UNIVALENT APPROXIMATION BY FOURIER SERIES OF STEP FUNCTIONS

ALLEN WEITSMAN

Abstract

We prove that univalent harmonic mappings can be approximated by univalent Fourier series of step functions.

Keywords: univalent harmonic mapping, approximation MSC: 49Q05

1. INTRODUCTION

The Fourier series of step functions arise in substantial ways both with regard to extremal properties of univalent harmonic mappings (cf. [4, pp, 59-72]), and in connection with minimal surfaces [8], [2]. A detailed study of the Fourier series of step functions was made by Sheil-Small in [11]. In this note we shall provide further information regarding these mappings.
In addition to the usual notation S_{H} and S_{H}^{o} used for univalent harmonic mappings and normalized univalent harmonic mappings in the unit disk U as in [3], we shall use:
$B(n)$ to denote the Poisson integrals of step functions f on ∂U with at most n steps, which map univalently onto positively oriented Jordan polygons,
B_{n} to denote those $f \in B(n)$ and normalized by $f(0)=0, f_{z}(0)=1$,
$\overline{B_{n}}$ to denote the closure of B_{n} with the topology of uniform convergence on compact subsets,
B_{n}^{o} to denote those $f \in B_{n}$ with $f_{\bar{z}}(0)=0$,
$\overline{B_{n}^{o}}$ to denote the closure of B_{n}^{o} with the topology of uniform convergence on compact subsets.
Note that in analogy with [3, p.7], $\overline{B_{n}}$ consists of all functions

$$
f=f_{o}+c \overline{f_{o}} \quad\left(f_{o} \in B_{n}^{o}, \quad|c| \leq 1\right)
$$

2. THE APPROXIMATION THEOREM

Theorem 1. If $F \in S_{H}^{o}$, then F can be approximated uniformly on compact subsets by functions in B_{n}^{o}.

It may seem that Theorem 1 should be proved simply by interpolating $F(t z) / t$ by Poisson integrals of step functions. However, the task of making such approximations univalent in U seems daunting. Therefore, we shall use the tools involving first order elliptic systems as developed in [1] and [10].
Consider a first order system

$$
\begin{equation*}
u_{x}=a_{11}(x, y) v_{x}+a_{12}(x, y) v_{y}, \quad-u_{y}=a_{21}(x, y) v_{x}+a_{22}(x, y) v_{y} \tag{2.1}
\end{equation*}
$$

By a theorem of Bers and Nirenberg [1, p.132] we have
Theorem A. If the coefficients of the system (2.1) are defined and continuous in a Jordan domain D and if the coefficients satisfy the ellipticity conditions

$$
\begin{equation*}
4 a_{12} a_{21}-\left(a_{11}+a_{22}\right)^{2}>0 \quad \text { and } \quad a_{12}>0 \tag{2.2}
\end{equation*}
$$

then, given a Jordan domain Λ, there exists a solution $w=u+i v$ which is a homeomorphism of the closure of D onto the closure of Λ and takes three given boundary points of D onto three assigned boundary points on the boundary of Λ.
This will be supplemented with a result of Mcleod, Gergen, and Dressel [10, p. 174].
Theorem B. Let D be bounded by a continuously differentiable Jordan curve and suppose that the coefficients $a_{i j}$ in (2.1) are continuously differentiable in D and continuous on \bar{D}. Assume the system satisfies the ellipticity conditions (2.2), and let u_{1}, v_{1} and u_{2}, v_{2} be solution pairs of the system. If $F_{1}=u_{1}+i v_{1}$ and $F_{2}=$ $u_{2}+i v_{2}$ are both continuously differentiable on D and continuous on \bar{D}, mapping D homeomorphically onto a set T such that three distinct points on ∂D correspond to the same three points on ∂T, then $F_{1} \equiv F_{2}$ in D.
We shall apply Theorem A and Theorem B to univalent harmonic mappings in U which satisfy

$$
\begin{equation*}
\overline{f_{\bar{z}}(z)}=a(z) f_{z}(z), \tag{2.3}
\end{equation*}
$$

where the dilatation $a(z)$ is analytic in U and satisfies the condition $|a(z)| \leq k<1$. Writing $f=u+i v$ and $a=a_{1}+i a_{2}$ with $|a(z)| \leq k<1$ in U, (2.3) becomes

$$
u_{x}-i v_{x}-i\left(u_{y}-i v_{y}\right)=\left(a_{1}+i a_{2}\right)\left(u_{x}+i v_{x}-i\left(u_{y}+i v_{y}\right)\right)
$$

so that

$$
\begin{aligned}
u_{x}-v_{y} & =a_{1}\left(u_{x}+v_{y}\right)-a_{2}\left(v_{x}-u_{y}\right) \\
-u_{y}-v_{x} & \left.=a_{1}\left(v_{x}-u_{y}\right)+a_{2}\left(u_{x}+v_{y}\right)\right) .
\end{aligned}
$$

