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Abstract. We provide new estimates for smooth Weyl sums on minor arcs and explore
their consequences for the distribution of the fractional parts of αnk. In particular, when
k ⩾ 6 and ρ(k) is defined via the relation ρ(k)−1 = k(log k + 8.02113), then for all large
numbers N there is an integer n with 1 ⩽ n ⩽ N for which ∥αnk∥ ⩽ N−ρ(k).

1. Introduction

Estimates for smooth Weyl sums on minor arcs play a prominent role in applications
of the Hardy-Littlewood method, in the study of the distribution of fractional parts of
polynomial sequences, and in many other branches of the theory of numbers. When
2 ⩽ R ⩽ P , let A (P,R) denote the set of natural numbers not exceeding P having all of
their prime factors bounded above by R. Given a natural number k ⩾ 2, define the Weyl
sum

f(α;P,R) =
∑

n∈A (P,R)

e(αnk), (1.1)

where, as usual, we write e(z) for e2πiz. In this context, a typical choice of minor arcs is
the set n of all real numbers α with the property that when q ∈ N and a ∈ Z are coprime
with |qα−a| ⩽ P 1−k, one has q > P . Improving earlier estimates of Vaughan [8], Wooley
[13] showed that for each ε > 0 there is a positive number η = η(ε, k) such that uniformly
in 2 ⩽ R ⩽ P η one has the estimate

sup
α∈n

|f(α;P,R)| ≪ P 1−ρ(k)+ε,

where ρ(k)−1 = k(log k + O(log log k)). Our recent work [3] on Waring’s problem yields
progress on moment estimates for the Weyl sum f(α;P,R) that makes it possible to refine
this bound, and make it more explicit.

Theorem 1.1. Let k ⩾ 6, and define the positive number ρ(k) by

ρ(k)−1 = k(log k + 8.02113). (1.2)

Then, there is a positive number η = η(k) with the property that uniformly in 2 ⩽ R ⩽ P η

one has the estimate

sup
α∈n

|f(α;P,R)| ≪ P 1−ρ(k).
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2 JÖRG BRÜDERN AND TREVOR D. WOOLEY

This new bound implies an improvement of [13, Theorem 1.2] concerned with localised
estimates for the fractional parts of αnk.

Theorem 1.2. Suppose that α ∈ R. Let k ⩾ 6 and define ρ(k) via (1.2). Then, whenever
N is sufficiently large in terms of k, one has

min
1⩽n⩽N

∥αnk∥ ⩽ N−ρ(k).

Here, as is usual in this context, we write ∥θ∥ for min{|θ−n| : n ∈ Z}. For comparison,
a similar conclusion is provided by [13, Theorem 1.2] with ρ(k)−1 = k(log k+O(log log k)).
The numerical values for permissible ρ(k) may be improved for small values of k. We direct
the reader to Theorems 4.1 and 5.1 for explicit such refinements valid for 6 ⩽ k ⩽ 20.
These conclusions are superior to all estimates hitherto available when k ⩾ 10.
Our proof of Theorem 1.1 draws inspiration from the second author’s earlier work

[12, 13], but also imports our more recent ideas through an estimate of Weyl’s type that
occurs as [4, Theorem 3.5]. This bound is most powerful when the argument α is close to a
fraction a/q with (a, q) = 1 and q is of rough size P k/2. This results in genuinely improved
performance of the overall infrastructure underlying the proof of [13, Theorem 1.1]. In
addition, we improve the large sieve estimate embodied in [13, Section 4]. The large sieve is
replaced by a more direct use of the Sobolev-Gallagher inequality to remove an unwanted
restriction to even moments of smooth Weyl sums in the final estimate ([13, Lemma
4.1]). Having achieved the latter, we use the occasion to supply admissible exponents for
moments of order t, with t > 4 a real, not necessarily even number. This result, Theorem
2.1 below, will prove useful in applications of major arcs moment estimates, as once again
the restriction to even moments in optimisation procedures like those in [6, Section 8]
or [5, Section 6] is certainly undesired, typically accommodated a posteriori, and now
removable, at least for larger k.

