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KERNEL MATRIX APPROXIMATIONS BY SUMS OF
EXPONENTIALS AND STABILITY OF FAST STRUCTURED
TRANSFORMS*

CHENYANG CAO! AND JIANLIN XIA*

Abstract. Sum-of-exponentials (SoE) expansions provide an efficient strategy to perform some
matrix transforms. In this paper, we show that they can also serve as a valuable way to com-
pute structured approximations to some kernel matrices. We first illustrate that some existing fast
transforms (Hilbert, Gauss, etc.) are essentially using generalized sequentially semiseparable (SSS)
structures for which the stability has been in question before. We then give comprehensive analysis of
the stability of transforms via general SSS structures and rigorously prove that such transforms may
have numerical errors growing exponentially, while the use of SoE expansions leads to polynomial
error growth. Moreover, we give a way to further reduce the error growth to poly-logarithmic via the
use of hierarchical tree structures. Our analysis reveals the two key components that ensure stabil-
ity of rank-structured transforms and other algorithms: algorithm architecture and norm bounds of
the generators of the structure. It concretely confirms some long-standing speculations: sequential
structured matrix (like SSS) algorithms are potentially unstable, even if relevant generators have
bounded norms; hierarchical structured algorithms are stable as long as relevant generator norms are
bounded. SoE expansion is then just an effective way to further control the norms of the generators.

Key words. kernel matrix, fast transform, sum-of-exponentials expansion, low-rank approxi-
mation, rank-structured matrix, backward stability

AMS subject classifications. 15A23, 15B05, 65D15, 65F55

1. Introduction. Kernel matrices are frequently used in numerical computa-
tions and data analysis. Consider a kernel matrix of the form of

(1'1) H = (li(wiyyj))miex,yjey’

where x(z,y) is a kernel function and x; and y; are points in data sets x and y,
respectively. The numbers of points in x and y may be different, but we suppose
|x| = |y| = n for convenience.

We are particularly interested in some kernel matrices arising from certain trans-
forms (such as Hilbert, Gauss, and Hankel transforms). A straightforward way to
perform these transforms (multiplications of H with vectors) costs O(n?). There
are fast transform algorithms that can reach nearly linear complexity. One such al-
gorithm that has been very popular in the studies of integral equations is based on
sum-of-exponentials (SOE) approximations for x(z,y). They are truncated expansions
in terms of sums of exponential functions. For some kernels, SoE expansions with a
small number of terms can reach high accuracy and the complexity to multiply H
with vectors can be reduced to O(n) [13, 21, 32]. These algorithms are much simpler
as compared with methods such as the fast multipole method (FMM) [14], which
requires to consider local-multipole and multipole-multipole expansions for certain
dense translation operators. SoE-based schemes instead use translation operators
that have simple diagonal forms and also have nice norm bounds [2, 6, 12, 32]. SoE
expansions are also useful for accelerating some other computations [3, 4, 5, 30].

This work has two main subjects: showing how SoE expansions may be used
for fast structured approximations of some kernel matrices, and further providing
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2 KERNEL MATRIX APPROXIMATIONS AND STABILITY

comprehensive understanding of the stability of fast algorithms like transforms in
some structured matrix forms.

1.1. Background on SoE expansions for fast transforms. To prepare for
later discussions, we briefly review some background materials on how SoE expansions
may be used to accelerate some transforms. Like in various previous studies [2, 6,
13, 16, 20, 32], our discussions focus on point sets x and y in (1.1) on the real line.
(Extensions to higher dimensions will also be discussed later.)

For various kernel functions defined on one dimensional x and y, the methods
typically represent a kernel function x(x,y) in an appropriate integral form and then
approximate the integral by a quadrature rule [2, 6, 13, 21, 26, 31]. As an example,
one frequently used kernel function is the Cauchy kernel x(z,y) = ﬁ corresponding
to the Hilbert transform

_ Zj -
(12) fl— Z ﬁ, 1—1,27...,717
Jj=1
Y AT
where x; and y; are points in an interval [a, b] and z;’s are scalars. When s = z; —y; >
0, an SoE expansion may be obtained based on the Laplace transform followed by an
appropriate quadrature approximation:

1
1. Z— —st —stg
(1.3) . / dt = Z wie” **k,

where p is the number of quadrature nodes and ¢, and wy are the quadrature nodes
and weights, respectively.

A key step in the fast Hilbert transform is to utilize the above expansion to
evaluate

~j

)

Ti — U

P Yj
T;>Yj

(1.4) £

where « is an appropriately chosen index (see Section 2.1.1). According to (1.3), we
have

(1.5) ZZwkzj (zi—y;)t *Zwkﬂk e St 2oL
j=1k=1 k=1

(1.6) ﬁk,wz ~(a=w)t

It can be shown that i, for all £ =1,2,...,p,  =1,2,...,n can be precom-
puted via fast updates with total cost O(pn) [13, 21, 32]. Following this precomputa-
tion, it costs O(p) to evaluate each f;r . Accordingly, the total cost for evaluating ff
forall i =1,2,...,nis O(pn). Some details will be given in Section 2.1.1.

1.2. Motivations and contributions. The aforementioned evaluation process
(1.5)—=(2.4) is very efficient, but is not immediately intuitive to understand. The
evaluation of all f; and the update for all 5 o are performed in iterative updates of
some vectors and the numerical stability is unclear.

This manuscript is for review purposes only.



CHENYANG CAO AND JIANLIN XIA 3

In fact, the whole transform may be assembled into a structured way to perform a
fast matrix-vector multiplication. That is, the kernel matrix H in (1.1) can be approx-
imated by a structured matrix. This leads to a matrix form of the fast transform and
suggests that SoE expansions are also useful for obtaining structured approximations
of kernel matrices. Indeed, later we can see that SoE expansions produce effective
compression of some blocks of H and further have some attractive features.

Thus, this work aims to give an intuitive algebraic way to reveal and extract
the underlying structure within fast transforms based on SoE expansions. Next, the
structured matrix form makes it convenient to analyze the numerical error propagation
and uncover potential stability issues in the transforms. Also, we obtain another
structured matrix transform with superior stability and reduced error growth.

Specifically, the main contributions of this work include the following.

1. We provide an intuitive matrix version that facilitates the understanding of
the mechanism of some fast transforms and helps to make the ideas more ac-
cessible. We show that they essentially perform matrix-vector multiplications
in terms of some rank-structured approximations to relevant kernel matrices.
The SoE framework is a strategy to organize data points into certain sepa-
rated clusters that correspond accurate low-rank off-diagonal approximations.
For the Hilbert transform above, the structured form is just a generalization
of the so-called sequentially semiseparable (SSS) matrix [8, 11], represented
by a sequence of smaller matrices called generators. With SoE expansions,
the so-called translation generators further have diagonal forms.

2. The matrix version further makes it convenient to inspect the stability and er-
ror propagation of the transforms. It has long been suspected that SSS matri-
ces may be susceptible to stability issues and the stability of SSS matrix-vector
multiplications may be much worse than that of usual full matrix-vector mul-
tiplications [1]. However, the general stability analysis is lacking. Here, we
provide a comprehensive rigorous study of the stability of (generalized) SSS
matrix-vector multiplications and show that the backward error may poten-
tially grow exponentially with respect to the matrix size (Theorem 4.9). This
clearly reveals the stability risk.

3. To improve the stability, we convert the generalized SSS form into a general-
ized form of the hierarchically semiseparable (HSS) structure [9, 29] that has
superior stability in its operations. The error propagation of generalized HSS
matrix-vector multiplications is significantly lower than with generalized SSS
forms (Theorem 4.13). What’s more, when SoE expansions are used to obtain
the generalized HSS forms, the error propagation can be further reduced.

4. The studies give comprehensive insights into the stability of structured algo-
rithms like matrix-vector multiplications. That is, there are two key compo-
nents that impact the stability: algorithm architecture and norm bounds of
generators. The former controls the length of the error propagation path and
the latter determines the error growth rate at each algorithm step. Hierar-
chical structured algorithms like HSS ones have lower error growth than se-
quential ones like SSS. Carefully bounded norms of generators (like from SoE
expansions) can significantly lower the error growth factor. See Theorems 4.9
and 4.13 and Corollaries 4.10 and 4.14 and some numerical validations.

The paper is organized as follows. Section 2 shows how some fast transforms via
SoE expansions may be formulated as matrix forms by constructing generalized SSS
approximations to the kernel matrices. Section 3 further shows how SoE expansions
may be used to produce generalized HSS approximations. The stability of transforms
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4 KERNEL MATRIX APPROXIMATIONS AND STABILITY

via these two types of structures is then analyzed in Section 4, with some proofs
supplied in Appendix A. The stability results are verified by some numerical tests in
Section 5. Finally, Section 6 concludes the paper.
The following is a collection of commonly used notation in the paper.
e Throughout the presentation, bold lower-case letters are used for vectors and
sets of points.
e Without loss of generality, assume x and y in (1.1) can be partitioned as

(1.7) x=x1U---Uxy, y=y1U---Uyp,

where each cluster x; has m points so that x = (Z(—1)m+1,- - - ,Tem) T and
n = Nm, and yj has a similar form.

e diag(v) denotes a diagonal matrix defined by a vector v.

e For a vector v, a function f(v) represents a vector function defined entrywise.

e For a matrix A, a function f(A) is a matrix function defined entrywise. For
example, exp(A) represents a matrix with entries exp(A;;) (instead of the
usual matrix exponential).

e For a vector v and a scalar ¢, c+v or v+-c is the vector resulting from entrywise
summation by ¢. For a matrix A, ¢+ A can be similarly understood.