Solving these equations we obtain

$$
\begin{aligned}
& u_{x}=\frac{2 a_{2}}{-a_{2}^{2}-\left(1-a_{1}\right)^{2}} v_{x}+\frac{a_{1}^{2}-1+a_{2}^{2}}{-a_{2}^{2}-\left(1-a_{1}\right)^{2}} v_{y} \\
& -u_{y}=\frac{-a_{2}^{2}+1-a_{1}^{2}}{a_{2}^{2}+\left(1-a_{1}\right)^{2}} v_{x}+\frac{2 a_{2}}{a_{2}^{2}+\left(1-a_{1}\right)^{2}} v_{y}
\end{aligned}
$$

and thus the conditions (2.2) are satisfied.
Our procedure will also rely on the work of Hengartner and Schober; in particular [7, Theorem 4.3].

Theorem C. Let D be a bounded simply connected domain whose boundary is locally connected. Suppose that f is a univalent harmonic orientation preserving mapping from U into D for which the radial limits $\hat{f}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$ belong to ∂D for almost every θ. Then there exists a countable set $E \subseteq \partial U$ such that
(a) the unrestricted limit $\hat{f}\left(e^{i \theta}\right)=\lim _{z \rightarrow e^{i \theta} z \in U} f(z)$ exists, is continuous, and belongs to ∂D for $e^{i \theta} \in \partial U \backslash E$,
(b) $\lim _{\theta \uparrow \theta_{0}} \hat{f}\left(e^{i \theta}\right)$ and $\lim _{\theta \downarrow \theta_{0}} \hat{f}\left(e^{i \theta}\right)$ exist, are different, and belong to ∂D for $\varepsilon^{i \theta} \in E$, (c) the cluster set of f at $e^{i \theta} \in E$ is a straight line segment joining $\lim _{\theta \uparrow \theta_{0}} \hat{f}\left(e^{i \theta}\right)$ and $\lim _{\theta \downarrow \theta_{0}} \hat{f}\left(e^{i \theta}\right)$.

Proof of Theorem 1. With F as in Theorem 1 having dilatation $A(z)$ and $0<t<1$, let $f(z)=f_{t}(z)=F(t z) / t$ so that $f(z) \in S_{H}^{o}$ having dilatation $a(z)=a_{t}(z)=$ $A(t z) \leq k$ for some $k<1$. As such, the image $\Omega=\Omega_{t}=f(U)$ is a bounded domain with real analytic boundary. It suffices to approximate a fixed such $f(z)$ by taking t close to 1 .
We fix three points z_{1}, z_{2}, z_{3} positively oriented on ∂U, and the corresponding points $w_{j}=f\left(z_{j}\right) j=1,2,3$ on $\partial \Omega$.
Since $\partial \Omega$ is smooth, we may take a sequence of Jordan polygons P_{n} interior to Ω having vertices $W_{n}=\left\{w_{n, 1}, \ldots w_{n, k_{n}}\right\}$ such that $P_{1} \subset P_{2} \subset \ldots$, and having vertices with w_{1}, w_{2}, w_{3} in such a way that $P_{n} \rightarrow \Omega$ in the sense that $\operatorname{dist}\left(\partial \Omega, \partial P_{n}\right) \rightarrow 0$, $\operatorname{dist}\left(w_{n, j}, w_{n, j+1}\right) \rightarrow 0\left(j=1, \ldots ., k_{n}, w_{n, k_{n}+1}=w_{n, 1}\right)$ uniformly as $n \rightarrow \infty$, and the lengths of the ∂P_{n} are uniformly bounded. We note that in the continuation, the term "vertices' can also refer to interior points of the line segments of the polygon.
We next take a sequence of Blaschke products $a_{n}(z)$ converging uniformly on compact subsets of U (in fact pointwise in U) to $a(z)\left[6, \mathrm{p}\right.$. 7]. If $a_{n, \rho}(z)=a_{n}(\rho z)(0<\rho<$ 1), then by Theorem A, there exists a homeomorphism $f_{n, \rho}(z)$ of U onto P_{n} with $f_{n, \rho}\left(z_{j}\right)=w_{j}, j=1,2,3$ and satisfying (2.3) with dilatation $a_{n, \rho}$.
In fact, since each $a_{n, \rho}$ satisfies $\left|a_{n, \rho}(z)\right|<k_{n, \rho}<1$ for some constants $k_{n, \rho}$ and all $z \in U$, the $f_{n, \rho}$ in (2.3) are univalent harmonic mappings (cf. [4, p.6]).
Letting $\rho \rightarrow 1$, we can take subsequence which converges to a univalent harmonic mapping f_{n} of U into P_{n}, having dilatation $a_{n}(z)$. In fact the functions $f_{n, \rho}(z)$ are Poisson integrals of some boundary functions $\varphi_{n, \rho}\left(e^{i \theta}\right)$ of uniformly bounded variation so that a subsequence converges to a function $\varphi_{n}\left(e^{i \theta}\right)$ a.e., $[5$, p.3] and the limit function f_{n} is also a Poisson integral of a radial limit function $\psi_{n}\left(e^{i \theta}\right)$. Thus $\psi_{n}\left(e^{i \theta}\right)=$ $\varphi_{n}\left(e^{i \theta}\right)$ a.e., and consequently $f_{n}(z)$ has radial limits on ∂P_{n}, a.e., and Theorem C applies.

