1

(a,q)=1

(
κ(q)ψ(q)

)k+1
∫ ∞

−∞

dβ

(1 + P k|β|)1+1/k

≪ P
∑

1⩽q⩽Q

ϕ(q)
(
κ(q)ψ(q)

)k+1

≪ P
∏
p⩽Q

(
1 + ψ(p)k

∞∑
l=1

plκ(pl)k+1
)
. (5.12)

The crude bound κ(pl) ⩽ p−l/k is applied for l > k. Then, inspecting the definition of the
function κk(p

l), we find that when k ⩾ 4 one has
∞∑
l=1

plκ(pl)k+1 ⩽
1

p
+O(p−1−1/k),

whereas in the case k = 3 the above sum can only be bounded above by 82p−1+O(p−4/3).
But then, for k ⩾ 4, we also have

1 + ψ(p)k
∞∑
l=1

plκ(pl)k+1 ⩽ 1 +
1

p
+O(p−1−1/k),

with an obvious adjustment in the case k = 3. The first claim of the lemma is now
immediate, after inserting these final estimates into (5.12).

When u > k + 1, we observe as in the proof of our previous corollary that when
α ∈ N(Q), then the upper bound (5.11) yields

g(α;P,R) ≪ PQε−1/k.

Thus, we deduce from (5.9) that when u > k + 1, one has∫
N(Q)

|g(α;P,R)|u dα ≪ (PQε−1/k)u−k−1

∫
M(Q)

|g(α;P,R)|k+1 dα

≪ (PQε−1/k)u−k−1QεP

≪ P u−kQuε−(u−k−1)/k.

The second conclusion of the lemma now follows. □

The proof of Theorem 1.3. The first conclusion of Theorem 1.3 follows immediately, on
combining those of Corollary 5.2 and Lemma 5.3.

We now turn to the second conclusion of the theorem. According to the hypotheses
in play, we have Ω = min{ω, ω′} with ω and ω′ positive numbers as prescribed in the
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statement of Theorem 1.3. We assume now that u > 2t + 4 and 1 ⩽ U ⩽ PΩ. Then,
again combining the conclusions of Corollary 5.2 and Lemma 5.3, we obtain the bound∫

N(U)

|g(α;P,R)|u dα ≪ P u−kU ε−(u−2t−4)/(2k).

Thus, by summing over the values U = 2−jPΩ with j ⩾ 0 and U ⩾ Q, we find that∫
M(PΩ)\M(Q)

|g(α;P,R)|u dα ≪ P u−kQ−δ,

provided that δ < (u− 2t− 4)/(2k). This completes the proof of Theorem 1.3. □

6. Some consequences for Waring’s problem

We now discuss the consequences of Theorem 1.3 for Waring’s problem. This requires
the introduction of new notation. First we recall the concept of an admissible exponent.
We refer to a real number ∆s as an admissible exponent (for k) if it has the property
that, whenever ε > 0 and η is a positive number sufficiently small in terms of ε, k and s,
then whenever 1 ⩽ R ⩽ P η and P is sufficiently large, one has∫ 1

0

|g(α;P,R)|s dα ≪ P s−k+∆s+ε.

Given admissible exponents ∆s (s ⩾ 0) for k, we define for each positive number u the
admissible exponent for minor arcs

∆∗
u = min

0⩽t⩽u−2

(
∆u−t − tτ(k)

)
,

in which

τ(k) = max
w∈N

k − 2∆2w

4w2
.

Equipped with these definitions, it is useful to adopt a convention concerning the ap-
pearance of the letters ε and R. If a statement involves the letter R, either implicitly
or explicitly, then it is asserted that for any ε > 0 there is a number η > 0 such that
the statement holds uniformly for 2 ⩽ R ⩽ P η. Our arguments will involve only a finite
number of statements, and so there is the option to pass to the smallest of the numbers
η that arise during the course of the argument, and then have all estimates in force with
the same positive number η. Notice that η may be assumed to be sufficiently small in
terms of k, s and ε.

We recall a key mean value estimate from [2, Theorem 5.3]. Define the set of minor
arcs m(Q) = [0, 1) \M(Q) for 1 ⩽ Q ⩽ P k/2. Suppose that ∆∗

s is an admissible exponent
for minor arcs with ∆∗

s < 0, and θ is a positive number with θ ⩽ k/2. Then provided that
P θ ⩽ Q ⩽ P k/2, one has∫

m(Q)

|g(α;P,R)|s dα ≪θ P
s−kQε−2|∆∗

s |/k. (6.1)

We now offer a refinement of [2, Theorem 6.1].
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Theorem 6.1. Let k ⩾ 3 and s ⩾ 2⌊k/2⌋ + 5, and suppose that ∆∗
s is an admissible

exponent for minor arcs with ∆∗
s < 0. Let ν be any positive number with

ν < min
{2|∆∗

s|
k

,
1

3k

}
.

Then, when 1 ⩽ Q ⩽ P k/2, one has the uniform bound∫
m(Q)

|g(α;P,R)|s dα ≪ P s−kQ−ν .

Proof. In view of the upper bound (6.1), it suffices to consider values of Q with 1 ⩽
Q ⩽ P θ, where θ is a fixed positive number sufficiently small in terms of k and s. Put
t = ⌊k/2⌋. Then Theorem 1.3 shows that whenever 1 ⩽ Q ⩽ P θ and s ⩾ 2t+ 5, then∫

M(P θ)\M(Q)

|g(α;P,R)|s dα ≪ P s−kQ−1/(3k).

We find from (6.1) that whenever s ⩾ 2t + 5, and ∆∗
s satisfies the hypotheses of the

statement of the theorem, then∫
m(P θ)

|g(α;P,R)|s dα ≪ P s−k(P−θ)2|∆
∗
s |/k−ε.

Consequently, on choosing θ to be small enough and 1 ⩽ Q ⩽ P θ, we conclude that∫
m(Q)

|g(α;P,R)|s dα ≪ P s−kQ−ν ,

where ν is any positive number smaller than min{2|∆∗
s|/k, 1/(3k)}. The conclusion of the

theorem now follows. □

We remark that essentially the same conclusion is obtained in [2, Theorem 6.1], though
with the condition s ⩾ 2k + 3 in place of the present hypothesis s ⩾ 2⌊k/2⌋ + 5. Thus
our new condition represents an improvement by nearly a factor 2 over this earlier work.

Now define

G0(k) = min
v⩾2

(
v +

∆v

τ(k)

)
.

Also, when s ∈ N, write Rs,k(n) for the number of solutions of the equation

xk1 + . . .+ xks = n,

with xi ∈ N. Finally, define Γ0(k) to be the least integer s such that, for all natural
numbers n and q, the congruence

xk1 + . . .+ xks ≡ n (mod q)

is soluble with (x1, q) = 1.

Theorem 6.2. Suppose that k ⩾ 3 and

s ⩾ max {⌊G0(k)⌋+ 1,Γ0(k), 2⌊k/2⌋+ 5} .
Then provided that the integer n is sufficiently large in terms of k and s, one has Rs,k(n) ≫
ns/k−1.
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Proof. The desired conclusion follows by the argument of the proof of [2, Theorem 6.2]
by substituting our Theorem 6.1 for [2, Theorem 6.1] throughout. □

Again, this conclusion replaces the constraint s ⩾ 2k + 3 in [2, Theorem 6.2] by the
present hypothesis s ⩾ 2⌊k/2⌋+ 5.
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[1] J. Brüdern and T. D. Wooley, On Waring’s problem for cubes and smooth Weyl sums, Proc. London
Math. Soc. (3) 82 (2001), no. 1, 89–109.
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