Introduction 00000 Standard HSS 000000 PDHSS and \mathcal{H}^2 -acceleration 0000000000 Numerical results 000000000

Efficient construction of an HSS preconditioner for symmetric positive definite \mathcal{H}^2 matrices

Xin Xing, Hua Huang, Edmond Chow

University of California, Berkeley

October 23, 2021

Introduction
00000

Standard HSS 000000 SPDHSS and \mathcal{H}^2 -acceleration

Numerical results 000000000

2 Standard HSS

(3) SPDHSS and \mathcal{H}^2 -acceleration

Introduction		SPDHSS and \mathcal{H}^2 -acceleration	
0000	000000	000000000	000000000
Problem			

Dense and symmetric positive definite (SPD) linear system

Ax = b

where A is an \mathcal{H}^2 matrix or can be applied by FMM

Approaches:

- iterative solve using fast matvec by \mathcal{H}^2 or FMM
- direct solve using special rank-structured approx. with high-accuracy
- iterative solve using low-accuracy direct solver as preconditioner

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	0000000000	000000000
HSS as a p	reconditioner		

HSS format (Hierarchically SemiSeparable):

- Has fast decomposition and inversion algorithm.
- High accuracy: $\mathcal{O}(N)$, $\mathcal{O}(N^{\frac{3}{2}})$, $\mathcal{O}(N^2)$ construction costs for 1/2/3-dimensional problems
- Low accuracy: (e.g., fix compression rank) may not be SPD

• HSS Cholesky factorization (Xia, 2010; Li, 2012) $A \approx R R^T$

where R is an HSS matrix.

• Structured incomplete factorization (Xia, 2018; Xia, 2021) $A \approx L L^T$

where L is a ULV-type factor as $L = Q_s L_s Q_{s-1} L_{s-1} \dots Q_1 L_1$.

• SPDHSS approximation (Xing, 2018) $A \approx A_{\rm spdhss} = LL^T$

where A_{spdhss} is an SPD HSS matrix.

Introduction 0000

Standard HSS 000000 SPDHSS and \mathcal{H}^2 -acceleration 0000000000

Numerical results 000000000

\mathcal{H}^2 -based construction of SPDHSS

${\bf Target:} \ {\rm An} \ {\rm HSS} \ {\rm preconditioner}$

- SPD
- efficient to construct

Introduction 0000● Standard HSS 000000 SPDHSS and \mathcal{H}^2 -acceleration 00000000000

Numerical results 000000000

\mathcal{H}^2 -based construction of SPDHSS

Target: An HSS preconditioner

- SPD
- efficient to construct

Idea:

$$A \approx A_{\rm spdhss} = LL^T$$

- HSS + scaling-and-compressing technique $\longrightarrow \mathcal{O}(N^2 r)$ SPDHSS construction
- Exploiting low-rank blocks in \mathcal{H}^2 representation of A

 $\longrightarrow \mathcal{O}(rN \log N)$ construction of A_{spdhss}

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	●00000	0000000000	000000000
Outline			

(3) SPDHSS and \mathcal{H}^2 -acceleration

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	0000000000	000000000
HSS repre	esentation		

- Matrix hierarchical partitioning
- Compression of off-diagonal blocks at different levels

Uniform basis property:

Compression of off-diag block row

 $A_{ii^c} \approx U_i E_{ii^c}$

Induced compression:

 $A_{ij} \approx U_i B_{ij} U_j^T$

Uniform basis property:

Compression of off-diag block row

 $A_{ii^c} \approx U_i E_{ii^c}$

Induced compression:

 $A_{ij} \approx U_i B_{ij} U_j^T$

Nested basis property:

Nested basis property:

Nested compression of off-diag block row

$$\begin{split} A_{ii^c} &\approx \begin{bmatrix} U_1 & \\ & U_2 \end{bmatrix} \begin{bmatrix} E_{1i^c} \\ E_{2i^c} \end{bmatrix} \\ &\approx \begin{bmatrix} U_1 & \\ & U_2 \end{bmatrix} R_i E_{ii^c} = U_i E_{ii^c} \end{split}$$