2. Admissible exponents

Our goal in this section is to establish estimates for moments of smooth Weyl sums of
sufficient flexibility that technical complications in our later applications may be avoided.
For the remainder of the paper, we fix a natural number k ⩾ 2. Recall the definition
(1.1), and define the moment

Ut(P,R) =

∫ 1

0

|f(α;P,R)|t dα,

where t is a non-negative real number. Following earlier convention, we say that the real
number ∆t is admissible (for t) when, for each ε > 0, there exists η > 0 having the
property that, whenever 2 ⩽ R ⩽ P η, one has

Ut(P,R) ≪ P t−k+∆t+ε.

We note that admissible exponents ∆t are non-negative and may be chosen so that ∆t ⩽ k.
In early work on moments of smooth Weyl sums admissible exponents are denoted

differently. Since the discussion was focussed on moments of order t = 2s with s ∈ N, the
subscript of the exponent was often s, not 2s, which would be in line with our definition.
The reader should keep this in mind when comparing our findings with earlier results.
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In order to simplify our exposition, we henceforth adopt the following convention con-
cerning ε, R and η. First, whenever ε occurs in a statement, we assert that the statement
holds for each positive value of ε. Implicit constants hidden in the symbols of Vinogradov
and Landau may depend on the value assigned to ε. Second, should R or η appear in a
statement, then it is asserted that the statement holds whenever R ⩽ P η and η is taken
to be a positive number sufficiently small in terms of ε.

For each non-negative number t, we define the positive number δt to be the unique
solution of the equation

δt + log δt = 1− t/k. (2.1)

The conclusion of [12, Theorem 2.1] shows that when k ⩾ 4 and t is an even integer
with t ⩾ 4, then the exponent ∆t = kδt is admissible. Note that our earlier cautionary
comment applies, as the quantity δs,k occurring in the statement of [12, Theorem 2.1] is
equal to our δ2s. Moreover, when t = 2s with s a natural number, then it follows via
orthogonality that Ut(P,R) is equal to the number of solutions of the equation

xk
1 + · · ·+ xk

s = yk1 + · · ·+ yks , (2.2)

with xi, yi ∈ A (P,R), a quantity which in [12] is denoted Ss(P,R). We now extend this
earlier result to the situation in which t is permitted to be any real number with t ⩾ 4.

Theorem 2.1. Let k ⩾ 6 and suppose that t is a real number with t ⩾ 4. Then the
exponent ∆t = kδt is admissible.

This is a special case of a more general theorem in which a weighted analogue of the
exponential sum f(α;P,R) appears. When w(n) ∈ C (n ∈ N), we define

∥w∥X = max
1⩽n⩽X

|w(n)|.

Also, when t is a positive number, put

Ut(P,R;w) =

∫ 1

0

∣∣∣ ∑
n∈A (P,R)

w(n)e(αnk)
∣∣∣t dα. (2.3)

We say that the real number ∆t is weight-uniform admissible when, for each ε > 0, there
exists η > 0 having the property that, whenever 2 ⩽ R ⩽ P η, uniformly in w one has

Ut(P,R;w) ≪ ∥w∥tP P t−k+∆t+ε. (2.4)

Note that when s is a natural number, it follows by orthogonality that

U2s(P,R;w) =
∑
x,y

s∏
i=1

w(xi)w(yi),

where xi, yi ∈ A (P,R) (1 ⩽ i ⩽ s) are constrained by (2.2). Thus, one has

U2s(P,R;w) ⩽ ∥w∥2sP U2s(P,R), (2.5)

and hence the exponent ∆2s is weight-uniform admissible whenever it is admissible.

Theorem 2.2. Let k ⩾ 6 and suppose that t is a real number with t ⩾ 4. Then the
exponent ∆t = kδt is weight-uniform admissible.
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Proof. Consider a natural number s ⩾ 2, and define the positive number ∆2s to be the
unique solution of the equation

∆2s

k
+ log

∆2s

k
= 1− 2s

k
− 5

16k2
. (2.6)

We assert that the exponent ∆2s is admissible. In order to confirm this assertion, observe
first that when s = 2 the exponent k − 2 is admissible, as a consequence of Hua’s lemma
(see [9, Lemma 2.5]). Moreover, one has

1− 2

k
+ log

(
1− 2

k

)
< 1− 4

k
− 2

k2
< 1− 4

k
− 5

16k2
.