It is important to emphasize that the functions f_{n} are in $B(n)$ since the dilatations are Blaschke products and there can be no nonconstant intervals of continuity on ∂U, since otherwise there would be an interval which is mapped onto a line segment which is not possible since the image of such an interval has to be strictly concave with respect to the interior (cf. [4, p. 116]. The 3 specified boundary points need not correspond. They either reside on the images of arcs where f_{n} is constant, or points of discontinuity which create the "collapsing line segments."
Again, the functions $f_{n}(z)$ are Poisson integrals of sense preserving step functions φ_{n} that have their values in the P_{n} respectively. We now take a subsequence of the f_{n} converging to a function \tilde{f} thus having dilatation $a(z)$ Let \tilde{f}_{0} denote the a.e. radial limit function for \tilde{f}. Then,

$$
\begin{equation*}
\tilde{f}(z)=\frac{1}{2 \pi} \int_{U} P(r, \theta-t) \tilde{f}_{0}\left(e^{i t}\right) d t \tag{2.4}
\end{equation*}
$$

Since the functions $\left\{\varphi_{n}\right\}$ are of uniformly bounded variation, as before there exists a function φ on ∂U and a subsequence $\left\{\varphi_{n_{k}}\right\}$ converging a.e. to φ. Therefore, $\varphi\left(e^{i \theta}\right)=\tilde{f}_{0}\left(e^{i \theta}\right)$ a.e., so that in particular, the values taken by $\tilde{f}_{0}\left(e^{i \theta}\right)$ are a.e. in $\partial \Omega$. Now $\tilde{f}(z)$ in (2.4) satisfies the conditions of Theorem C. Since \tilde{f} has dilatation bounded strictly less than 1 it is quasiconformal in U and hence a homeomorphism on $\bar{U}[9, \mathrm{p} .98]$. This implies that the set E in Theorem C is empty, and thus it follows that \hat{f} must map ∂U homeomorphically onto ∂D. From our construction it follows further that $\hat{f}\left(z_{j}\right)=w_{j} \quad j=1,2,3$. Thus, from Theorem B we conclude that $\tilde{f}(z) \equiv f(z)$.
The functions $\left\{f_{n}\right\}$ that approximate f are in $B(n)$. Set $f_{n}(z)=\sum_{k=0}^{\infty} a_{n k} z^{k}+$ $\sum_{k=1}^{\infty} \overline{b_{n k} z^{k}}$. Since the f_{n} converge locally uniformly to $f(z)$, we infer that $a_{n 0}, a_{n 1}, b_{n 1}$ converge to $0,1,0$ respectively. Accordingly the functions

$$
g_{n}(z)=\frac{\bar{a}_{n 1}\left(f_{n}(z)-a_{n 0}\right)-\bar{b}_{n 1} \overline{\left(f_{n}(z)-a_{0}^{n}\right)}}{\left|a_{1}^{n}\right|^{2}-\left|b_{1}^{n}\right|^{2}} \in B_{n}^{0}
$$

are univalent harmonic mappings converging locally uniformly to $f(z)$. This completes the proof.

3. Growth of functions in B_{n}^{o}

In B_{n}^{o} the h^{\prime} and g^{\prime} are rational functions of order at most n, with poles of order 1. In $\overline{B_{n}^{o}}$ the h^{\prime} and g^{\prime} are still rational functions of order at most n, but in the closure the poles may coalesce to create poles of higher order. If ζ_{k} is such a point, then locally the corresponding terms in the series are of the form $\left(z-\zeta_{k}\right)^{-m_{k}} P\left(z-\zeta_{k}\right)$ for h^{\prime} and $\left(z-\zeta_{k}\right)^{-m_{k}} Q\left(z-\zeta_{k}\right)$ where P and Q are polynomials. Since $g^{\prime}(z)=a(z) h^{\prime}(z)$ where $a(z)$ is a finite Blaschke product, it follows that $\left|P\left(\zeta_{k}\right)\right|=\left|Q\left(\zeta_{k}\right)\right|$.