Nested basis:

$$U_i = \begin{bmatrix} U_1 & \\ & U_2 \end{bmatrix} R_i$$

HSS construction :

• Nested compression of off-diagonal block row

$$A_{ii^c} \approx U_i E_{ii^c}$$

• Induced compression of off-diag blocks

$$A_{ij} \approx U_i B_{ij} U_j^T$$

00000	000000	

SPDHSS and \mathcal{H}^2 -acceleration \bigcirc 0000000000 Numerical results 000000000

Level-by-level construction of HSS:

Uniform compression at one level:

$$\begin{array}{c} A_{ij} \xrightarrow{\text{scale}} S_i^{-1} A_{ij} S_j^{-T} \xrightarrow{\text{uniform compress}} V_i V_i^T \left(S_i^{-1} A_{ij} S_j^{-T} \right) V_j V_j^T \\ \xrightarrow{\text{scale back}} S_i V_i V_i^T S_i^{-1} A_{ij} S_j^{-T} V_j V_j^T S_j^T \end{array}$$

Resulting block compression:

$$A_{ij} \approx (S_i V_i) \left(V_i^T S_i^{-1} A_{ij} S_j^{-T} V_j \right) (S_j V_j)^T = U_i B_{ij} U_j^T$$

Positive definiteness:

$$\tilde{A} = \operatorname{diag}(A_{ii}) + \operatorname{diag}(S_i V_i V_i^T S_i^{-1}) \underbrace{(A - \operatorname{diag}(A_{ii}))}_{\text{off-diagonal blocks}} \operatorname{diag}(S_i V_i V_i^T S_i^{-1})^T$$
$$= \operatorname{diag}(S_i V_i V_i^T S_i^{-1}) A \operatorname{diag}(S_i V_i V_i^T S_i^{-1})^T + \operatorname{diag}(S_i (I - V_i V_i^T) S_i^T)$$

Result: \tilde{A} is SPD when A is SPD for any orthonormal matrix V_i .

$$A_{ii^c} \approx S_i V_i V_i^T S_i^{-1} A_{ii^c} = U_i E_{ii^c}, \quad U_i = S_i V_i$$

 $A^{(2)}$

 $A^{(3)}$

Compression of off-diag blocks:

 $A^{(0)}$

$$A_{ij} \approx U_i B_{ij} U_j^T, \quad B_{ij} = V_i^T S_i^{-1} A_{ij} S_j^{-T} V_j$$

Remark: uniform and nested basis properties still hold

 $A^{(1)}$

Nested compression of off-diag block row:

Symmetric decomposition of diagonal block:

$$A_{ii}^{(k-1)} = \begin{bmatrix} A_{i_{1}i_{1}}^{(k-1)} & \dots & A_{i_{1}i_{m}}^{(k-1)} \\ \vdots & \ddots & \vdots \\ A_{i_{m}i_{1}}^{(k-1)} & \dots & A_{i_{m}i_{m}}^{(k-1)} \end{bmatrix} = \begin{bmatrix} S_{i_{1}}S_{i_{1}}^{T} & \dots & U_{i_{1}}B_{i_{1},i_{m}}U_{i_{m}}^{T} \\ \vdots & \ddots & \vdots \\ U_{i_{m}}B_{i_{m},i_{1}}U_{i_{1}}^{T} & \dots & S_{i_{m}}S_{i_{m}}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} S_{i_{1}} & & & \\ & \ddots & & \\ & & S_{i_{m}} \end{bmatrix} (I + \mathbf{V}_{i}\mathbf{B}_{ii}\mathbf{V}_{i}^{T}) \begin{bmatrix} S_{i_{1}} & & & \\ & \ddots & & \\ & & S_{i_{m}} \end{bmatrix}^{T}$$

with

$$\mathbf{B}_{ii} = \begin{bmatrix} 0 & B_{i_1,i_2} & \dots & B_{i_1,i_m} \\ B_{i_2,i_1} & 0 & \dots & B_{i_2,i_m} \\ \vdots & \vdots & \ddots & \vdots \\ B_{i_m,i_1} & B_{i_m,i_2} & \dots & 0 \end{bmatrix}, \quad \mathbf{V}_i = \begin{bmatrix} V_{i_1} & & \\ & \ddots & \\ & & V_{i_m} \end{bmatrix}$$

.