Hence, the exponent ∆4 defined via (2.6) is admissible. When s is a natural number
exceeding 2, meanwhile, it follows from the proof of [12, Theorem 2.1] that an admissible
exponent ∆ for 2s exists satisfying

∆

k
+ log

∆

k
⩽ δ2s−2 + log δ2s−2 −

2

k
+

E

2k2
,

where E ⩽ k 22−k − 1 ⩽ −5/8. This upper bound is a direct interpretation of the
penultimate displayed equation of the proof of [12, Theorem 2.1], on page 167, with the
inequality for E immediately following the latter equation. In view of (2.1), one has

∆

k
+ log

∆

k
⩽ 1− 2s

k
− 5

16k2
,

and so a comparison with (2.6) confirms that ∆2s is admissible.
Given a real number t with t ⩾ 4, we put s = ⌊t/2⌋ and v = t/2−s, so that t = 2s+2v.

An application of Hölder’s inequality leads from (2.3) via (2.5) to the bound

Ut(P,R;w) ⩽ ∥w∥tP U2s(P,R)1−v U2s+2(P,R)v. (2.7)

We have now effectively removed the weights from consideration.
We make use of the admissible exponent ∆2s defined via (2.6), but refine slightly the

admissible exponent ∆2s+2. Let ω = 21−k(1−∆2s/k). The argument of the proof of [12,
Theorem 2.1] on page 167 shows that the positive number

∆′
2s+2 = ∆2s

(
1− 2− ω

k +∆2s

)
is admissible for 2s + 2. In view of the upper bound (2.4), we find from (2.7) that ∆t is
weight-uniform admissible, where

∆t = (1− v)∆2s + v∆′
2s+2

= (1− v)∆2s + v∆2s

(
1− 2− ω

k +∆2s

)
= ∆2s

(
1− v

2− ω

k +∆2s

)
.

Observe that

∆t

k
+ log

∆t

k
=

∆2s

k
+ log

∆2s

k
− v

∆2s

k

2− ω

k +∆2s

+ log
(
1− v

2− ω

k +∆2s

)
,
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so that from (2.6) we obtain

∆t

k
+ log

∆t

k
⩽ 1− 2s

k
− 5

16k2
− v

∆2s

k

2− ω

k +∆2s

− v
2− ω

k +∆2s

− v2(2− ω)2

2(k +∆2s)2
.

Since

2− ω = 2− 21−k(1−∆2s/k) ⩾ 2− (1−∆2s/k) = 1 + ∆2s/k,

we deduce that
∆t

k
+ log

∆t

k
⩽ 1− t

k
+

E

2k2
,

where

E = −5

8
+ 2kvω − v2.

Recalling that k ⩾ 6 and 0 ⩽ v ⩽ 1, we have

E ⩽ −5

8
+ v(k 22−k − v) < 0,

and so
∆t

k
+ log

∆t

k
⩽ 1− t

k
.

In view of relation (2.1), it follows that the exponent kδt is weight-uniform admissible for
t. This proves Theorem 2.2, and the conclusion of Theorem 2.1 follows as a corollary. □

3. A new upper bound for smooth Weyl sums

We adapt the arguments of [13] so as to obtain a new minor arc estimate for the
smooth Weyl sum f(α;P,R). We begin with an analogue of [13, Lemma 4.1]. The
strategy adopted in the proof of the latter makes use of the large sieve inequality to
estimate an exponential sum stemming from an even power of f(α;P,R). Here, we adopt
a more flexible approach, able to handle positive real powers of this exponential sum, by
appealing directly to the Sobolev-Gallagher inequality.

Lemma 3.1. Suppose that 1/2 < λ < 1, and write M = P λ. Let α ∈ R, and suppose
that a ∈ Z and q ∈ N satisfy

(a, q) = 1, |qα− a| ⩽ 1
2
(MR)−k, q ⩽ 2(MR)k,

and either |qα− a| > MP−k or q > MR. Then, if t is a real number with t > k + 1 and
∆t is weight-uniform admissible, one has

f(α;P,R) ≪ M1+ε + P 1+ε
(
M−1(P/M)∆t(1 + q(P/M)−k)

)1/t
.