2. Matrix version of fast transforms via SoE expansions of kernel func-
tions. In this section, we present some types of fast transforms in terms of structured
matrix-vector multiplications. Selected types of kernel functions are shown as exam-
ples. For simplicity, we focus on the real line with the points x; € x and y; € y inside
an interval [a,b] and suppose the points in each set are ordered from the smallest to
the largest. Generalization to higher dimensions will be discussed in Section 2.3.

2.1. Matrix version of the fast Hilbert transform. The first transform we

consider is the Hilbert transform defined in (1.2). It corresponds to the Cauchy kernel

K(z,y) = 325

2.1.1. Fast Hilbert transform via SoE expansions. We first provide some
details on how to quickly perform the Hilbert transform via SoE expansions for the
Cauchy kernel. The discussions in this subsection are based on [13, 21, 32].

To utilize the expansion in (1.3), pick 6 € (0,1) so that the number of z;, y; points
satisfying |z; — y;| < d(b — a) is small. Then rewrite (1.2) as

(2.1) fi= T+ 1+ 1,

where f;" has the form in (1.4) and consists of all z;,y; points satisfying z; — y; >
§(b—a), f consist of all z;, y; points satisfying z; —y; < —6(b—a), and f? corresponds
to the remaining points. It is then sufficient to just consider ff since f;” can be
handled in the same way for its negative. The choice of « in (1.4) is to make

(2.2) Ti — Yat1 < 0(b—a) <z — Ya.

To accurately approximate f;, it can be shown that there exist quadrature nodes
t1,...,t, and weights w1, ..., w, with p = O(log(e~*)log(6—')) such that [2, 7, 13]

p
]‘ 78tk
- — E wre
S

k=1

(Note that for s = x; — y;, we also have s < b — a.) In practice, the quadrature
nodes and weights are first found for a single interval [1,67!] and then adapted to
[0(b—a),b— a] by scaling.

(2.3) <e for seld(b—a),b—al
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CHENYANG CAO AND JIANLIN XIA 5

With this quadrature approximation, we obtain (1.5)—(1.6). Forallk =1,2,...,p,

a=2,...,n, Brq in (1.6) can be precomputed via updates:
a—1

(2.4) 5k,a — e_(ya_ya—l)tk: Z Zje_(ya—l_yj)tk bz, = Bk’aile—(ya—ya,l)tk Tz,
j=1

where i1 = # for all k. The total cost of these updates is O(pn). Accordingly, ff
foralli =1,2,...,n can be approximated using (1.5) in O(pn) complexity. Similarly,
apply the idea to f; . f? is directly evaluated, which costs O(mn). With small p and
m, the Hilbert transform can be accurately performed in linear complexity.

2.1.2. Matrix form of the SoE expansion. The fast Hilbert transform in
[13] as in the previous subsection may be made more intuitive through a matrix form
of the SoE expansion. For the quadrature weights wy and nodes ¢ in (2.3), let

(2.5) W:(w1 wp)T, tz(tl tp)T.

Picking « as in (2.2), we can rewrite (1.3) as a matrix form

1
Ti —Yj

27 py=exp(=(zi —ya)t), B=diag(w), s;=exp(—(ya —y;)t)-

(2.6) ~ p; Bs; with

Then ff can be approximated as
+ T : T
fi-=p; BB, with B, = (51 sa)za, Zo = (zl za) .
We essentially have B, = (81,0, 82,05« - - » Bp.a) L With B o given in (1.6). Furthermore,
the updates of By in (2.4) may be written in the following matrix form:

(2.8) Ba = %o + (51 So --- sa,l) Za—1 = 2a + Aa—18,_1 with
(2.9) Aami = diag(exp(~(Ya — Ya-1)t), By = (21 - =)

(Note the notation of scalar vector summation in (2.8).) This clearly illustrates why
B, for all « =1,2,...,n can be precomputed in O(pn) complexity.
The process of approximating f;7,i = 1,...,n can then be summarized as follows.

1. With 8, in (2.9), for j = 2,3,...,n, compute
ﬂj =z + Aj—lﬂj—l-
2. For i =1,2,...,n, pick @ by using ¢ in (2.2) and compute
7~ p] BB,

2.1.3. Structured matrix approximation to the Cauchy kernel matrix.
The approximation (2.6) suggests that the SoE expansion essentially leads to low-
rank approximations to some blocks of the kernel matrix H in (1.1) with the Cauchy
kernel. It further means we can essentially get a structured matrix approximation
to H. In this section, we derive this structured approximation, which can reveal the
actual structured matrix operations beneath the fast Hilbert transform.
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6 KERNEL MATRIX APPROXIMATIONS AND STABILITY

For the clusters in (1.7), the size m of each cluster is made small by choosing
appropriate § in (2.3) such that
(2.10) x;—y; >d(b—a) foral |i—j|>m.

For convenience, we assume that the clusters x; and yy, fully interlace in the following
sense:

(2.11) TP < ypl, et < iy,
where 2% and 2" respectively represent the largest and the smallest points in x,

max min

and y'®* and yp*™ are similarly defined. (If the clusters are not interlaced as this, it
can actually be shown that the rank structure below becomes simpler.)

Then consider a block Hy; = (ﬁ) of H defined by the clusters xj
T;E€EXK,Y; €Y1
and y;, where k > [+ 1. For each z; € xz,y; € y;, (2.6) holds. It is obvious that we

can replace y, in (2.7) by yi**5 so that the approximation (2.6) remains unchanged.
Accordingly, we get a low-rank approximation

(2.12) Hy, =~ PyBS,

where Py is formed by stacking the rows p! corresponding to all z; € x; and S
consists of the columns s; corresponding to all y; € y;:

(2.13) P, = (exp(f(xk - y,‘inf’Q‘)tT)) , S = (exp(—t(y,rcn_"; — yl)T)) .

(Again, here the exponential functions are defined entrywise and are not matrix ex-
ponentials.) Note that (2.12) holds for all 1 <1 < k — 2 and P only depends on k.
Thus, P, can serve as a column basis matrix for the low-rank approximation of the
following off-diagonal block row:

(2.14) (Hra -+ Hgo -+ Hpp-a).

See Figure 2.1(i) for an illustration.

PaBQf —» ]

PiBR—z - RQ P.BQL_,
x [N N
X \
: PBRys- RiQF
74‘» PyBRy—s- - RiQ —» :
vi M
(i) Off-diagonal blocks (ii) Structured off-diagonal approximations

Fic. 2.1. How the off-diagonal blocks (pattern-filled blocks in (i)) of the kernel matriz H
are approzimated by low-rank forms from SoE expansions as in (ii).

Similarly, we may obtain an approximate row basis matrix Q] for Hy;, where

Q1 = (exp(—(y"™> — y)t7)) .

@, only depends on I and can serve as a row basis matrix for the low-rank approxi-
mation of the following off-diagonal block column:

T
(2.15) (Hfoy -+ HE, - HE,) .

This manuscript is for review purposes only.
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Also see Figure 2.1(i). Therefore, Hy; has an approximation column basis matrix
Py and row basis matrix @;. To reflect such a structure for all £k = 3,...,N,l =
1,...,k — 2, we may rewrite (2.12) as

(2.16) Hyy = PyBRy 3R 3 Ri1Qf
where each R, is defined to make S; = Ry_oRj_3--- Rl+1QlT and has the form
(2.17) Ry = diag(exp(—(y5"™ — y,=1)t)).

At this point, the block row (2.14) and block column (2.15) both appear in nested
structured forms as illustrated in Figure 2.1(ii). Such a structure is consistent with
the SSS structure in [10, 11], except that the blocks with I = k & 1 are kept dense.

Similarly, when k£ + 1 < [, we may consider

- €T;— . - c— @ .
’ iV TiEXE,Y; EYIL Yim % Yi€Y1,%5EXE

Following the same strategy as above, we can get a structured approximation

(2.18) Hyy ~ UWis1Wiio - Wi_oBVT with
Up = —exp(— (2™ = xp)t"), Vi = exp(—(yi — 223)t"),
W, = diag(exp(— (2™ — z*7)t)).

S

To summarize, we have a structured matrix A that approximates H as follows:

Dy, if k=1,
Ek)a 1f k = l — 1,
(219) HkJ ~ Ak,l = Fk—h ifk=1+ 1,

Uka—H s VVI_QBVlT, ifk<l—1,
PkBkaz"'RlJﬂQlT, if k> l+1,

where Dy, Ey, and F}, are equal to the corresponding dense blocks in H and
U = —exp(— (@™ — xp)t7), Vi = exp(—(y, — 225)t"),
(2.20) § Pr = exp(—(xx — yp5)t"), Qi = exp(—(y™> —y)t7),
W, = diag(exp(— (2™ — 23™)t)), R, = diag(exp(—(ys™* — y2)t)).

