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Introduction

@ This work was developed during the Topology REU at the
University of Virginia in the summer of 2021.

@ We consider the Tri-pants graph as introduced by Maloni and
Palesi.

@ The tri-pants graph 7P is a combinatorial graph defined in
terms of tri-pants on the twice punctured torus.

@ TP is higher complexity analogue to the dual of the Farey
complex, F*.

@ Making use of the connections between 7P and F*, we prove

that the Tri-pants graph is connected and has infinite
diameter.
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Preliminaries

Definition

The twice-punctured torus is obtained by removing two points
(also called punctures) from a compact surface with genus 1. We
denote it as T2\ {o,e}.
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Preliminaries

Definition

The twice-punctured torus is obtained by removing two points
(also called punctures) from a compact surface with genus 1. We

denote it as T2\ {o,e}.

Definition

A closed curve « is separating in a surface, S if S\ « is

disconnected.
A simple closed curve is said to be essential if it is non-trivial, not

homotopic to a puncture or boundary.
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Pants Decompositions

A pair of pants is a surface with genus 0 and 3 boundary
components/punctures.
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Pants Decompositions

A pair of pants is a surface with genus 0 and 3 boundary
components/punctures.

Definition (Pants Decomposition)

A pants decomposition of T2\ {o, e} is a pair {a, o'} of
disjoint, non-homotopic, non-separating essential simple closed
curves in T2\ {o,e}.
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Pants Decompositions

A pair of pants is a surface with genus 0 and 3 boundary
components/punctures.

Definition (Pants Decomposition)

A pants decomposition of T2\ {o, e} is a pair {a, o'} of
disjoint, non-homotopic, non-separating essential simple closed
curves in T2\ {o,e}.

Under these assumptions, (T2 \ {o,e})\ (aU ') is the union of

two punctured annuli.
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Tri-Pant

Definition (Tri-Pant)

A tri-pant T = {a,d/,3,3',7,7'} of T2\ {0, e} is a collection of
6 simple closed curves (up to homotopy) so that

@ Each curve is essential and non-separating.

o {a,d'}, {B,8'}, and {~,~'} all describe pants
decompositions.

@ Every pair of curves in T intersect exactly once, unless they
determine a pants decomposition.
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Tri-Pant

Definition (Tri-Pant)

A tri-pant T = {a,d/,3,3',7,7'} of T2\ {0, e} is a collection of
6 simple closed curves (up to homotopy) so that

@ Each curve is essential and non-separating.
o {a,d'}, {B,8'}, and {~,~'} all describe pants
decompositions.

@ Every pair of curves in T intersect exactly once, unless they
determine a pants decomposition.

An Alternate Definition: A tri-pant of T2\ {o, e} is a maximal
collection of essential non-separating simple closed curves in
T2\ {o, e} that intersect pairwise at most once.
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Example of a Tri-Pant
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Example of a Tri-Pant

a, o, B, B

=
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Example of a Tri-Pant
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Tri-Arcs

A tri-arc is a collection of three distinct simple, essential, and
unoriented arcs a, b, c belonging to the set

As = {isotopy classes of arcs with both endpoints at e}

that pairwise intersect only at e and do not bound a cylinder.
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Tri-Arcs (cont.)

There is a bijection between tri-pants and tri-arcs. I

How to visualize: let [a] € A. Construct a tubular neighborhood
N, about [a] and denote the boundaries of N, to be o and «’.
Then {a,a’} forms a pants decomposition on T2\ {o, e}.

**We can obtain [a] from {a, &'} in a similar way.
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Elementary Moves

We say two tri-pants T, T’ differ by an elementary move if the
corresponding tri-arcs T, T, differ in one of the two following
ways:
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Elementary Moves

We say two tri-pants T, T’ differ by an elementary move if the
corresponding tri-arcs T, T, differ in one of the two following

e

In this case, we say that [c] and [¢'] differ by a big flip.
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Elementary Moves

We say two tri-pants T, T’ differ by an elementary move if the
corresponding tri-arcs T, T, differ in one of the two following

ways:
- -
In this case, we say that [c] and [¢'] differ by a big flip.
- .