Proof. We begin our argument in the same manner as the proof of [13, Lemma 4.1]. Define
the set

B(M,ϖ,R) = {v ∈ A (P,R) ∩ (M,MR] : ϖ|v, and p|v implies p ⩾ ϖ},
in which, here and henceforth, the letters ϖ and p both denote prime numbers. Then,
from [13, equation (4.1)], we find that there exists an integer d with 1 ⩽ d ⩽ P/M , a real
number θ ∈ [0, 1), and a prime number ϖ with ϖ ⩽ R, such that

f(α;P,R) ≪ M1+ε + P εRg(α; d,ϖ, θ), (3.1)
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where

g(α; d,ϖ, θ) =
∑

v∈B(M/d,ϖ,R)
(v,q)=1

∣∣∣∣∣ ∑
u∈A (P/M,ϖ)

(u,q)=1

e(α(uvd)k + θu)

∣∣∣∣∣.
The argument of the proof of [13, Lemma 4.1] shows that one can partition the integers

v ∈ B(M/d,ϖ,R) with (v, q) = 1 into L classes V1, . . . ,VL, with L = O(qεdk), having
the following property. That is, for each j, as v varies over Vj, the real numbers α(vd)k

are spaced apart at least ξ = 1
2
min{q−1, (P/M)−k} modulo 1. Define

h(α) =
∑

u∈A (P/M,ϖ)
(u,q)=1

e(αuk + θu).

Then an application of the Sobolev-Gallagher inequality (see [7, Lemma 1.1]) to the
continuously differentiable function |h(β)|t reveals that for 1 ⩽ j ⩽ L, one has∑

v∈Vj

|h(α(vd)k)|t ≪ ξ−1

∫ 1

0

|h(β)|t dβ +

∫ 1

0

|h(β)t−1h′(β)| dβ. (3.2)

Define the weights

w1(n) =

{
e(θn), when (n, q) = 1,

0, when (n, q) > 1,

and w2(n) = 2πinkw1(n). Then it follows from (2.4) that, for each prime ϖ ⩽ R, one has∫ 1

0

|h(β)|t dβ = Ut(P/M,ϖ;w1) ≪ (P/M)t−k+∆t+ε

and ∫ 1

0

|h′(β)|t dβ = Ut(P/M,ϖ;w2) ≪ (P/M)kt(P/M)t−k+∆t+ε.

An application of Hölder’s inequality therefore leads from (3.2) to the bound∑
v∈Vj

|h(α(vd)k)|t ≪ ξ−1(P/M)t−k+∆t+ε + (P/M)k(P/M)t−k+∆t+ε

≪
(
q + (P/M)k

)
(P/M)t−k+∆t+ε.

By summing these contributions from each set Vj for 1 ⩽ j ⩽ L, we thus obtain∑
v∈B(M/d,ϖ,R)

(v,q)=1

|h(α(vd)k)|t ≪ qεdk(P/M)t+∆t+ε(1 + q(P/M)−k).

An application of Hölder’s inequality to (3.1) therefore confirms that

|f(α;P,R)|t ≪ M t+ε + P εdk
(
1 + q(P/M)−k

)
(M/d)t−1(P/M)t+∆t ,

whence, since t > k+1, we obtain the bound asserted in the statement of the lemma. □
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Within the arguments to follow, we work with major arcs of various formats. Thus,
when 1 ⩽ Q ⩽ P k/2, let M(Q) denote the union of the intervals

{α ∈ [0, 1) : |qα− a| ⩽ QP−k}

with 0 ⩽ a ⩽ q ⩽ Q and (q, a) = 1. We write m(Q) = [0, 1) \M(Q) and m = m(P ). Note
that m = n ∩ [0, 1).

We next extract a minor arc estimate for smooth Weyl sums from Lemma 3.1. Given
a family (∆s)s>0 of weight-uniform admissible exponents, we define the real number τ =
τ(k) by means of the relation

τ(k) = max
w∈N

k − 2∆2w

4w2
.

We have observed already that for w ∈ N, any admissible exponent ∆2w is also weight-
uniform admissible. Thus, as discussed in the preamble to [3, equation (5.1)] or [4, Lemma
3.1], one finds that τ(k) ⩽ 1/(4k). This exponent is relevant to uniform estimates of Weyl
type for f(α;P,R).

Lemma 3.2. Suppose that k ⩾ 2. Then, uniformly in 1 ⩽ Q ⩽ P k/2, one has the bound

sup
α∈m(Q)

|f(α;P,R)| ≪ PQε−2τ(k)/k.

In particular, writing D = 4.5139506, one has

sup
α∈m(Q)

|f(α;P,R)| ≪ PQ−1/(Dk2).