To better illustrate the block structure in (2.19), an example is shown as follows:

Dy E UBVE U.WL,BVE Uy WoWs BV

£ D, E, U,BVI  Uy;W3BVT

(221) A=| PBQT F Ds Es UsBVT
P,BR,QT  PBQY Fs Dy E,
P;BR3R.QY  PsBR3QY  PsBQY £ Ds

The matrix A has a form as mentioned in [11] that generalizes the classical SSS
form, and is said to be a generalized SSS matrix for convenience. That is, its blocks
on and below the first block sub-diagonal form a block lower triangular part of an
SSS matrix and its blocks on and above the first block super-diagonal form a block
upper triangular part of an SSS matrix. Note that the matrices P, Q,U,V, R, W etc.
that define the generalized SSS form are still the generators of SSS forms so we just
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8 KERNEL MATRIX APPROXIMATIONS AND STABILITY

call them SSS generators. The generators P,Q,U,V are basis generators and R, W
are translation generators. Note that SoE expansions further produce translation
generators in diagonal forms and with norm bound 1.

The generalized SSS form in (2.19) can be quickly multiplied with a vector via
the SSS matrix-vector multiplication algorithm in [10, 11]. Write A(~ H) as

(2.22) A= Ap + Ap, + Ay,

where Ap is a block banded form corresponding to all the D, E, and F' generators in
(2.19), and the nonzero blocks of Ar, and Ay are respectively block lower and upper
triangular SSS forms. See Figure 2.2. Each part can be multiplied with a vector
quickly. To facilitate our later stability analysis, we present the process to compute
f© = Apz with a vector z in Algorithm 2.1. Suppose the block sizes is m = O(p) and
the W, R generators are p X p. Then the entire matrix-vector multiplication Az costs
O(pn) flops.

L]

=

A Ap A AU

Fic. 2.2. Splitting of a generalized SSS matrizx.

Algorithm 2.1 Fast lower-triangular SSS matrix-vector multiplication for £ [11]

Input: SSS generators { Py, Q;, Rs, B} of Ay, and vector z
Output: matrix-vector product f* = Apz

1: Partition z = (le e Z%)T conformably following the block partitioning of Ay,
2: V1 Q{Zl

3: for k=2,3,..., N—2do

4: Vi ngk + Rpvi_1; > Backward traversal
5: end for

6: for k=3,4,...,N do

7 f,i' < PyBvy_o; > Forward traversal
8: end for

9: £« (0,0,(£)7 ..., (£ D)7 > Attaching zeros for the zero block rows in Ay,

Remark 2.1. SoE expansions of k(x,y) like in (1.3) depend on the sign of z — y.
An SoE expansion valid for £ — y > 0 may need to change the signs of exponentials
for  —y < 0. Thus in the splitting (2.22), the subblocks of Ay, and those of Ay
typically do not share the same block row or column basis matrices.

2.2. Approximations to other kernel matrices. The generalized SSS struc-
ture given in (2.19) also holds for kernel matrices H defined by various other x(x,y)
that can be approximated by SoE expansions. Some generators may differ. We follow
similar notation as in the previous subsection and also suppose all z;,y; € [a, b].

2.2.1. Gaussian kernels. In the fast Gauss transform, it needs to quickly eval-
uate matrix-vector products involving the kernel matrix H in (1.1) with the Gaussian
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CHENYANG CAO AND JIANLIN XIA 9

kernel x(z,y) = e=(@=9)?*/ (44) | where 1 > 0. SoE expansions for the Gaussian kernel
based on the Carathéodory-Fejér method [25] have been well studied [21]. They can
be used to obtain a generalized SSS approximation to H as follows.

e Rewrite e=*/(4#) through an inverse Laplace transform in the complex plane

for s € R and then discretize the complex integral to obtain an SoE form:

P
(223) e/ = L / e [T VT 3 e [T e/l
T z

27 z
k=1 k

where I' is a carefully chosen contour in the complex plane and c¢y, z; are
generated from an algorithm developed in [26] that computes a nearly optimal
approximation to e* based on the Carathéodory-Fejér method.

Substitute s = x; —y; into (2.23) for z; > y; to obtain the SoE approximation

P
e~ (@i=v;)?/(4p) Z wye” FiYilte,
k=1

where wy, = —cp\/7/2k and tg = \/ 2k /-

This approximation holds for all z; € x,y; € y that are used to define H in
(1.1). Use it to obtain a generalized SSS approximation similarly to that in
Section 2.1.3. Since the Gaussian kernel function has no singularity at the
origin, the dense blocks Ey, F}, are omitted from the generalized SSS form in
(2.19). Accordingly, the matrix approximation is given by

Dk)a lf]f :l7
(2.24) Hyg~ Agy =< UpWiyr---WiiBVT, ifk<l-1,
PyBRy—1 - Ri1QF, ifk>1+1,

where Dy, is equal to the corresponding dense block in H and
(2.25)

U = exp(—(a™ — xp)t7), Vi = exp(—(y; — 2]")t7),

Py = exp(—(x — yp=)th), Qi = exp(—(y"™ — y)t7),

W, = diag(exp(—(z{™* — z{)t)), Ry = diag(exp(—(y"™ — y*1)t)).
Here, the same notation as in (2.5), (1.7), and (2.11) is used (throughout this
entire paper). Fast evaluation of the Gauss transform is achieved through a
procedure similar to Algorithm 2.1 with O(pn) complexity given the block
size m = O(p).

2.2.2. Logarithmic kernels. For the logarithmic kernel log |z — y|, one way
to obtain a generalized SSS approximation to the corresponding kernel matrix H is
based on the SoE expansion in [32]. In the following, we let A = §(b — a).

e Represent the function log(s) for s > A in an integral form:

log(s) = log(\) + /S %dt.

A

e Apply the SoE expansion in (1.3) to 1/t and integrate explicitly:

p P
log(s) ~ log(A) + ) %e—m £y _%e_stk.
k=1 'k — Uk

This manuscript is for review purposes only.
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314 e Replace s by z; —y; for z; —y; > X
p
315 log(z; —y;) = c+ Z e (@iTvi)te
k=1
316 where Wy, = —wy /[ty and ¢ = log(A) + Yk _, wre M*.

317 e Accordingly, the generalized SSS approximation to the logarithmic kernel
318 matrix H is given by

Dk7 lfk:l,
Ey, ifh=1-1,
319 (226) Hk,l ~ AkJ = Fk—ly ifk=1+ 1,

c—UpgWig1-- 'Wl_gBVlT, ifk<l—1,
C+PkBRk72'°'Rl+1QlT, ifk>1+41,

320 where Dy, Ej, and F} are equal to the corresponding dense blocks in H,
321 B = —diag(wn /t1,...,wp/tp), and Py, R, Qi, Uk, Ws, V| are the same as
322 those in (2.20).

323 2.2.3. Square-root kernels. Next, consider the square-root kernel x(z,y) =

324 1/4/]z? — y2|. Without loss of generality, assume the data sets x and y are in [a,b] C
325 R4. A generalized SSS approximation to the corresponding kernel matrix may be
326 obtained following an SoE approximation procedure in [32].

327 e For x; > y;, write the kernel as the Laplace transform of the modified Bessel
328 function Iy(-) of the first kind of order zero:
1 e < To(y,t
329 _— = / Io(yjt)e_m"'tdt = / Me_(zi_yj)tdt.
1/ :vlz — y]2 0 0 evi
330 The last equality is to use the scaled modified Bessel function Iy(z)/e” to
331 avoid computational instability since it is a bounded function on R .
332 e Apply the algorithm provided in [32] to get a generalized Gaussian quadrature
333 approximation and thus the SoE expansion for @; —y; > 6(b — a):
Io(y;t) e (@i—y;)t - To(y;tx) o~ (@i—yj)te
334 \/— / oust PItdt &~ Z Wk e evitk ! )
k=1
335 where the quadrature weights wy and nodes ¢ are close to those in (1.3).
336 e Based on this expansion, we get a generalized SSS approximation to the
337 square-root kernel matrix almost in the same form as in (2.19)—(2.20) other
338 than slight modifications to some generators:
max 1 7
Ui = e — X © ik,
= dlag(exp( (3™ — 2")t)),
— __ max tT
339 (2.27) Vl exp(~(y: xlm%p)c )

Py, = exp(—(xy, — ym#)t7),
R, = diag(exp(—(y5"™ — ys29)t)),

max 1
Qi = exp(—(y"™ —y)t") © %7

340 where ® denotes the Hadamard product.
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2.3. SoE approximations for other kernels and higher dimensions. SoE
expansions for more kernel functions have been studied in various literatures and gen-
eralized SSS approximations may be obtained for the corresponding kernel matrices.
For instance, strategies similar to those in Sections 2.1 can also be applied to other
functions that can be rewritten as Laplace transforms [7, 32]. Another such example
is 1 which is useful for designing fast Hankel transforms. An SoE expansion

can be obtained similarly to those for z%y and

1
z2—y
ian quadratures [31]. This idea can also be extended to find SoE expansions of the
Cauchy kernel in certain specific regions on the complex plane [31].

In [2, 6], some algorithms are designed to obtain SoE expansions for some one-
dimensional translation-invariant kernels #(s) := k(z,y) with s = ¢ —y. The algo-
rithms are based on solutions of some structured linear system and eigenvalue prob-
lems. Examples of £(s) mentioned in [2] include the following:

e 1/s* with v a positive parameter;
o Jo(as) with « a positive parameter and Jo(-) the Bessel function of the first
kind of order zero;

e the Dirichlet kernel %N(:Z)) with N € N;

e kernels like log(sin?(7s)) and cot(7s) in harmonic analysis.

