Low Tensor-Train Rank Methods to Solve Sylvester Tensor Equations

Tianyi Shi
Cornell University

Alex Townsend

Max Ruth

Sylvester matrix equation

$$
\begin{gathered}
A X+X B^{T}=F \\
A \in \mathbb{C}^{n_{1} \times n_{1}}, \quad B \in \mathbb{C}^{n_{2} \times n_{2}}, \quad F \in \mathbb{C}_{1}^{n_{1} \times n_{2}}
\end{gathered}
$$

3D Sylvester tensor equation

$$
\begin{array}{ccc}
\mathscr{X} \times{ }_{1} A+\mathscr{X} \times{ }_{2} B+\mathscr{X} \times{ }_{3} C=\mathscr{F} & \text { Example: Poisson w/FD } \\
A \in \mathbb{C}^{n_{1} \times n_{1}}, \quad B \in \mathbb{C}^{n_{2} \times n_{2}}, \quad C \in \mathbb{C}^{n_{3} \times n_{3}}, \quad \mathscr{F} \in \mathbb{C}^{n_{1} \times n_{2} \times n_{3}} & -\left(u_{x x}+u_{y y}+u_{z z}\right)=f \text { on } \Omega=[-1,1]^{3} \\
\left.u\right|_{\partial \Omega}=0
\end{array}
$$

k-mode product for a tensor $\mathscr{X} \in \mathbb{C}^{n_{1} \times \cdots \times n_{d}}$ and a matrix $A \in \mathbb{C}^{n_{k} \times n_{k}}$

$$
\left(X \times_{k} A\right)_{i_{1}, \ldots, i_{k-1}, j, i_{k+1}, \ldots, i_{d}}=\sum_{i_{k}=1}^{n_{k}} X_{i_{1}, \ldots, i_{d}} A_{j, i_{k}}
$$

$$
\mathscr{X} \times_{1} K+\mathscr{X} \times_{2} K+\mathscr{X} \times_{3} K=\mathscr{F}
$$

$$
K=-\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

Alternating Direction Implicit (ADI) method

[Wachspress, 2008]
"Iterative" method for Sylvester matrix equation $A X-X B^{T}=F$

1. Select shift parameters p and q each of length ℓ based on spectra of A and B.
2. For $1 \leq j \leq \ell$

- Solve $\left(A-q_{j} I\right) X=F+X\left(B-q_{j} I\right)^{T}$.
- Solve $X\left(B-p_{j} I\right)^{T}=\left(A-p_{j} I\right) X-F$.

Factored ADI (fADI)

"Iterative" method for Sylvester matrix equation $A X-X B^{T}=U V^{T}$

$$
X=Z D Y^{T}
$$

rank r

1. Select shift parameters p and q each of length ℓ based on spectra of A and B.
2. Solve $\left(A-q_{1} I\right) Z_{1}=U$ and $\left(B-\bar{p}_{1} I\right) Y_{1}=V$. Set $Z=Z_{1}$ and $Y=Y_{1}$.
3. Let $D=\left(q_{1}-p_{1}\right) I$.
4. For $1 \leq j \leq \ell-1$

- Solve $\left(A-q_{j+1} I\right) Z_{j+1}=\left(q_{j+1}-p_{j}\right) Z_{j}$. Set $Z_{j+1}=Z_{j+1}+Z_{j}$ and $Z=\left[\begin{array}{ll}Z & Z_{j+1}\end{array}\right]$.
- Solve $\left(B-\bar{p}_{j+1} I\right) Y_{j+1}=\left(\bar{p}_{j+1}-\bar{q}_{j}\right) Y_{j}$. Set $Y_{j+1}=Y_{j+1}+Y_{j}$ and $Y=\left[\begin{array}{ll}Y & Y_{j+1}\end{array}\right]$.
. Set $D=\left[\begin{array}{ll}D & \\ & \left(q_{j+1}-p_{j+1}\right) I\end{array}\right]$