Proof. The respective conclusions are available from [4, Lemma 3.3] and [4, Lemma 3.4].
□

In order to state the next theorem, we introduce the real number σ = σ(k), defined via
the relation

σ(k)−1 = inf
t>k+1

(
t+

1 +∆t

2τ(k)

)
. (3.3)

We then define the associated quantity λ = λ(k) by putting

λ(k) = 1− σ(k)

2τ(k)
. (3.4)

Theorem 3.3. Suppose that 1/2 < λ < 1. Then one has

sup
α∈m(PλR)

|f(α;P,R)| ≪ P 1−σ(k)+ε.

Proof. We put M = P λ and apply Lemma 3.1. By Dirichlet’s approximation theorem,
there exist a ∈ Z and q ∈ N with

(a, q) = 1, q ⩽ 2(MR)k and |qα− a| ⩽ 1
2
(MR)−k.

When α ∈ m(P λR), it follows that either q > MR or |qα − a| > MRP−k, and hence
Lemma 3.1 shows that for each t > k + 1 and each weight-uniform admissible exponent
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∆t, one has

f(α;P,R) ≪ P λ+ε + P 1+ε
(
P−λ+(1−λ)∆t(1 + qP−k(1−λ))

)1/t
≪ P 1−σ + P 1+ε

(
P−1+σ(1+∆t)/(2τ)(1 + qP−kσ/(2τ))

)1/t
. (3.5)

Observe that from (3.3) one has

sup
t>k+1

1

t

(
1

σ
− 1 + ∆t

2τ

)
⩾ 1,

whence

sup
t>k+1

1

t

(
1− σ(1 + ∆t)

2τ

)
⩾ σ.

Hence, we deduce from (3.5) that when q ⩽ P kσ/(2τ), one has

f(α;P,R) ≪ P 1−σ+ε. (3.6)

It remains to handle the situation in which q > P kσ/(2τ). Write Q = 1
2
R−kP kσ/(2τ), and

note that one then has
1
2
(MR)−k = 1

2
R−k

(
P 1−σ/(2τ)

)−k
= QP−k.

Thus, we see that α ∈ m(Q), and hence Lemma 3.2 delivers the bound

f(α;P,R) ≪ PQε−2τ/k ≪ P 1−σ+εR. (3.7)

In view of our conventions concerning ε and R, the conclusion of the theorem follows on
combining (3.6) and (3.7). □

4. The proof of Theorem 1.1

The first goal of this section is to optimise parameters in Theorem 3.3 so as to prove
Theorem 1.1.

The proof of Theorem 1.1. We assume throughout that k ⩾ 6. The second conclusion
of Lemma 3.2 shows that one can proceed using the value τ = 1/(2Dk). Also, as a
consequence of Theorem 2.2, the exponent ∆t = kδt is weight-uniform admissible for
t ⩾ 4, with δt defined by equation (2.1). In particular, one has ∆t ⩽ ke1−t/k. Thus, the
exponent σ defined in (3.3) satisfies the bound

σ−1 ⩽ inf
t>k+1

(
t+Dk(1 + ke1−t/k)

)
.

One may verify that the infimum on the right hand side here is attained when t =
k log k + k(1 + logD), and thus

σ−1 ⩽ k log k + k(1 + logD) +Dk(1 + 1/D)

= k log k + k(D + 2 + logD).

We therefore conclude that one has σ−1 ⩽ k(log k+ϕ), where ϕ = 8.0211233 . . .. We have
now proved that

sup
α∈m(PλR)

|f(α;P,R)| ≪ P 1−σ+ε.

Here λ is the number defined in (3.4). Since P λR ⩽ P and f has period 1, this establishes
a little more than is actually claimed in Theorem 1.1. □
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By making use of the tables of admissible exponents to be found in [10] (k = 6) and [11]
(7 ⩽ k ⩽ 20), one may numerically compute the value of the exponent σ(k) defined via
(3.3). In the table below, we record values of 2w, and a corresponding admissible exponent
∆2w. These numbers are taken from [10, 11] where the numbers λw = 2w − k +∆2w are
tabulated. We also supply an upper bound for the number T (k) having the property
that τ(k) > T (k)−1. These data have been computed for 6 ⩽ k ⩽ 13 directly from the
definition, and are tabulated for 14 ⩽ k ⩽ 20 in [3]. Here, we note a typographic error in
the latter source. Thus, the heading w in the second column of [3, Table 2] should read 2w
(in place of w). Finally, we report numbers S(k) having the property that σ(k) > S(k)−1.
All figures are rounded up in the last digit displayed. We summarise these conclusions in
the form of a theorem.