In [22], a strategy based on Cauchy integration is used to construct SoE expansions
for general analytical kernel functions %(s) such as s™ with odd n, s™log s with even
n, exp(—as?), the Helmholtz kernel €27 /s, /s2 + a2, and 1/v/s2 + a2 , where a is
a certain a parameter. The main idea of this method is presented as follows.

e Apply the Cauchy integral formula to &(s):

(2.28) R(s) = ! /R(z) dz, seR,
r

2mi z—8

= based on generalized Gauss-

where I' is a Jordan curve in the complex plane and encloses the point (s, 0).
e Partition I into pieces I'; such that R(e~1% (2 — s)) > 0 after §;-rotation of

z — s for any z € I';. Then an SoE expansion is given by

(2.29)

1 . o —i0; —i0; Ld
R(s) = Gy E e~ /0 (/r R(z)e e K dz) etse ™ gt ~ g wye'*s,
j i k=1

where wy, and ¢, are complex weights and quadrature nodes, respectively, and
p=0 (Z] log(max_cr, |i%(z)\/e)) for a given tolerance e.
Next, we comment on SoE expansions in higher dimensions. There are different
ways to get multi-dimensional SoE expansions. As one example, for kernel functions
like Gaussian in two dimensions, a splitting along the two directions may be made:

(2.30) e=lle=sl3/(am) _ p=(e1=51)/(4n) g=(ca=s2)?/(41)

where ¢ = (¢1,¢2) and s = (s1, s2). When ¢ and s are respectively located within two
clusters of data points, SoE expansions like in (2.23) hold for each dimension if the
two clusters are separated in that dimension. That is, if an interval for, say, all the
c1 values does not overlap with an interval for all the sy values. If this does not hold
for a certain dimension, other expansions (like Hermite expansions) may be used [21],
which leads to a mixture of expansions for the overall kernel.
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As another example, consider the kernel function m with ¢ = (¢1,¢) and
s = (s1,82) in two dimensions. As SoE expansion may be obtained based on a

Laplace transform of the Bessel functions for cp > s9 [15]:

1 (oo} 1 oo T .
_ / e—t(CQ—SQ)JO(t(Cl _ 81))dt — 7/ e—t(cz—32)/ elt(cl—sl)cosededt
0 0

le—sll2 ™ 0
p dk
~ Z % Z e—tk[(CQ—sz)—i(Cl_Sl) COS(ﬂ'l/Qk)]’
=1 =

where wy, and t; are respectively quadrature weights and nodes and ¢ is a positive
integer depending on k. The fast algorithm in [15] provides a way to generate wy and
ti from multipole expansions and is essentially performing a rank-structured matrix-
vector multiplication like in this paper.

There are also other useful techniques for generating SoE expansions for multi-
dimensional kernels. The Cauchy integration method in [22] for finding SoE ex-
pansions (like in (2.28)—(2.29) above) can be further extended to analytical kernels
in higher dimensions. In [19], for the Cauchy kernel in complex regions, a system of
quadrature weights and nodes is obtained via a conversion from multipole expansions.

For multi-dimensional SoE expansions, similarly to the work here, it can be shown
that fast algorithms like transforms are essentially performed in terms of certain rank-
structured matrices.

3. Stable transforms via generalized HSS approximations from SoE
expansions. Fast transforms based on generalized SSS forms essentially compute
matrix-vector products in a sequential way as in Algorithm 2.1. Later in subsec-
tion 4.2, we shall see the potential stability limitation. In this section, we give a
strategy that can significantly enhance the stability by converting the generalized
SSS form resulting from SoE expansions into a generalized HSS form.

3.1. Generalized HSS approximations from SoE expansions. We say a
matrix A a generalized HSS matrix if it can be split as in (2.22) (also see Figure 2.2)
and the nonzero parts of Ay, and Ay are triangular lower and upper parts of standard
HSS matrices, respectively.

A Dbrief review of the standard HSS structure in [9, 29] is as follows. An HSS
matrix K has a block off-diagonal low-rank form and its blocks follow a partitioning
strategy as given by a postordered binary tree T called HSS tree. To be specific,
suppose 7 has nodes labeled as i = 1,2,...,0 with o the root of the HSS tree. Then
for each non-leaf node %, the diagonal block D; has the form

D, Ue, B, VI
(3.) D= (e CEve).

where ¢, co are the left and right children of node i and the calligraphic letters D,
U, V, B represent the so-called HSS generators so that D, = K. U, V are basis
generators for off-diagonal blocks and further satisfy the following nested relations:

U, R Ve, W,
3.2 U=, Cl), Vi = < . Cl),
(32 (v Vo We,
where R, W are known as translation generators.

In the following, we convert the generalized SSS approximations in the previous
section into generalized HSS approximations. More specifically, for an generalized
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SSS form like in (2.22) and Figure 2.2, we may write the nonzero blocks of, say, A,
in an HSS form. That is, in an HSS construction process, all the generators in (3.1)
and (3.2) can be explicitly written based on SoE expansions.

Remark 3.1. (Notation) The HSS construction is essentially for the submatrix of
Ay, corresponding to block rows 2 to N and block columns 1 to N — 1, denoted by
Ap,. Without loss of generality, assume N in (1.7) satisfies N = 2L + 1 so that Ap,
has 2% block rows and 2” block columns and can be converted into an HSS matrix
corresponding to an L-level full binary HSS tree 7. The HSS form has an L-level
hierarchical block structure. The leaf-level blocks correspond to the same partitioning
as used in the SSS form of Ay,. For convenience, we relabel the point sets associated
with the block rows and columns. That is, the set x; corresponding to the jth block
row of AL is relabeled as X;, where i is the node of 7 that is the jth leaf ordered from
the left. Then for a non-leaf node ¢ with children ¢; and cg, define X; = %X, U X¢,.
Slmﬂarly, define sets y;. See Figure 3.1 below. We also introduce notation £}*** and
#min Jike in (2.11). We further define the point that immediately precedes #1", if

#Pred If this point does not exist (when i is
~pred -

any, to be the predecessor of X, denoted Z;

the leftmost node at its level of the tree), then 27" is set to be empty.

Without loss of generality, we just show the HSS generators for translation-
invariant kernels x(z,y) with SoE expansion

P
(3.3) k(x,y) ~ Zwke_(”“'_y)tk with z—ye€[6(b—a),b—al
k=1

For other kernels with different SoE expansions, minor modifications may be made to
the HSS generators.

Following (3.3), for any clusters xy,y, satisfying =} — y*®* > 6(b — a), we can
obtain a low-rank approximation to the corresponding block in the kernel matrix as

min

P

p
(34) (5@ 9)ecxy ey, & Y wpe ORI = § Jem b0 gy e G
k=1 =

= exp(—(xx — y")t") Bexp(—t(y"™ — y1)"),

where B = diag(w) as before. Now, for xj,y; corresponding to any nonzero off-

diagonal block of Ay, with the interlacing of the point sets as in (2.11), (3.4) naturally

holds. Based on this, we can find the low-rank form of the corresponding block of Ay,
The following lemma shows how to obtain the HSS generators.

LEMMA 3.2. Suppose the kernel function k(z,y) satisfies (3.3). Then Ay, can be
written as an HSS form with generators as follows.
e For a leaf node i of T,

D=0, U =exp(—(% — P W), Vi = exp(—(G - yi)t7).
e For a non-leaf node i with left and right children c¢1 and co, respectively,
B., =0, B., = B(=diag(w)).
If further i # o, then

Rey =1, Re, = diag(exp(—(§i™ — g2r°t)),
We, = diag(exp(— (g™ — G )t)),  We, = 1.
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14 KERNEL MATRIX APPROXIMATIONS AND STABILITY

Proof. Let i and j be leaf nodes and respectively be the left and right children of
their parent r. Clearly, D; = D; = 0 by the definition of Ay,. According to (3.4), the
lower off-diagonal block corresponding to X; and y; has a low-rank approximation

(3.5) UiBVI = exp(—(%; — 4" )t7) B exp(— ("™ — 3,)").

Since i is the left sibling of j, ;&;’red = g% We can then let

(3.6) Bj=B, U =exp(—(%; — 9" Nt"), Vi =exp(—(@"™ —3,)t").
The upper off-diagonal block L{iBiVjT =0 so we may set
(3.7) B, =0, U; =exp(—(%;— gffed)tT), V; = exp(—(y;’“ax — Sfj)tT)7

where U; and V; have forms consistent with those in (3.6).

If ¢ and j are non-leaf sibling nodes, (3.5) still holds so the same forms of U, B,V
generators as above can be used.

We then derive the translation generators R,W. For convenience, suppose ¢ has
children ¢; and co, and j has children c3 and ¢4, as shown in Figure 3.1. The U, B,V

generators associated with ci,..., ¢4 can be similarly written out.
Yi Yj
Ve, Yer Yeu Ve

Xe, 'Dc1 T
)A(l

Xeo | (0her BV D02

%o, D, i J
X; UBVT 4 / \ / \

1 c 3 cy
(i) Partition of D, (ii) The HSS tree for matrix structure in (i)

F1G. 3.1. Partitioning of D, corresponding to the tree nodes.