In this case, we say that [c] and [c’] differ by a'small flip. 20



The Tri-pants Graph 7P

Definition (Tri-Pants Graph)

The tri-pants graph is a graph TP with vertices corresponding to
distinct tri-pants on T2\ {o,e}. Two vertices are connected by an
edge if the associated tri-pants differ by an elementary move.
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The Tri-Pants Graph — Degree of Vertices in TP

Proposition
Let T, ={[a], [b],[c]} € TP. Then deg(T.) =9

By cutting and gluing, there are three ways to represent T, (with
a, b, and c as the diagonal, respectively). For each representation,
there are two possible small flips and one big flip. One can check
that the resulting tri-arcs are distinct. O

\Q\ \l///
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The Inclusion Map and the Farey Graph

The Farey graph is the curve complex of the once-punctured torus. I
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The Inclusion Map and the Farey Graph

The Farey graph is the curve complex of the once-punctured torus. I

The inclusion map i, : w1 (T2 \ {0}, e) — m1(T?, ®) sends tri-arcs
T to triangles i(T) in the Farey graph.

14/29



The Dual of the Farey Graph (F*)

Definition

The dual graph F* associated with the Farey Graph F is the graph
whose vertices correspond to the triangles T € F, and whose
edges connect two vertices v = T*, v/ = (T')* € F* if and only if
T and T’ are adjacent in F.
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The Dual of the Farey Graph (F*)

Definition

The dual graph F* associated with the Farey Graph F is the graph
whose vertices correspond to the triangles T € F, and whose
edges connect two vertices v = T*, v/ = (T')* € F* if and only if
T and T’ are adjacent in F.

@ F* is connected and has infinite diameter.

@ We examine a connection between TP and F*.
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The Tri-Pants Graph — The Map 7

Define w : TP — F* to be a map such that:

@ Every T € TP maps to a vertex v € F* corresponding to the
triangle i(T) € F
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The Tri-Pants Graph — The Map 7

Define w : TP — F* to be a map such that:

@ Every T € TP maps to a vertex v € F* corresponding to the
triangle i(T) € F
**if T and T' differ by a big flip, then w(T) = w(T")
**if T and T' differ by a small flip, then 7(T) and w(T') are
adjacent.

= M
5] -/ T P P
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The Tri-Pants Graph — The Map 7

Define w : TP — F* to be a map such that:

@ Every T € TP maps to a vertex v € F* corresponding to the
triangle i(T) € F
**if T and T' differ by a big flip, then w(T) = w(T")
**if T and T' differ by a small flip, then 7(T) and w(T') are
adjacent.

= M
5] l/—~ NENA

o Define a fiber of 7 to be 771(v) € TP for v € F*.
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The Tri-Pants Graph - Connectedness of the Fibers

Proposition

For each vertex v € F*, the fiber 7=1(v) is connected.
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The Tri-Pants Graph - Connectedness of the Fibers

Proposition

For each vertex v € F*, the fiber 7=1(v) is connected.

Before proving the theorem, we need to present some definitions.
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Mapping Class Group

We define the set
Homeo™ (T2\{o,e}) = {f : T?> = T? orientation-preserving homeo.
so that f|g, ¢ = id}

and the pure mapping class group

PMod(T2\ {o,e}) := Homeo (T {o, 0})/isotopy
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and the pure mapping class group
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For homotopy classes 6 € 71(T2\ {e},0), we can define an
element Push(#) € PMod(T?2 \ {o, e}) which "pushes” o along 6,
taking all intersecting curves along this path as well
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Mapping Class Group

We define the set
Homeo™ (T2\{o,e}) = {f : T?> = T? orientation-preserving homeo.
so that f|g, ¢ = id}

and the pure mapping class group

PMod(T2\ {o,e}) := Homeo (T {o, 0})/isotopy

For homotopy classes 6 € 71(T2\ {e},0), we can define an
element Push(#) € PMod(T?2 \ {o, e}) which "pushes” o along 6,

taking all intersecting curves along this path as well
. H ° [ H




Mapping Class Group

If 0 is parallel to a curve in a tri-arc, then applying the push map
corresponds to two big flips
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Mapping Class Group

If 0 is parallel to a curve in a tri-arc, then applying the push map
corresponds to two big flips

We may define also the Forget map
Forget : PMod(T?2\ {o,e}) — PMod(T?2\ {e}),

which essentially "forgets” the puncture.
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Mapping Class Group

Birman's Exact Sequence

1 — m(T2\{e},0) P PMod(T2\ {0, o}) "5 PMod(T?\{e}) —
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Mapping Class Group

Birman's Exact Sequence

Push Forget

1 — 1 (T?\{e},0) == PMod(T?\{o,e}) ==& PMod(T?\{e}) —

This exact sequence tells us that if » € PMod(T?\ {o, e}) is such
that Forget[¢] = id, then ¢ is a push map, so T,¢(T) differ by an
even number of big flips.
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Proposition

The Tri-Pants Graph — Connectedness of the Fibers

For each vertex v € F*, the fiber 7~1(v) is connected.
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The Tri-Pants Graph — Connectedness of the Fibers

Proposition

For each vertex v € F*, the fiber n=1(v) is connected.