Theorem 2. If $f=h+g \in \overline{B_{n}^{o}}$ and h has a pole at $\zeta \in \partial U$, then the order of the pole is at most 3.

Proof of Theorem 2. Arguing by contradiction, we assume that h has a pole of order k at least 4, and we consider only even k. The odd case is similar. We may assume that $\zeta=1$.

As described above, we then have

$$
\begin{gathered}
w=f(z)=\frac{e^{i \alpha}}{(z-1)^{k}}+\frac{e^{i \beta}}{(\bar{z}-1)^{k}}+\text { lower order terms } \\
=e^{i(\alpha+\beta) / 2}\left(\frac{e^{i(\alpha-\beta) / 2}}{(z-1)^{k}}+\frac{e^{i(-\alpha+\beta) / 2}}{(\bar{z}-1)^{k}}\right)+\text { lower order terms } \\
=2 e^{i(\alpha+\beta) / 2} \Re e \frac{e^{i(\alpha-\beta) / 2}}{(z-1)^{k}}+\text { lower order terms. }
\end{gathered}
$$

Writing $z-1=r e^{i \varphi}$ and $(\alpha-\beta) / 2=\varphi_{0},(\alpha+\beta) / 2=\varphi_{1}$ we have

$$
\begin{equation*}
w=f(z)=2 e^{i \varphi_{1}} \frac{\cos k\left(\varphi-\varphi_{0} / k\right)}{r^{k}}+\text { lower order terms } \tag{3.1}
\end{equation*}
$$

By a rotation we may ignore the term $e^{i \varphi_{1}}$ in (3.1).
We require some notation. Let $\varepsilon>0$, and $0<\delta<1$. Let $\Delta=\Delta(\varepsilon, \delta)$ be the portion of U between $|z-1|=\varepsilon$ and $|z-1|=\varepsilon^{\delta}$. The boundary of Δ is a simple closed curve and, for small ε, φ ranges on an interval only slightly smaller than $(\pi / 2,3 \pi / 2)$. Therefore, since $k \geq 4$, on the side where $|z-1|=\varepsilon$ there will be at least 3 consecutive intervals of the form $\alpha<k\left(\varphi-\varphi_{0} / k\right)<\alpha+\pi$. Let I_{0} be the middle one of a set of 3 consecutive intervals, and

$$
W=\left\{w:|\Re e w|<\varepsilon^{-(1+\delta) / 2} .\right.
$$

For small ε, a portion of $f\left(I_{0}\right)$ extends outside of W and the rest inside.. We assume that it is on the right side; the proof for the left side would be similar.
As φ increases, the portion of $f\left(I_{0}\right)$ outside W has an initial value $x+i y_{1}$ and terminal value $x+i y_{2}$. Since $f(\partial \Delta)$ is sense preserving, it must be that $y_{1}>y_{2}$. Regarding the images of the two intervals adjacent to I_{0}, again because of the sense preserving nature of $f(\partial \Delta)$, the portions of their images as they exit and reenter W on the left side must turn towards each other. This means that there can be no accommodation for another portion of the image of $f(\partial \Delta)$ to exit again on the right side without crossing. Thus it cannot be that $k \geq 4$..

References

1. L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, 1-30, Edizioni Cremonese, Roma, 1955.
2. D. Bshouty and A. Weitsman, On the Gauss map of minimal graphs, Complex Var. Theory Appl. 48 (2003), no. 4, 339-346.
3. J. Clunie and T. Sheil-Small, Harmonic mappings in the plane, Ann. Acad. Sci. Fenn Ser. A. I., 9 (1984), 3-25.
4. P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 2004.
5. P. Duren, Theory of H^{p} spaces, Academic Press, 1970.
6. J. Garnett, Bounded analytic functions, Academic Press, 1981.
7. W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. Lond. Math. Soc. (2) 33 (1986), 473-483.
8. H. Jenkins and J. Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1965/66), 321-342.
9. O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, 1965.
10. R. McLeod, J. Gergen, and F. Dressel, Uniqueness of mapping pairs for elliptic equations, Duke Math. J., 24 (1957), 173-181.
11. T. Sheil-Small, On the Fourier series of a step function, Michigan Math. J., 36 (1989), 459-475.

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395
Email: WEITSMAN@purduE.EDU