fADI as a direct method

- Guaranteed to converge after all iterations
- Quasi-optimal shift parameters p and q are known in many situations
[Fortunato \& Townsend, 2020] [Townsend \& Wilber, 2018]
- Zeros and poles of a rational function that can achieve a quasi-optimal Zolotarev number [Zolotarev, 1877]

$$
Z_{k}(\Lambda(A), \Lambda(B)):=\inf _{r \in \mathscr{R}_{k, k}} \frac{\sup _{z \in \Lambda(A)}|r(z)|}{\inf _{z \in \Lambda(B)}|r(z)|}, \quad k \geq 0
$$

$$
\left\|X-X_{k}\right\|_{F} \leq Z_{k}(\Lambda(A), \Lambda(B))| | X| |_{F} \quad \text { [S. \& Townsend, 2021] }
$$

- Complexity $\mathcal{O}(r \ell T), \mathcal{O}(T)$ for solving shifted linear systems of A and B

Goal: Solve Sylvester tensor equations with fADI

Method: Rewrite into several Sylvester matrix equations

Tensor-train format [Oseledets, 11]

Trains: "somewhat" mimic the bases for column/row spaces of a matrix

$$
\mathscr{X} \times_{1} A+\mathscr{X} \times_{2} B+\mathscr{X} \times_{3} C=\mathscr{F}
$$

$F_{1}=M_{1} N_{1}^{T}$ and $F_{2}=M_{2} N_{2}^{T}$
\mathscr{F} with Π cores $\mathscr{G}_{1}, \mathscr{G}_{2}, \mathscr{G}_{3}$ have low Π rank

$$
F_{1}=G_{1}\left(G_{2}\right)_{1}\left(G_{3} \otimes I\right) \quad F_{2}=\left(I \otimes G_{1}\right)\left(G_{2}\right)_{2} G_{3}
$$

3D Sylvester solver in TT format

$$
\mathscr{X} \times_{1} A+\mathscr{X} \times_{2} B+\mathscr{X} \times_{3} C=\mathscr{F}
$$

Method 1: Combine TTSVD with fADI

TTSVD [Oseledets, 11]
Calculate SVD of $X_{1} \approx U_{1} S_{1} V_{1}^{T}$, and use U_{1} as first "train"

Let $W=\operatorname{reshape}\left(S_{1} V_{1}^{T}, s_{1} n_{2}, n_{3}\right)$, and calculate SVD of $W \approx U_{2} S_{2} V_{2}^{T}$.

Use reshape $\left(U_{2}, s_{1}, n_{2}, s_{2}\right)$ as second "train", and $S_{2} V_{2}^{T}$ as third "train"
fADI steps [S. \& Townsend, 21]

$$
A X_{1}+X_{1}(I \otimes B+C \otimes I)^{T}=F_{1}=M_{1} N_{1}^{T}
$$

Solve only for column space basis U_{1}
$\left(I \otimes\left(U_{1}^{T} A U_{1}\right)+B \otimes I\right) W+W C^{T}=\left(I \otimes U_{1}^{T}\right) F_{2}=\left(I \otimes U_{1}^{T}\right) M_{2} N_{2}^{T}$

$$
\begin{gathered}
\left(I \otimes\left(U_{1}^{T} A U_{1}\right)+B \otimes I-\alpha I\right) Z=R \\
\left(U_{1}^{T} A U_{1}-\frac{\alpha}{2} I\right) Z_{j}+Z_{j}\left(B-\frac{\alpha}{2} I\right)^{T}=R_{j}
\end{gathered}
$$

Z_{j} and R_{j} are reshape of j th column of Z and R

Example: Poisson equation

$$
-\left(u_{x x}+u_{y y}+u_{z z}\right)=f \text { on } \Omega=[-1,1]^{3},\left.\quad u\right|_{\partial \Omega}=0
$$