Proof (Outline of Proof.)

e Two tri-pants T, T' € 7~ !(v) <= their associated tri-arcs
T. = {[a],[b], [c]}, Ti = {[2],[F], [c']} contain the same
homotopy classes of unoriented arcs in T2, based at .
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o We can find a homeomorphism ¢ of T2 which fixes {o, e} and
so that ¢(a) = &, ¢(b) = b’
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The Tri-Pants Graph — Connectedness of the Fibers

For each vertex v € F*, the fiber n=1(v) is connected.

y

Proof (Outline of Proof.)

e Two tri-pants T, T' € 7~ !(v) <= their associated tri-arcs
T. = {[a],[b], [c]}, Ti = {[2],[F], [c']} contain the same
homotopy classes of unoriented arcs in T2, based at e.

o We can find a homeomorphism ¢ of T2 which fixes {o, e} and
so that ¢(a) = &, ¢(b) = b’
e It turns out that the induced group morphism
¢y 1 (T2, @) — m1(T2, @) is the identity map.
o In fact, ¢, = id = ¢ is isotopic to the identity in T2\ {e}. )
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Connectedness of the Fibers

Proposition

For each vertex v € F*, the fiber 7=1(v) is connected.

Outline of Proof.

@ Appealing to the Birman Exact Sequence, this statement
implies that T, and ¢(T.) differ by an even number of big
flips.
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implies that T, and ¢(T.) differ by an even number of big
flips.

@ Since ¢, is the identity on m1( T2, ), we can conclude that
either ¢(c) = ¢’ or ¢(c) is a big flip of ¢'.
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Connectedness of the Fibers

Proposition

For each vertex v € F*, the fiber 7=1(v) is connected.

v

Outline of Proof.

@ Appealing to the Birman Exact Sequence, this statement

implies that T, and ¢(T.) differ by an even number of big
flips.

@ Since ¢, is the identity on m1( T2, ), we can conclude that
either ¢(c) = ¢’ or ¢(c) is a big flip of ¢'.

@ In either case, T, and T are separated by a finite sequence of
big flips, so there is a path in 77(v) connecting T to T'.

O

v
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The Tri-pants Graph — Connectivity of 7P

The tri-pants graph TP is connected. l

Let T, 7' € TP. We seek a path in 7P connecting T to T'.
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The Tri-pants Graph — Connectivity of 7P

The tri-pants graph TP is connected. I

Let T, 7' € TP. We seek a path in 7P connecting T to T'.

Recall that F* is connected. Let (T) = vi and 7(T’) = vk41.

The edges €1, ..., e create a path along vy,..7, vki1 in F*. N



The Tri-pants Graph — Connectivity of 7P

The tri-pants graph TP is connected. I

We know that 7=%(v;) # 7 1(v;41) for all i.
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The Tri-pants Graph — Connectivity of 7P

The tri-pants graph TP is connected. I

Choose small flips that project to ey, ..., e under the map 7 to
connect adjacent fibers, similar to takng 7 (ey, ..., ).
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The Tri-pants Graph — Connectivity of 7P

The tri-pants graph TP is connected. I

Since each fiber in TP is connected, we can find a path
connecting T and T’. Thus TP is connected.

.e/\’/
e
2
e3
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The Tri-pants Graph — Infinite Diameter

The tri-pants graph has infinite diameter. \
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The Tri-pants Graph — Infinite Diameter

The tri-pants graph has infinite diameter.

4

@ By construction of 7, for any path v € TP connecting T to
T, L(n(y)) < L(7)-

@ We know that F* has infinite diameter, so for any n € Z>¢
there exist vi, v» € F* such that dr-(vi, v2) > n.

o Let TenI(vy) and T/ € 7 1(w)
e We see that n < dr« (v, v2) < dyp(T, T')

@ Thus, drp(T,T') > n, and it follows that 7P has an infinite
diameter.

O

.
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Further Questions

@ Every fiber of the tri-pants graph is isomorphic to a copy of
the dual of the Farey graph.
v Vertices in TP have valency three when restricted to their
respective fibers
For every v € F*, 7= 1(v) is a tree
For every v € F*, 7=1(v) is infinite
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Further Questions

@ Every fiber of the tri-pants graph is isomorphic to a copy of
the dual of the Farey graph.
v Vertices in TP have valency three when restricted to their
respective fibers
For every v € F*, 7= 1(v) is a tree
For every v € F*, 7=1(v) is infinite

o Gaining a better understanding of the structure of TP
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Thank y0u!

Q>
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