Symmetric decomposition of diagonal block:

$$I + \mathbf{V}_{i}\mathbf{B}_{ii}\mathbf{V}_{i}^{T} = \bar{S}_{i}\bar{S}_{i}^{T}$$
with $\bar{S}_{i} = I + \mathbf{V}_{i}((I + \mathbf{B}_{ii})^{1/2} - I)\mathbf{V}_{i}^{T}$

$$\begin{bmatrix} S_{i_{1}} \end{bmatrix}$$

$$\implies A_{ii}^{(k-1)} = S_i S_i^T, \quad S_i = \begin{bmatrix} S_{i_1} & & \\ & \ddots & \\ & & S_{i_m} \end{bmatrix} \bar{S}_i.$$

Symmetric decomposition of diagonal block:

$$I + \mathbf{V}_i \mathbf{B}_{ii} \mathbf{V}_i^T = \bar{S}_i \bar{S}_i^T$$

with $\bar{S}_i = I + \mathbf{V}_i ((I + \mathbf{B}_{ii})^{1/2} - I) \mathbf{V}_i^T$

$$\implies A_{ii}^{(k-1)} = S_i S_i^T, \quad S_i = \begin{bmatrix} S_{i_1} & & \\ & \ddots & \\ & & S_{i_m} \end{bmatrix} \bar{S}_i.$$

Scaled off-diagonal blocks $S_i^{-1} A_{ij}^{(k-1)} S_j^{-T}$

$$S_{i}^{-1} \begin{bmatrix} U_{i_{1}} \\ \ddots \\ U_{i_{m}} \end{bmatrix} \begin{bmatrix} B_{i_{1}j_{1}} & \dots & B_{i_{1}j_{m}} \\ \vdots & \ddots & \vdots \\ B_{i_{m}j_{1}} & \dots & B_{i_{m}j_{m}} \end{bmatrix} \begin{bmatrix} U_{j_{1}} \\ \ddots \\ U_{j_{m}} \end{bmatrix}^{T} S_{j}^{-T}$$
$$= \mathbf{V}_{i}(I + \mathbf{B}_{ii})^{-1/2} \mathbf{B}_{ij}(I + \mathbf{B}_{jj})^{-1/2} \mathbf{V}_{j}^{T}$$

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	0000000000	000000000
SPDHSS: co	ompression s	step	

Scaled off-diagonal block

$$S_i^{-1} A_{ij}^{(k-1)} S_j^{-T} = \mathbf{V}_i (I + \mathbf{B}_{ii})^{-1/2} \mathbf{B}_{ij} (I + \mathbf{B}_{jj})^{-1/2} \mathbf{V}_j^T$$

Note: V_i captures the column space of scaled block row

$$V_i = \begin{bmatrix} V_{i_1} & & \\ & \ddots & \\ & & V_{i_m} \end{bmatrix} \bar{V}_i \tag{1}$$

with \bar{V}_i capturing the column space of

$$\left[(I + \mathbf{B}_{ii})^{-1/2} \mathbf{B}_{ij} (I + \mathbf{B}_{jj})^{-1/2} \right]_{\text{for all } j \neq i}$$