Ansatz $\quad \tilde{C}^{(3 / 2)}:$ normalized ultraspherical
$u(x, y, z)=\left(1-x^{2}\right)\left(1-y^{2}\right)\left(1-z^{2}\right) \sum_{p=0}^{n} \sum_{q=0}^{n} \sum_{r=0}^{n} x_{p q r} \tilde{r}_{p}^{(3 / 2)}(x) \tilde{C}_{q}^{(3 / 2)}(y) \tilde{C}_{r}^{(3 / 2)}(z)$,
$f(x, y, z)=\sum_{p=0}^{n} \sum_{q=0}^{n} \sum_{r=0}^{n} \mathscr{F}_{p q r} \tilde{C}_{p}^{(3 / 2)}(x) \tilde{C}_{q}^{(3 / 2)}(y) \tilde{C}_{r}^{(3 / 2)}(z)$

Complexity $\mathcal{O}\left(n(\log n)^{3}\left(\log (1 / \epsilon)^{3}\right)\right.$

Sylvester equation

$$
\begin{gathered}
\mathscr{X} \times_{1} A^{-1}+\mathscr{X} \times{ }_{2} A^{-1}+\mathscr{X} \times_{3} A^{-1}=\mathscr{G} \\
\mathscr{G}=\mathscr{F} \times{ }_{1} M^{-1} \times_{2} M^{-1} \times_{3} M^{-1}
\end{gathered}
$$

$A=D^{-1} M, D$ diagonal, M and A symmetric pentadiagonal

$$
\Lambda(A) \in\left[-1,-1 /\left(30 n^{4}\right)\right]
$$

[Fortunato \& Townsend, 20]

$$
\begin{gathered}
f=-2\left(1-y^{2}\right)\left(1-z^{2}\right)-2\left(1-x^{2}\right)\left(1-z^{2}\right)-2\left(1-x^{2}\right)\left(1-y^{2}\right) \\
u=\left(x^{2}-1\right)\left(y^{2}-1\right)\left(z^{2}-1\right)
\end{gathered}
$$

Size, n

3D Sylvester solver in TT format

$$
\mathscr{X} \times_{1} A+\mathscr{X} \times_{2} B+\mathscr{X} \times_{3} C=\mathscr{F}
$$

Method 2: Combine parallel-TTSVD with fADI
parallel-TTSVD [S., Ruth \& Townsend]
Calculate SVD of $X_{1} \approx U_{1} S_{1} V_{1}^{T}$, and use U_{1} as first "train"

Calculate SVD of $X_{2} \approx U_{2} S_{2} V_{2}^{T}$. Use $\operatorname{reshape}\left(U_{1}^{*} \operatorname{reshape}\left(U_{2}, n_{1}, n_{2} s_{2}\right), s_{1}, n_{2}, s_{2}\right)$ as second "train" and $S_{2} V_{2}^{T}$ as third "train"
fADI steps [S., Ruth \& Townsend]

$$
A X_{1}+X_{1}(I \otimes B+C \otimes I)^{T}=F_{1}=M_{1} N_{1}^{T}
$$

Solve only for column space basis U_{1}

$$
(I \otimes A+B \otimes I) X_{2}+X_{2} C^{T}=F_{2}=M_{2} N_{2}^{T}
$$

Only solve shifted linear systems with A, B, and C
Use universal shift parameters for both above equations, then find "trains" almost simultaneously

Example

$$
\mathscr{X} \times_{1} D+\mathscr{X} \times_{2} D+\mathscr{X} \times_{3} D=\mathscr{F}
$$

$D \in \mathbb{R}^{n \times n}$ diagonal with $D_{j} \in[-1,-1 /(30 n)]$
\mathscr{F} has TT rank $(1,\lfloor n / 4\rfloor, 2,1)$ with i.i.d. uniform random numbers in TT cores

Complexity $\mathcal{O}\left(n(\log n)^{3}\left(\log (1 / \epsilon)^{3}\right)\right.$

Thank you!

