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Turbulent flow over an aircraft causes wavefront 
aberrations in propagated laser beams.

The Aero-Optics Problem

The Aero-Optics Problem, Figure 1 from [1]

[1] M. Wang, A. Mani, and S. Gordeyev, “Physics and Computation of Aero-
Optics,” Annual Review of Fluid Mechanics, Vol. 44, No. 1, 2012, pp. 299–321.
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Adaptive Optics for Aero-Optical Effects

▪ The Kolmogorov-Taylor model is not sufficient to describe 

aero-optics ([2]).

• Development of Adaptive Optics (AO) systems for atmospheric 

turbulence relies on this model ([2]).

▪ We need wavefront data to accurately design AO systems for 

addressing aero-optic effects.

• Wind tunnel experiments are costly; data acquisition is time-limited.

▪ We implement an algorithm for generating synthetic 

wavefronts on long time-scales.
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Metrics for Synthetic Wavefront

Our synthetic wavefront needs to match the following:

1. (Temporal) Power Spectral Density (PSD) of deflection angle 

𝜽𝒙: 𝑆𝜃𝑥
𝑓 . 

2. (Temporal) PSD of optical path difference (OPD): 𝑆𝑂𝑃𝐷 𝑓 .

3. Spatial Structure Function for Kolmogorov turbulence ([2]), 

evaluated on optical path difference (OPD).

𝐷𝑂𝑃𝐷 𝑟 = 𝑂𝑃𝐷 𝒙 + 𝚫𝒙 − 𝑂𝑃𝐷 𝒙 2
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𝑟 = 𝚫𝒙

[2] C. Vogel, G. Tyler, and D. Wittich, "Spatial-temporal-covariance-based modeling, analysis, and 
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Experimental Data: Wind Tunnel

Notre Dame Wind Tunnel Experiment, Figure 1(b) from [3]
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Experimental Data: Wind Tunnel
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A Shack-Hartman 

Wavefront Sensor 

calculated optical path 

difference 𝑂𝑃𝐷

[3] M. R. Kemnetz and S. Gordeyev, "Optical investigation of large-scale boundary-layer structures", 
54th AIAA Aerospace Sciences Meeting, 4 - 8 Jan 2016, San Diego, California, AIAA Paper 2016-1460. Distribution A; Approved for public release.



Experimental Data: Wind Tunnel

We have three 

experimental data sets:

▪ F04: 1.02 sec of data

▪ F06: 1.51 sec of data

▪ F12: 1.93 sec of data
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Notre Dame Wind Tunnel Experiment, Figure 1(b) from [3]

[3] M. R. Kemnetz and S. Gordeyev, "Optical investigation of large-scale boundary-layer structures", 
54th AIAA Aerospace Sciences Meeting, 4 - 8 Jan 2016, San Diego, California, AIAA Paper 2016-1460. Distribution A; Approved for public release.



Experimental Data: Visualization
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Quantize each sub-aperture as a pixel value.
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Statistical Model for OPD

▪ We employ Principal Component Analysis (PCA) to 

decorrelate 𝑂𝑃𝐷 values at each time:
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▪ We model 𝑶𝑷𝑫 as a zero-mean time-

stationary Gaussian random process 𝑿𝒏.

𝑿𝒏 PCA ෩𝑿𝒏
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Data Analysis: PCA 
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𝑿𝒏
෩𝑿𝒏PCA
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Converting Experimental Data

At each time step 𝑛, we convert the 2-D spatial 

𝑂𝑃𝐷 to a column vector in raster order. 
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Converting Experimental Data
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Convert the 𝑂𝑃𝐷 time-series into a 2-D array 

Distribution A; Approved for public release.



Vector Autoregressive (VAR) Modeling ([4])

෩𝑿𝒏 = 𝑨𝑵𝑳
෩𝑿𝒏−𝑵𝑳

+ ⋯ + 𝑨𝟏
෩𝑿𝒏−𝟏 + 𝝃𝒏
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VAR Modeling: Linear Prediction
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Data Analysis: Linear Prediction
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𝜉𝑛 is white in time, correlated in space.

෩𝑿𝒏

+

−
𝝃𝒏

Linear

Prediction
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𝑿𝒏

෩𝑿𝒏 +

−

𝝃𝒏

𝑾𝒏

Linear Prediction

First

PCA

Second

PCA

Data Analysis

𝑊𝑛 is white in time and space
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Use PCA to de-correlate 𝝃𝒏
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Drive model with white noise 𝑾𝒏

Synthesis
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Second

𝐏𝐂𝐀−𝟏
First

𝐏𝐂𝐀−𝟏𝑾𝒏

𝝃𝒏 +

+

෩𝑿𝒏

𝑿𝒏

Inverse PCA gives correlated noise 𝝃𝒏
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Linear Prediction
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Synthesis: Linear Prediction
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Use correlated noise 𝝃𝒏 as input
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𝑿𝒏෩𝑿𝒏

Synthesis: Inverse PCA 
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First

𝐏𝐂𝐀−𝟏

Distribution A; Approved for public release.



Drive model with white noise 𝑾𝒏

Synthesis
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Second
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Linear Prediction

Inverse PCA gives correlated noise 𝝃𝒏
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Post-Processing Synthetic Data

𝑌𝑛 = 𝑋𝑛 − ෍

𝑘

𝑋𝑘ℎ𝑘 
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෍

𝑘

ℎ𝑘 = 1

𝑿𝒏

𝒀𝒏

After generating synthetic data, remove a (weighted) moving 

average:
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Algorithm Overview

1. Data Analysis

2. Synthesis

3. Post-processing
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Results: Data Set F04 𝑵𝑳 = 𝟓
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Results: Data Set F06 𝑵𝑳 = 𝟑
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Results: Data Set F12 𝑵𝑳 = 𝟑
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Algorithm Run-Time
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• 6.5 mins to analyze 0.8 sec of experimental data

• 2.4 mins to generate 1 sec of synthetic data

• 3.5 mins to analyze 1.2 sec of experimental data

• 53 sec to generate 1 sec of synthetic data

• 3.3 mins to analyze 1.6 sec of experimental data

• 38 sec to generate 1 sec of synthetic data

Data Set F04

Data Set F06

Data Set F12

Distribution A; Approved for public release.



Conclusion

▪ Development of AO systems to address aero-optic effects 

requires aberrated wavefront data on long time-scales.

▪ Our VAR Model algorithm is computationally efficient and 

generates high quality synthetic wavefronts.
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