Input: HSS rank r, an SPD matrix A

Output: an SPD HSS approximation with $\{A_{ii}\}, \{B_{ij}\}, \{U_i\}, \{R_i\}$ At the leaf level

compute $A_{ii} = S_i S_i^T$ directly compute scaled off-diagonal block $C_{ii}^{(0)} = S_i^{-1} A_{ii} S_i^{-T}$ compute $V_i \in \mathbb{R}^{|I_i| \times r}$ minimizing $\|C_{iic}^{(0)} - V_i V_i^T C_{iic}^{(0)}\|_F$ compute $B_{ij} = V_i^T C_{ii}^{(0)} V_j$ set $U_i = S_i V_i$ for k = 2, 3, ..., L - 1 do compute $(I + \mathbf{B}_{ii})^{\pm 1/2}$ via the eigen-decomposition of \mathbf{B}_{ii} compute $E_{ii} = (I + \mathbf{B}_{ii})^{-1/2} \mathbf{B}_{ii} (I + \mathbf{B}_{ii})^{-1/2}$ assemble E_{ii^c} and compute \bar{V}_i minimizing $||E_{ii^c} - \bar{V}_i \bar{V}_i^T E_{ii^c}||_F$ compute $B_{ii} = \bar{V}_i^T (I + \mathbf{B}_{ii})^{-1/2} \mathbf{B}_{ii} (I + \mathbf{B}_{ii})^{-1/2} \bar{V}_i$ set $R_i = (I + \mathbf{B}_{ii})^{1/2} \bar{V}_i, \forall i \in \text{lvl}(k)$ end for

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	000000000	000000000
\mathcal{H}^2 -based SP	DHSS		

Bottleneck: Compute V_i/\bar{V}_i for scaled off-diagonal block row $\implies \mathcal{O}(N^2)$ computational and storage costs

Leaf level: $V_i = \arg \min_V \|S_i^{-1} A_{ii^c} - V V^T S_i^{-1} A_{ii^c}\|$

Nonleaf level: $\bar{V}_i = \arg \min_V \|\Psi_i A_{ii^c} - V V^T \Psi_i A_{ii^c}\|$

Key Idea: randomized algorithm with $S_i^{-1}(A_{ii^c}\Omega_{i^c})$ and $\Psi_i(A_{ii^c}\Omega_{i^c})$ accelerated by \mathcal{H}^2 representation of A $\implies \mathcal{O}(N \log Nr)$ computational and storage costs

00000	

Standard HSS 000000 SPDHSS and \mathcal{H}^2 -acceleration

Numerical results •00000000

Numerical	ltests		
Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	0000000000	000000000

Test problem:

$$A = \sigma I + K(X, X)$$

with non-oscillatory kernel function K(x, y) and point set X

- random sampling on a sphere in 3D
- random sampling in a ball in 3D

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	0000000000	000000000
H2Pack			

H2Pack (https://github.com/scalable-matrix/H2Pack)

- $\mathcal{O}(N) \mathcal{H}^2$ matrix construction using the proxy point method
- $\mathcal{O}(N) \mathcal{H}^2$ matrix-vector multiplication.
- HSS matrix construction, matrix-vector multiplication, and ULV decomposition.

Notes:

- inputs: K(x, y), X, and an error threshold
- any non-oscillatory translationally invariant K(x, y)

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	0000000000	00000000
H2Pack			

Relative error of \mathcal{H}^2 -matvec in H2Pack. Each test has 1×10^6 points.

relerr three	shold	1.00E-2	1.00E-4	1.00E-8	1.00E-12
3D Laplace	sphere	8.42E-4	3.68E-6	6.35E-10	9.20E-13
	ball	8.21E-4	4.13E-6	8.05E-10	5.30E-13
3D Gaussian	sphere	3.38E-3	1.89E-5	4.25E-9	2.38E-13
	ball	3.57E-3	1.53E-5	1.13E-9	3.85E-12
3D Stokes	sphere	1.26E-3	7.06E-6	3.73E-10	2.71E-12
	ball	1.42E-3	7.72E-6	2.61E-9	2.76E-12
3D Matérn- $\frac{3}{2}$	sphere	3.22E-3	3.55E-5	2.05E-9	1.51E-13
	ball	1.55E-3	3.21E-5	2.34E-9	1.87E-13