~pred

Noticing y;" " = g)lc’;c‘i and g;"** = go**, we have
T )A(C?, - yg;ed T B ~max ST ~max T
(38) UJBJVz =exp | — )A(C4 o @gred t exXp (7t (yc2 Yoo Yoo  — YCQ))
3
. . . T
_ . Z/ICA3 A B Ve, diag(exp(— (g™ — g22)t))
Ue., diag(exp(—(§m> — gEred)t)) Ve,

T
_ Uey Ry B Ve, We,
Z/[C4RC4 VC2 WCZ )

Accordingly, we can set
Reg =1, Re, = diag(exp(—(g5™ — §5°t)),
We, = diag(exp(— (g™ — ga)t)), We, = 1.

Now, when Z/liBiVJT is considered, we can similarly obtain
Rey =1, Re, = diag(exp(— (5™ — g2°)t)),
We, = diag(exp(— (95, — 9e,7)t)),  We, = 1.

To summarize, we get the generators as given in the lemma. 0
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From this lemma, we can see that the HSS form for Ay, further has highly struc-
tured generators. That is, other than the leaf-level U,V generators, all the other
generators are diagonal matrices (with some even equal to 0 or I).

By comparing the HSS generators in Lemma 3.2 with the generalized SSS gener-
ators in (2.19), we can observe their connections. The HSS generators U, V, and D
corresponding to the leaf nodes are just the P, () generators of the SSS form. The
translation generators R, W are basically the products of some R generators. This
motivates a way to convert a general SSS form (not necessarily from SoE approxima-
tions) to an HSS form.

Remark 3.3. As mentioned in Remark 3.1, when 4 is the leftmost node at its level
of the tree, then :%?red is set to be empty. This does not impact the HSS generators
above needed for multiplying Ay, with a vector. The reason is that Ay, is block lower
triangular and any nonzero block L{Z-BZ-V]T in its block lower triangular part satisfies
i > j. Accordingly, this i is never the leftmost node at its level.

3.2. Fast transforms via HSS matrix-vector multiplications. Following
the splitting (2.22), it suffices to look at the multiplication of Ay, with a vector z.
With the notation in Remark 3.1, this is just to multiply the block lower triangular
HSS matrix Ap, with a part of z. We may adapt the HSS matrix-vector multiplication
algorithm in [9, 27] and further take advantage of the diagonal forms of many gener-
ators. To facilitate the stability analysis later, we briefly review a telescoping form of
an HSS matrix and list the main steps of the HSS matrix-vector multiplication.

The telescoping form of Ap, with generators D, U, V, R, W, B corresponding to an
L-level full binary HSS tree looks like [23, 27]

k L

L
(3.9) A=Y (] v | B® [ [IT(VY)" ] with
k=1

j=L Jj=k
BO — diag({B; : 7 at level [ — 1}),
U® = diag({U; : i at level 1}) and V) = diag({V; : i at level I}),

where
B, = ( 0 Bcl) , 1: non-leaf node with children ¢y, ¢,
B, 0
U;, i: leaf, Vi, i: leaf,
U, = Rcl . V= WC1 i
(Rc) , 1: non-leaf node, (WCQ) , 4: non-leaf node.

To evaluate f+ = Arz, we apply the fast HSS matrix-vector multiplication algo-
rithm in [9, 27] to find £+ = Az, where 2 is the portion in z corresponding to Ay,

0
and fT = (f' +>. The main steps are as follows.
1. (Bottom-up traversal) Let z(“*1) = 2. For [ from L to 1, compute
O — yOT 040 3O = pO,0)
(3.10) z V¥ g BWz\"Y.
2. (Top-down traversal) Let £0) = =y, For [ from 1 to L, compute
(3.11) £ = gOfl=b 4 y(+1)

Then output £+ = f5).
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16 KERNEL MATRIX APPROXIMATIONS AND STABILITY

4. Stability analysis for generalized SSS and HSS matrix-vector multi-
plications. In this section, we discuss the stability of matrix-vector multiplications
with generalized SSS and HSS forms. The results are presented in a general framework
so that they hold for all (generalized) SSS and HSS matrices and the fast transforms
via SoE approximations in this paper may be treated as special cases.

4.1. Motivations and preliminaries. Our motivations for the stability analy-
sis are as follows.

e For an SSS matrix A with non-orthogonal basis generators, rigorous stability
analysis for the matrix-vector multiplication has not been done before. The
work in [1] illustrates the potential instability via an example, although the
multiplication is structured backward stable in terms of the generators. As
a remedy, reorthogonalization of basis generators is used to improve stability
in [1]. Here, we would like to show the stability in terms of A without or-
thogonality of the basis generators. The errors may grow exponentially with
respect to the matrix size n, which rigorously confirms the stability risk.

e When A is written in an HSS form, stability analysis is done in [27] for the
case again when the basis generators have orthonormal columns. Here, we
also relax this requirement and show the stability of HSS transforms. Another
related study is the stability analysis in [24] for the more sophisticated 2D
FMM. However, the stability study in [24] has a very strict assumption on
the norm bounds of off-diagonal basis generators at all hierarchical levels. In
the following, we use separate norm bounds for leaf-level basis generators and
translation generators, which enables to reveal the importance of the norm
bounds of translation generators.

In the stability analysis below, we study perturbation terms like AA arising from
floating point operations involving A. The analysis will frequently utilize the following
preliminary lemmas.

LEMMA 4.1. [17, p. 69] Let A € R"*P, z € RP, and
(41) Tp = pemach/(l - pemach)7

where €mach 18 the machine epsilon. Then the floating point result of the numerical
matriz-vector multiplication Az, denoted fl(Az), satisfies

fi(Az) = (A+ AA)z  with |AA| < 7,|Al
LEMMA 4.2. [17, p. 67] Fori,j € Ny, 7, and 7; defined as in (4.1) satisfy
17 < Ty, T+ T+ T < Tigg,
TiTj < Tmin(i,j) Jor max(i,j)emacn < 1/2.
LEMMA 4.3. [24] Let P € C"™*" and Q € C"™" . Then,
[PQllmax < [[Plloc||Qllmax  and  [[PQlImax < |P[lmax/|@l1-

The following multi-index notation (see, e.g., [24]) will be used for convenience.

DEFINITION 4.4. (Notation) Let € be a multi-index & = (€, {kt1 - - -, &) with & €
{0,1} for k <1 and k,l € N. Define

l

l
A T4 ) =Ta%4;,
j=k

J=k
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where AYA; = A;, AYA; = AA;. Also, denote |€| = &+ -+ +&. Tt is easy to verify
the following identity [24]:

l l I—k+1 l
(4.2) [T +24) =14+ > a¢ |4
j=k j=k l¢]=1 j=k

Throughout the stability analysis, we suppose the generalized SSS/HSS matrices
meet the following assumptions.

ASSUMPTION 4.5. For a generalized SSS or HSS matrixz A, assume the following.
1. Since the algorithm under consideration is matriz-vector multiplication and
our focus is the stability study related to off-diagonal structures, we suppose
all the entries of A that are not from Ap are nonzero. (Also note that A is
used to approximate kernel matrices in this work.)
2. The generators of the generalized SSS form defined in (2.19) satisfy

||Ukaax S Cyu, HWHmax S Cyu, ||Pk||max S Cyu, ||Qleax S Cyu,
IRsllh < er, IWENh <ery 1Bllmax < ¢B|Almin-

where cp is a constant and | A|min is the minimum magnitude of those entries
of A that are not from Ap. For convenience, we assume that Uy, Vi, Py, @Q;
have sizes m X p and Rs, Wy, B have sizes p X p.

3. The generators of the generalized HSS form like in (3.1) and (3.2) satisfy

[Uillmax < vy [Villmax < oy |Rilloe < ey (Wil < cr,

HBiHmax < CB|A|min-

Note that for A in (2.22), the generators for Ay and Ay may be differ-
ent. Nevertheless, we suppose all the relevant generators satisfy these norm
bounds. For convenience, we also assume that the HSS tree T is a full binary
tree with L(~ log N) levels, where N is the number of leaves in T . Also, we
assume that U;, V; have sizes m X p and R;, W;, B; have sizes p X p.

4. For m, p, and N, we assume that p < m as in typical structured matrizc
algorithms (so that the leaf-level block sizes are not too small to have any
cost saving), and assume Nemach ~ N7y <K 1 as in typical backward stability
analysis. (Note n = Nm.)

Remark 4.6. To validate such assumptions within the context of this paper, we
take the Cauchy kernel matrices in Section 2.1 as an example, where the generalized
HSS matrix is constructed in Lemma 3.2 with the SoE expansion in the form of (3.3)
and further satisfying wy, ¢, > 0 for all k. (The assumptions can be similarly validated
for the other kernel matrices.) Notice that the generators U, V, R, W have entries with
magnitudes bounded by 1. In this case, ¢y = ¢ = 1. For the B generators,

P p
(4.3) |Billmax = max [wg| <> wp <Y wgel o 7levilte
F=l,.p =1 k=1
p
<cp Zwkef‘xfylt’“ with c¢p:= kn%ax e(b—a)tk
k=1 TP

Since this holds for all |z — y| > 0(b — a), we get ||B;|lmax < ¢B|A|min.- Note (3.3)
means |Almin = Minj, _y>50-a) Yope g Wee TV

We then present the stability analysis in the next two subsections.
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4.2. Stability analysis for generalized SSS matrix-vector multiplica-
tions. The fast transforms in Section 2 are done through generalized SSS matrix-
vector multiplications following the splitting (2.22): Az = Apz + Az + Auz, where
Apz is computed through a direct block banded matrix-vector multiplication, Ay,z is
computed following Algorithm 2.1, and Ayz is computed similarly to Ar,z because of
the structural symmetry. Hence, it suffices to analyze the stability of 7 = Apz.