Theorem 4.1. When 6 ⩽ k ⩽ 20, one has the bound

sup
α∈m

|f(α;P,R)| ≪ P 1−σ(k)+ε,

where σ(k) > S(k)−1.

k 2w ∆2w T (k) t ∆t S(k)

6 10 1.724697 39.2064 22 0.086042 43.2899
7 12 2.014382 48.4647 26 0.192538 54.8980
8 14 2.310600 58.0088 32 0.189117 66.4897
9 16 2.603928 67.5080 38 0.190186 78.1736
10 18 2.894572 76.9440 44 0.192696 89.8855
11 20 3.184973 86.3921 48 0.241313 101.6199
12 22 3.470081 95.6553 54 0.239541 113.2844
13 24 3.755717 104.9455 60 0.239277 125.0283
14 26 4.039939 114.1869 66 0.240167 136.8055
15 28 4.323087 123.3903 74 0.209471 148.6185
16 30 4.606286 132.5981 80 0.213791 160.4732
17 32 4.888677 141.7763 86 0.218395 172.3698
18 34 5.170691 150.9411 92 0.223249 184.3193
19 36 5.451758 160.0695 98 0.228287 196.3057
20 38 5.732224 169.1748 104 0.233496 208.3383

Table 1. Choice of parameters for 6 ⩽ k ⩽ 20.

When k ⩾ 10, the bounds supplied by Theorems 1.1 and 4.1 are superior to any
previously available bound of Weyl’s type for either smooth or classical Weyl sums. When
k ⩽ 9, however, the bound

sup
α∈m

|f(α;P, P )| ≪ P 1− 1
k(k−1)

+ε,

available via recent developments in Vinogradov’s mean value theorem (see [2, 14]), pro-
vides superior exponents for classical Weyl sums. For smooth exponential sums, mean-
while, the estimates for σ(k) in the table are still superior to those listed in [11].
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5. The fractional part of αnk

The proof of Theorem 1.2 is achieved via a pedestrian modification of [13, §6], by
utilising Theorem 3.3. Let ν = (σ(k) − ρ(k))/2, so that 0 < ν < σ(k). Then the only
issue to check is that, with H = P σ(k)−ν , one has

(HP λ(k)R)k−1P λ(k)−k ≪ P−σ(k).

However, in view of (3.4) and the bound τ(k) ⩽ 1/(4k) noted in the preamble to Lemma
3.2, one has

(k − 1)σ(k) + kλ(k)− k =

(
k − 1− k

2τ(k)

)
σ(k) < −2σ(k).

With plenty of room to spare, this suffices to confirm the validity of the argument corre-
sponding to [13, §6], and we find that

min
1⩽n⩽N

∥αnk∥ ≪ N ν−σ(k).

Since σ(k) > ρ(k), the desired conclusion follows from the definition of ν.
By applying the same argument as described above for 10 ⩽ k ⩽ 20, using the explicit

exponents calculated in the previous section as recorded in the table therein, one obtains
the following conclusion.

Theorem 5.1. Let k be an integer with 10 ⩽ k ⩽ 20. Then, with the exponent S(k)
defined as in Table 1, one has

min
1⩽n⩽N

∥αnk∥ ≪ N−1/S(k).

This theorem improves on the earlier results of [11] for k ⩾ 10. Such conclusions are
also addressed by Baker in the discussion following the statement of [1, Theorem 3]. Our
new conclusions recorded in Theorems 1.2 and 5.1 improve on the estimates recorded in
part (ii) of the latter discussion for k ⩾ 10. In [1, Theorem 2], Baker points out (inter
alia) that the new conclusions available from recent breakthroughs on Vinogradov’s mean
value theorem (see [2, 14], for example) yield the upper bound

min
1⩽n⩽N

∥αnk∥ ≪ N ε−1/(k(k−1)).

On noting that the exponent S(k) recorded in Table 1 exceeds k(k− 1) for k ⩽ 9, we see
that our new estimates are superior to those available via this progress on Vinogradov’s
mean value theorem only for k ⩾ 10.
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