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results
00000	000000	0000000000	000000000
H2Pack			

- 3D Laplace kernel
- Intel Skylake node (two Intel Xeon Platinum 8160 processors, 48 cores)

Runtime (in sec.) of three packages with relative accuracy around $10^{-5}\,$

	H2Pack		PV	FMM	FMM3D		
$\# { m pts} \ { imes} 10^5$	build	matvec	build	matvec	build	matvec	
sphere 4 sphere 8 sphere 16	$\begin{array}{c} 0.125 \\ 0.223 \\ 0.444 \end{array}$	$0.018 \\ 0.037 \\ 0.075$	$0.134 \\ 0.328 \\ 0.686$	$0.056 \\ 0.132 \\ 0.230$	$\begin{array}{c} 0.183 \\ 0.441 \\ 1.025 \end{array}$	$\begin{array}{c} 0.329 \\ 0.626 \\ 1.259 \end{array}$	
ball 4 ball 8 ball 16	$0.173 \\ 0.249 \\ 0.784$	$\begin{array}{c} 0.035 \\ 0.090 \\ 0.149 \end{array}$	$\begin{array}{c} 0.113 \\ 0.221 \\ 0.691 \end{array}$	$0.075 \\ 0.267 \\ 0.219$	$0.170 \\ 0.443 \\ 0.955$	$0.192 \\ 1.266 \\ 1.261$	

Introduction 00000 Standard HSS

SPDHSS and \mathcal{H}^2 -acceleration 0000000000

Numerical results

Computational cost of SPDHSS

Matérn- $\frac{3}{2}$ kernel, HSS rank r = 100

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results			
00000	000000	0000000000				
Preconditioning performance						

Setting:

- Matérn- $\frac{3}{2}$ kernel, $K(x, y) = (1 + \sqrt{3} l |x y|) \exp(-\sqrt{3} l |x y|)$
- $N = 3.2 \times 10^5$ points in a ball

• PCG with $\tau = 10^{-6}$

parameter l	0.0010	0.0025	0.005	0.010	0.025	0.05	0.10	0.25	0.5
Unprecond.	41	119	297	687	1896	-	-	1684	634
BJ	459	1202	2504	-	-	-	2765	707	172
FSAI $k = 200$	2659	2623	2045	1518	960	569	266	63	18
FSAI $k = 400$	1734	1531	1111	831	511	266	108	28	10
SPDHSS $r = 100$	2	3	5	14	62	159	287	245	117
SPDHSS $r = 200$	1	2	4	5	20	58	131	171	92
HSS $r = 100$	2	3	6	/	/	/	/	/	/
HSS $r = 200$	2	2	3	6	/	/	/	/	/

Introduction	Standard HSS	SPDHSS and \mathcal{H}^2 -acceleration	Numerical results			
00000	000000	0000000000				
Preconditioning performance						

Setting:

- Inverse multiquadric (IMQ) kernel, $K(x, y) = 1/\sqrt{1 + l |x y|^2}$.
- $N = 3.2 \times 10^5$ points in a ball
- PCG with $\tau = 10^{-6}$

parameter l	0.001	0.005	0.01	0.1	0.5	1	5	10	50	100
Unprecond.	1239	2656	-	2812	1958	1576	915	724	394	284
BJ	-	-	-	1605	529	322	195	151	97	73
FSAI $k = 200$	2839	1092	619	121	45	32	24	24	23	23
FSAI $k = 400$	1598	535	266	51	24	21	18	18	18	17
SPDHSS $r = 100$	53	249	328	291	112	74	38	28	13	10
SPDHSS $r = 200$	12	71	129	195	84	60	33	23	10	8
HSS $r = 100$	/	/	/	/	/	/	/	/	/	/
HSS $r = 200$	/	/	/	/	/	/	/	/	/	/

00000	

- Scaling-and-compressing technique for preserving SPD.
- Use of existing/cheap-to-get rank structures for accelerating complicated constructions.