Suppose A(f") = (A, + AAp)z with AAy, the perturbation due to the numerical
computation. For a block Ay ; with & > [+ 1 like in (2.19), the perturbation Aflk,l (a
block of AAy,) is produced from fi(f]) = Z;:f (Ag,+ AAy )z via the two traversals
in Algorithm 2.1. Our task is to find an entrywise bound for each such A[lk,l. Two
lemmas in the following measure the perturbations in these traversals and will be used
in the proof of the main Theorem 4.9. The proofs of these lemmas are included in
Appendix A. The discussions below involve the following notation from [24]:

= ApAp—1--- A, k>,
SHkAS_{ I, k<l

LEMMA 4.7. Suppose A in the form of (2.22) is a generalized SSS matrix satisfy-
ing the assumptions in Assumption 4.5. Then in the evaluation of f+ = Apz, fi(vy)
produced via the backward traversal stage of Algorithm 2.1 for 1 <k < N — 2 satisfies

k k—1+1 >141 ~ ~
(44) ﬂ(Vk) = Vi —|— Avk ’U}Zth Avk = Z Z Af (( H Rs) QZT> 7,
s=k

1=1 | gl=1

where
(4.5) ASQT ;:{ Qr, . o 570 i 1AQT| < QT
AQ[ + AYlQl + AYlAQl ) § = 17 -

~ Ry, =0, .
(46) AR, := { AR, + AY,R, + AY,AR,, § _1,  with [AR[ < 7[R,
|AY}| < €machl, and the notation in (4.1) is used. Besides, we have
”AIQ’lTHl S PCUT3m, ||A1Rs||l S CTT3p-

LEMMA 4.8. Suppose A in the form of (2.22) is a generalized SSS matriz satisfy-
ing the assumptions in Assumption 4.5. Then in the evaluation of fT = Apz, ﬂ(f,j)
produced after the forward traversal in Algorithm 2.1 for 3 < k < N satisfies

k—2
A7) = £ + AfT with AR =) Ady 2,
=1
where
~ k—I1+1 i+l }
A = Y AS PkB< 11 Rs> QIT], APy < 7p|Pi|, |AB| < 7B,
|&]=1 s=k—2

and AR, and ASQT are respectively defined in (4.5) and (4.6). Besides,

~ 4
(4.7) |AAL,| < §(k — 1+ 1)7’3mp2030?]c’%_l_2\14k7l| for kE>1+1.
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We can now inspect the stability of generalized SSS matrix-vector multiplications.

THEOREM 4.9. Suppose A in the form of (2.22) is a generalized SSS matriz sat-
isfying the assumptions in Assumption 4.5. Then the matriz-vector multiplication of
A with a vector z via Algorithm 2.1 satisfies

fl(Az) = (A+ AA)z  with

4
|AA| < max{l, ngchc%] max{1, c¥_3}}73m+4\A|.

Proof. We discuss the perturbations to a nonzero block Ay, ; from Ay, Ay, or Ap
in (2.22) due to the multiplications f® = Apz, fT = Apz, and f~ = Ayz, respectively.
According to Lemma 4.1,

A(£°) = (Ap + Adp)z,

where AAp has the same block structure as Ap and its blocks satisfy |A/~1k7l| <
Tym| Ak 1| since there are at most 3m nonzero columns in each block row of Ap.
Next,

ﬂ(er) = (AL + AAL)Z,

where AAy, has the same block structure as Ay, and its blocks AAy; satisfy (4.7) in
Lemma 4.8. Then, by the structure symmetry between Ay and Ayp, Lemma 4.7 and
Lemma 4.8 also apply to Ay from Ay or when k < — 1. Thus,

A(f) = (Au + Ady)s,

where A Ay has the same block structure as Ay and its blocks Aflk,l satisfy the same
bound (4.7) in Lemma 4.8 when k > [+ 1. Thus, for any 1 < k,l < N,

Tam| A1, k-1 <1,

4.8 AAyy| < —l-
(4.8) [A AR, —{ %(|kfl|+1)p2630?]6‘k g 27-3m|Ak7[|7 otherwise.

In the final summation stage, we then have
fi(Az) = fl (A(f°) + (") + fi(f 7))

(4.9) = (I +Af) ((1 F AR + Adpz+ £+ Adpz) + £ + AAUZ)) ,

where A f; results from the floating point addition Ai(f*) +fi(f") and A f, results from
the further floating point addition of fi(f™) and they are diagonal matrices satisfying
|Af1| S 6machlv ‘Af2| S EmaChI-

Let
(4.10) AA = AAp + AAy + Ady.
Then
(4.11) fi(Az) = 2 + £+ + (AA)z = Az + (AA)z,

(4.12) AA=AA+ Afo(A+AA) + (AfouAfi + Afi)(Ap + A + AAp + AAL).
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Since Af; and Af, are diagonal and Ap and Ay, have non-overlapping nonzero pat-
terns, we then have

(4.13) |AA| < |AA|+|Af|(A] + |AA])
+ (|Af|Af]+[AAD(AD] + AL + |AAD| + |AAL))
< AA] + emach (1A] + [AA]) + (€mach + €macn) (|4] + [AA])
< (2€mach + €macn) | Al + (1 + emacn)*[AA]

4
< (12 + (1 4+ 72) max{1, ngchczU max{1, leyig}}7'3m)|A|
4
< max{1, ng2ch2U max{1, ) 3} }3m 14| Al

where the last two steps follow from Lemma 4.2 and (4.8). d

Theorem 4.9 shows that generalized SSS transforms may potentially have expo-
nential error growth with respect to N when cr, the norm bound of the translation
generators, is larger than 1. (Note N is proportional to n.) Translation generators
with large norms may cause instability. On the other hand, SoE expansions provide
an effective way to resolve this issue by producing nice bounds for the translation
generators.

COROLLARY 4.10. Suppose the generators of the generalized SSS matriz A are
produced via SoE expansions as in (3.4) so that the generators further satisfy cr =
cy = 1.Then, generalized SSS matriz-vector multiplications via Algorithm 2.1 satisfy

4
fl(Az) = (A+ AA)z with |AA] < max{l, §Np203}73m+4|A|.

In this corollary, the error grows at most linearly with respect to N.

4.3. Stability analysis for generalized HSS matrix-vector multiplica-
tions. The previous subsection shows the importance of controlling the norms of
translation generators. In practice, it is possible for structured representations to
have translation operators with norms larger than 1. In this subsection, we consider
another important factor that impacts the stability of transforms: the algorithm ar-
chitecture. As mentioned in [27, 28], hierarchical structured (like HSS) algorithms
can further reduce the length of the error propagation path or the number of times
the error gets magnified by.

Theorem 4.13 below shows how the HSS architecture benefits the stability and
can be shown based on the following two lemmas, which are proved in Appendix A.

LEMMA 4.11. Suppose A in the form of (2.22) is a generalized HSS matriz sat-

isfying the assumptions in Assumption 4.5. Then in the evaluation of £+ = Apz,
fi(y®) produced via the bottom-up traversal in (3.10) for 1 < i < L satisfies

L—i+2 L
(@14) 80) =y 2y win Ay = [ 30 a¢(BO [JvO)T) |
[€]=1 Jj=t

where |ABW| < 1,|BD| and [(AVU)T| < 7|(VONT| for 7 = max{7,,, Tap}. Besides,
IS (VO < pevef i,
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LEMMA 4.12. Suppose A in the form of (2.22) is a generalized HSS matriz satis-
fying the assumptions in Assumption 4.5. Then in the evaluation of £ = Apz, fi(fT)
produced after the top-down traversal in (3.11) satisfies

L
(4.15) ﬁ(f'+) = (AL + AAL)Z with AAp = Z AAgC)7
k=1
where
R 2L—2k+3 >k L
(4.16) AAP = 3 af ( [10¢ )B““) ( [Tv®) )
|€]=1 Jj=L i=k

AV and AB® are defined in Lemma 4.11, and
oy @, if & =
£r7(4) o U fo = 0, .
AR { AUO) L UDAZGEY) £ AUDAZU-D, if ¢ =1, with
IAZD| < emaend,  |AUD| < 7,|UWD).

Besides,
. 4 A
(4.17) |AALl < = (2L+ D)p?epcd; max{1, 22} 73, | AL

We can then show the backward stability of transforms with generalized HSS
matrix-vector multiplications.

THEOREM 4.13. Suppose A in the form of (2.22) is a generalized HSS matriz
satisfying the assumptions in Assumption 4.5. Assume the matriz-vector multiplica-
tion of A with a vector z is performed with Az computed via the traversals in (3.10)
and (3.11), Auz computed similarly based on structure symmetry, and Apz computed
directly. Then

ﬂ(Az) =(A+AA)z with

|AA| < max{1, (2L+ Dp?eped; max{1, 2} b ram 4l Al
Proof. The framework of the stability analysis is similar to that in the proof of
Theorem 4.9. For convenience, we follow the same definitions and notation as in the
proof of Theorem 4.9 up to (4.12).
Note that AAr, and AAy in (4.10) are perturbations generated from HSS matrix-

vector multiplications that have the same nonzero structure as Ay, and Ay, respec-
tively. According to (4.17) in Lemma 4.12, we have

|AAL| < = (2L+ Dp?cpc; max{1, 22} 13| AL

By the structure symmetry between Ay and Ap, Lemmas 4.11 and 4.12 also apply
to AAy. Then,

- 4
|AAy| < = (2L+ D)p?epcd; max{1, 3 ?}13,m|Aul.
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22 KERNEL MATRIX APPROXIMATIONS AND STABILITY

Since the nonzero patterns of AAp, AAy, and AAy do not overlap, we then have
~ 4
|AA| < max{1, §(2L +1)p*cpcy maX{l,c?FL_z}}TgmM\,

Accordingly, by (4.13), we have

|AA] < [AA] + (2€mach + €macn) ([4] + |AA])

mach

4
< (12 + (1 + 72) max{1, §(2L + 1)p2636?] max{1, C%L_Z}}Tgm)|A|

< max{1, §(2L + 1)p2eped max{1, c3E 2} 3, 44] Al d

Theorem 4.13 shows that the generalized HSS transform is backward stable. This
holds even if the norm bound cr of the translation generators is larger than 1. In
that case, the backward error has polynomial (instead of exponential) growth. With
further control on the norm bounds of the generators (via the SoE expansions), the
error propagation of the generalized HSS transform can be even reduced to poly-
logarithmic.

COROLLARY 4.14. Suppose the generators of the generalized HSS matriz A are
produced via the SoE expansions as in (3.4) so that the generators further satisfy cr =
cy = 1. Then the generalized HSS matriz-vector multiplication as in Theorem 4.13
satisfies

4
fi(Az) = (A+ AA)z with |AA| < max{1, §(2L + 1)p?cs}3mral Al.

Remark 4.15. (Key observations) The studies in this section provide some useful
insights into the stability of rank-structured algorithms like matrix-vector multiplica-
tions. Two key components play crucial roles in the stability: algorithm architecture
and norm bounds of translation generators. As compared with sequential architec-
tures, hierarchical architectures help reduce the length of the error propagation path
from O(n) to O(logn). See Theorems 4.9 and 4.13. Smaller norm bounds for transla-
tion generators yield lower error growth factors. Depending on these two components,
the possible error growth patterns are as follows:

e exponential (e.g., generalized SSS with ¢z > 1 as in Theorem 4.9);
e polynomial (e.g., generalized SSS with ¢y = 1 as in Corollary 4.10, and HSS
with er > 1 as in Theorem 4.13);
e poly-logarithmic (e.g, generalized HSS with ¢z = 1 as in Corollary 4.14).
Thus, to perform the fast transforms in this paper, using generalized HSS structures
derived from SoE expansions potentially has the best stability.

5. Numerical experiments. In this section, we use some numerical exper-
iments to illustrate the stability of transformations via generalized SSS and HSS
matrix-vector multiplications. We also confirm the high accuracy and efficiency of
the generalized HSS matrix-vector multiplication.

Four kernel functions in Section 2 are considered in the tests: Cauchy (1/(z —y)),
Gaussian (e~ (*=%)%), logarithmic (log |« — y|), and square-root (1/+/[z2 — y2]). For
convenience, we let the data sets x and y be identical. Whenever a diagonal entry
k(x;, z;) is undefined, it is set to be zero. This does not really matter for the stability
tests related to off-diagonal structures.
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For each kernel matrix, SoE expansions are used to obtain a generalized SSS or
HSS approximation A. For SoE approximations to Cauchy, logarithmic, and square-
root kernels, a parameter ¢ like in (2.3) is needed to determine the valid intervals
of the approximations. With the finest-level block size m fixed, appropriate § and
the corresponding quadrature nodes and weights are chosen for different data sizes
n to meet conditions (2.10)— (2.11). Given a tolerance ¢ = 107! of SoE approxi-
mations, some sets of quadrature nodes and weights for § = 4%, k=1,2,...,10 are
precomputed. The number of quadrature points p varies from 30 to 67 among such 4.
This is also the numerical rank for the off-diagonal low-rank approximations. For the
Gaussian kernel case, they do not depend on ¢ (see Section 2.2.1) because the kernel
function has no singularity at 0. Accordingly, one set of quadrature nodes and weights
is sufficient for all Gaussian kernel tests. Note that this set of quadrature nodes and
weights is calculated from a piece of Matlab code in a double-precision environment.
This restricts a relative accuracy to up to 10712 for the Gaussian kernel case [21].

The tests are performed in Matlab R2021a on a server with two Intel Xeon E5-
2660V3 CPUs and 192GB of memory.

5.1. Stability of generalized SSS and HSS transforms. In exact arith-
metic, the generalized SSS and HSS approximations A are equal. On the other hand,
they have different stability behaviors in numerical computations.

For the matrix-vector multiplication f = Az, the backward error of an approxi-
mate product f is as follows [18, (3.6)]:

. = i — £l
Ehwd = min{e > 0:f = (A4 AA)z, |AA| < ¢]A|} = max ———,
i=tn (|A||z]):

where A A is the perturbation of A when performing the matrix-vector multiplication.
This guarantees |[AA| < epwal|A|. According to the stability analysis in Section 4,
results like (4.7) indicate that a block Aj; potentially has larger perturbation errors
when |k —1| is larger. With fixed finest-level block size m, in order to test large |k —1|,
large matrix sizes n are needed. Since it becomes impractical to evaluate f via dense
A when n is too large, we can just look at the m x m finest-level lower-left corner
block of A with row index set n —m + 1 : n and column index set 1 : m. Denote such
a block by A¢. We evaluate f¢ = A°z¢ with a vector z¢. With numerical evaluations
using either generalized SSS or HSS forms, we obtain f¢ = fl(A°z¢) and inspect the
backward error

(5.1) €hwdg = max 7&’0 — £
' R N (VC PR
In the stability test, we use x with n equal-spaced data points distributed on
[0, 1], where
n=2%x10* k=1,2,...,10.

Set the size of the corner block A€ to be m = 100. A€ is multiplied with z¢ =
1,...,n)T.

With generalized SSS/HSS forms, we plot ef_; in Figure 5.1. For the generalized
SSS cases, €f,,q increases with n for different kernels. For the generalized HSS cases,
€fwq Temains nearly steady for different n, which aligns with Lemma 4.12. The results
are consistent with our analysis and confirm the superior stability of transforms via
generalized HSS structures.
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—e—Generalized SSS —e—Generalized SSS
——6—Generalized HSS ——6—Generalized HSS
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1074 1074
1071 1018
10° 108 107 10° 108 107
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Cauchy Gaussian

—e—Generalized SSS —e— Generalized SSS
10712 }|—6—Generalized HSS 10712 }|—6—Generalized HSS

1074

10-16 10-16

Logarithmic Square root

FIG. 5.1. Backward errors f 4 in (5.1), with A being generalized SSS or HSS approrimations
to some kernel matrices.

5.2. Efficiency and accuracy of generalized HSS matrix-vector mul-
tiplications. We now demonstrate the efficiency and accuracy of generalized HSS
matrix-vector multiplications. x has n random data points uniformly distributed on
[0,1]. We set the finest-level block size m = 200.

For Cauchy kernel matrices with varying n, we report the time to construct the
generalized HSS approximation from SoE expansions, the time to evaluate matrix-
vector products with the generators, and the storage for the generators. See Figure 5.2,
which shows nearly linear complexity and storage. For the other kernels mentioned
above, the results are similar.

10°

7 100 { [=e— Construction time] Z

> P . —w—Evaluation time =
S e - - -O(n) refeence A7
N 108 - ot s
2 @ 10
S (5]
° £
g 7 [ o
8
£ 10 102
E

10° 103

10t 108 108 10t 10° 108
n n
Storage Timing

F1G. 5.2. Storage and timing for Cauchy kernel matrices.

For the four types of kernel matrices, Table 5.1 shows the relative errors for the
generalized HSS matrix-vector multiplications. The results confirm the high numerical
accuracy of the multiplications.

6. Conclusions. This work reveals how some popular fast transforms via SoE
expansions are eventually performing certain structured matrix-vector multiplications.
This in turn leads to a valuable strategy for approximating some kernel matrices via
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TABLE 5.1

llAz—Hzlly for different kernels and data sizes, where H is the original

Relative errors
|Hz]|2

kernel matriz.

n Cauchy Gaussian | Logarithmic | Square-root
(x10%) || e=10"1 [ e=10"" | e=10"P e=10"1
4 5.24e-17 2.73e-13 1.34e-15 1.83e-16
8 3.42e-16 3.45e-13 7.25e-16 3.06e-16
16 1.36e-15 3.93e-13 3.68e-15 6.17e-16
32 9.62e-16 4.11e-13 1.53e-14 7.27e-16
64 1.79e-15 4.28e-13 9.66e-15 6.83e-16
128 2.95e-15 4.38e-13 2.18e-15 9.91e-16
256 3.59e-15 4.42e-13 1.95e-14 1.66e-15
512 2.28e-14 4.43e-13 1.83e-14 2.08e-15
1024 5.15e-14 4.43e-13 2.17e-15 3.13e-15

SoE expansions. It also gives an intuitive way to study the backward stability of
these transforms. We have shown the stability limitation of the previous transforms
based on generalized SSS forms, and demonstrated how the stability may be further
improved via generalized HSS forms. Following the stability studies, the work even-
tually provides a comprehensive picture of stability issues of structured algorithms.
That is, algorithm architectures and norm bounds of translation generators determine
the backward stability. Hierarchical structured algorithms are typically preferred to
sequential ones. Methods like SoE expansions are nice ways to produce generators
with controlled norms. In future work, it would be interesting to lay out the detailed
matrix structures for algorithms based on higher dimensional SoE expansions like
mentioned in Section 2.3. We expect that the essential ideas of our stability studies
can be naturally extended to higher dimensions.
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A. Appendix: Proofs of the lemmas in Section 4. This appendix includes

proofs for some lemmas in the stability analysis. We first give a lemma that will be
used in later proofs.

LEMMA A.l. Letn € Ny and € be a small quantity such that 0 < ne < 1/2. Then

z": " ek<éne
k -3

k=1

Proof. By the binomial theorem, for 0 < ne < 1/2,

" /n " (ne)* n—1 e k e
()= S (5) = s e
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Proof of Lemma 4.7. In the backward traversal stage, we have the following re-
cursive relation of fl(vy) through the update formula v = szk + Rpvi_1:
(A1)
A(vy) = (I +AY1)(Q1 4+ AQ1) 24, =1,
k (I + AYy) [(Q + AQk)Tzi + (R + ARp) fl(vi—1)], 2< k<N -2,

where |AQT| < 7,,|QF|, |AR| < 7| Ri| by Lemma 4.1, and |AY%| < €macnl-
By expanding the recursive relation (A.1) and applying identity (4.2), we obtain

the following summation form of fl(vy), for k=1,..., N — 2:
E[>141
A(vi) =) [ [T U +AY)(Re + ARy | (I + AY)(Qu + AQ) Tz
=1 L s=k
ko [>i+1 k—1 >i+1
=Y ] B+ >_ a¢ (H Rs> (Q+A0Q) %
=1 s=k €|=1 s=k
=:vp +Avy with
ko[ k—i41 S+l
Avp=>"| Y A* (H RS) Qf} 7,
=1 | |¢]=1 s=k

where ASQT and ASR,, for ¢ € {0,1}, are given by (4.5) and (4.6), respectively.
With Assumption 4.5, Q7 is a p x m matrix for each I. Then, |Q7 |1 < cyp.
Thus, with (4.5) and (4.6),

IAYQT 11 < Tl QF 11 + €mach |QF 11 + €machp|QT |11 < perT3m,
||A1R3H1 < TpHRsHI + emachHRs”l + 6machTzf)”}%s”l < CTT3p- |

Proof of Lemma 4.8. In this stage, we compute ﬂ(f}:) by multiplying P, B with
fi(vi_2) defined in (4.4). Combing with the definition of Avj_s in Lemma 4.7 to get

3
A(£7) = (P + AP:)(B + AB)fi(vi—2) = PuBvi_2+ »_ A%(PiBvj_y)
j&l=1
= f;: + Aﬁ: with

k=2 | k—Il+1 241 )
(A.2) Afgzz Z A& PkB< H RS> Qf] z,
=1 | |¢]=1 s=k—2

where |AB| < 7,|B|, |APy| < 7| Py| by Lemma 4.1 and ASQT and AR, are respec-
tively defined as in (4.5) and (4.6).

Let Ay, =Ygl At [PoB (T2, ) QF| for k > 1+ 1. Tt has the fol-

1€1=1
lowing norm relation by setting &€ = (&, &k—1, . -.,&) and using Lemma 4.3:
~ k—1+1 >l+1 ~ ~
(A~3) HAAk,l”max < Z ”A&PkHOOHAgkle”max H ”A&SRS‘Il”A&QlTHl'
l€|=1 s=k—2
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To bound the right-hand side of (A.3), we list the norm bounds for the matrices
(derived from Assumption 4.5 or given in Lemma 4.7):

|A°Py]loo < pevy  A%Bllmax < cBlAlmin,  [|A°Rs[1 < er, [A°QT |1 < pev,
||A1Pk||oo S pCUTpa HAlB”max < CB7—p|14|minv ‘|A1.Z:25||1 S CTTSpa

IATQT |11 < perTsm.

Thus, from (A.3) and Lemma A.1, we obtain

k—1+1 >l+1
[AAk | < 1AL tllmax < D (peuTs*) (el AlminT5 ) ( I cr7s )

[€l=1 s=k—2

k—l+1
k—1+1
= Z < €| >p ch%]ch 2|A|mm <
[&]=1
4
< —(k—=141)T3mp CBCUC];“ = 2|Akl|

-3

(peuTsh,)

|

Proof of Lemma 4.11. Following the bottom-up traversal in (3.10), we obtain the
following equation for 1 <4 < L via the recursive relations by noting AR

L

L
ﬂ(z(i)) - H(V(j) + AV(j))TZ(L+1) - H(V(j))T + Z Aé H(V(j))T

j=i

where

(A4)

L L—i+1

=i =1 =

Tm|(VO)T|, ifj=1L

UNT| < .
AV )'—{mwm)T, 1<) <L,

2L+,

by Lemma 4.1. Hence, [(AVU)T| < 7|(VONT|, with 7 = max{7,,, T2, }, for all j.

The coefficient for the case j = L in (A.4) is 7, because (V)T

is a block

diagonal matrix with the blocks {VI'} defined in (3.9) and each V! is a p x m matrix
by Assumption 4.5. Based on this, we also obtain

IV <pey and  [(AVE)T ||y < peyrin.

For the cases when 1 < j < L in (A.4), the coefficient would be 73, since (V)T is a
block diagonal matrix with p x 2p blocks (Wch Wg;) Accordingly, for 1 < j < L,

VOl < er and (AVO)T ||y < errap.

Thus, by Assumption 4.5, for 1 <4 < L,

For fl(y®)

f(y™)

L L
Aé H(V(i))T < 72\':1 H H(V(j))TH1 < chc% lT;',iL
j=i j=i

obtained via recursive formulae in (3.10), we have

L L—i+1

L
(B“H—AB”)) H(V(ﬁ))T+ Z AEH(V(j))T
j=i lg€]=1 j=i
—i+2
= y4 Z AS B()H (VnT z(LHD,
1€l=1
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with |[AB®| < 7,|B®W| for 1 <i < L. u|
Proof of Lemma 4.12. Following the top-down traversal in (3.11), the following
expansion of ﬂ(f@) holds for 1 <3< L —1:

A7) = (I +AZOY)UD + AUD)AFD) + Ay +D))
i+1 >k
= i([+ Az (1] [(Um +AUYYT + Az(jfl))} fi(y®),
k=1 j=i

where |AZ(j)| < emacnl, and AU is a block diagonal matrix with block size 2p x p
that satisfies |AU)| < 7,|UY)| according to Lemma 4.1. Hence, for 1 < j < L —1,

(A-5) 0D < e, AUV oo < 7.

By multiplying U%) with ﬂ(f(Lfl)) in the evaluation stage, we have

(A.6) A(ALz D) = (U™ + AUW) A(F D)
L >k
=S I [ (U9 + AU + AZ(J’—U)} fi(y®)
k=1 \j=L
L >k L—k+1 2k
=S TIv9+ 3 a¢[T[09 ] | ap™),
k=1 \j=L lgl=1 j=L
where

AU =y AWTU = AUY) 4 UDAZO-D L AUDAZG-D

and AU is a block diagonal matrix with block size m x p that satisfies |AU(L)| <
7| U], Thus,

(A7) IATD| oo < (7 + €mach + €machTp) [T [loo < 73p|UD|| 00 < 173y,
and by Assumption 4.5,
(A.8) U)o < peyy and  |JAUD o < pepTy.

Moreover, if we combine (A.5), (A.8) together with (A.7), we get

< pcy c% kTgl)gl, for1<k<L.
o0

>k >k
(A.9) AST[ 09| < 7 11 HU(j)
j=L j=L

oo

Next, we discuss the perturbation AAy,. If we plug (4.14) into (A.6), we obtain
fA(ApzE) = Apz@ ) £ AApz(P ) with A Ay, defined in (4.15). To analyze |AAy|,
we observe that the nonzero patterns of A/Alik) defined in (4.16) do not overlap for
distinct k. Then

(A.10) IAAL| < | AAL ||max < max [[AAM || o
1<k<L
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997  Hence, it suffices to find an upper bound for ||Afl£k) |lmax, for each k.

998 Let £ = (&1,&5,&5). Based on (4.16), we use norm bounds (A.9) and Lemma 4.11
999  to obtain

2L—2k+3 >k L
1000 AA(’“)H < AS T OW HA52B(’“)H A& T (vHT
Jade?], = > |ae ]I o |22 LTV
lgl=1 J=L o J=k 1
2L—2k+3
1001 < Z chch« szﬁl cB|A|nmm7"52 pCUC% kT‘s‘”‘l
|€1=1
2L—2k+3
2L — 2k +3
1002 < p?epct AT Almin Z ( €| + )Tgﬂ
1€1=1
4 .
1003 <g(@L-2k+3)p Yepch ey, | AL,
1004 where the last step is given by Lemma A.1.
1005 By applying (A.10) and Assumption 4.5, we obtain (4.17). O
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