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Abstract. Sum-of-exponentials (SoE) expansions provide an efficient strategy to perform some5
matrix transforms. In this paper, we show that they can also serve as a valuable way to com-6
pute structured approximations to some kernel matrices. We first illustrate that some existing fast7
transforms (Hilbert, Gauss, etc.) are essentially using generalized sequentially semiseparable (SSS)8
structures for which the stability has been in question before. We then give comprehensive analysis of9
the stability of transforms via general SSS structures and rigorously prove that such transforms may10
have numerical errors growing exponentially, while the use of SoE expansions leads to polynomial11
error growth. Moreover, we give a way to further reduce the error growth to poly-logarithmic via the12
use of hierarchical tree structures. Our analysis reveals the two key components that ensure stabil-13
ity of rank-structured transforms and other algorithms: algorithm architecture and norm bounds of14
the generators of the structure. It concretely confirms some long-standing speculations: sequential15
structured matrix (like SSS) algorithms are potentially unstable, even if relevant generators have16
bounded norms; hierarchical structured algorithms are stable as long as relevant generator norms are17
bounded. SoE expansion is then just an effective way to further control the norms of the generators.18
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1. Introduction. Kernel matrices are frequently used in numerical computa-22

tions and data analysis. Consider a kernel matrix of the form of23

(1.1) H = (κ(xi, yj))xi∈x,yj∈y ,24

where κ(x, y) is a kernel function and xi and yj are points in data sets x and y,25

respectively. The numbers of points in x and y may be different, but we suppose26

|x| = |y| = n for convenience.27

We are particularly interested in some kernel matrices arising from certain trans-28

forms (such as Hilbert, Gauss, and Hankel transforms). A straightforward way to29

perform these transforms (multiplications of H with vectors) costs O(n2). There30

are fast transform algorithms that can reach nearly linear complexity. One such al-31

gorithm that has been very popular in the studies of integral equations is based on32

sum-of-exponentials (SoE) approximations for κ(x, y). They are truncated expansions33

in terms of sums of exponential functions. For some kernels, SoE expansions with a34

small number of terms can reach high accuracy and the complexity to multiply H35

with vectors can be reduced to O(n) [13, 21, 32]. These algorithms are much simpler36

as compared with methods such as the fast multipole method (FMM) [14], which37

requires to consider local-multipole and multipole-multipole expansions for certain38

dense translation operators. SoE-based schemes instead use translation operators39

that have simple diagonal forms and also have nice norm bounds [2, 6, 12, 32]. SoE40

expansions are also useful for accelerating some other computations [3, 4, 5, 30].41

This work has two main subjects: showing how SoE expansions may be used42

for fast structured approximations of some kernel matrices, and further providing43
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2 KERNEL MATRIX APPROXIMATIONS AND STABILITY

comprehensive understanding of the stability of fast algorithms like transforms in44

some structured matrix forms.45

1.1. Background on SoE expansions for fast transforms. To prepare for46

later discussions, we briefly review some background materials on how SoE expansions47

may be used to accelerate some transforms. Like in various previous studies [2, 6,48

13, 16, 20, 32], our discussions focus on point sets x and y in (1.1) on the real line.49

(Extensions to higher dimensions will also be discussed later.)50

For various kernel functions defined on one dimensional x and y, the methods51

typically represent a kernel function κ(x, y) in an appropriate integral form and then52

approximate the integral by a quadrature rule [2, 6, 13, 21, 26, 31]. As an example,53

one frequently used kernel function is the Cauchy kernel κ(x, y) = 1
x−y corresponding54

to the Hilbert transform55

(1.2) fi =

n∑
j=1

yj ̸=xi

zj
xi − yj

, i = 1, 2, . . . , n,56

where xi and yj are points in an interval [a, b] and zj ’s are scalars. When s = xi−yj >57

0, an SoE expansion may be obtained based on the Laplace transform followed by an58

appropriate quadrature approximation:59

(1.3)
1

s
=

∫ ∞

0

e−stdt ≈
p∑

k=1

wke
−stk ,60

where p is the number of quadrature nodes and tk and wk are the quadrature nodes61

and weights, respectively.62

A key step in the fast Hilbert transform is to utilize the above expansion to63

evaluate64

(1.4) f+
i =

α∑
j=1

xi>yj

zj
xi − yj

,65

where α is an appropriately chosen index (see Section 2.1.1). According to (1.3), we66

have67

f+
i ≈

α∑
j=1

p∑
k=1

wkzje
−(xi−yj)tk =

p∑
k=1

wkβk,αe
−(xi−yα)tk with(1.5)68

βk,α =

α∑
j=1

zje
−(yα−yj)tk .(1.6)69

It can be shown that βk,α for all k = 1, 2, . . . , p, α = 1, 2, . . . , n can be precom-70

puted via fast updates with total cost O(pn) [13, 21, 32]. Following this precomputa-71

tion, it costs O(p) to evaluate each f+
i . Accordingly, the total cost for evaluating f+

i72

for all i = 1, 2, . . . , n is O(pn). Some details will be given in Section 2.1.1.73

1.2. Motivations and contributions. The aforementioned evaluation process74

(1.5)–(2.4) is very efficient, but is not immediately intuitive to understand. The75

evaluation of all fi and the update for all βk,α are performed in iterative updates of76

some vectors and the numerical stability is unclear.77
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CHENYANG CAO AND JIANLIN XIA 3

In fact, the whole transform may be assembled into a structured way to perform a78

fast matrix-vector multiplication. That is, the kernel matrix H in (1.1) can be approx-79

imated by a structured matrix. This leads to a matrix form of the fast transform and80

suggests that SoE expansions are also useful for obtaining structured approximations81

of kernel matrices. Indeed, later we can see that SoE expansions produce effective82

compression of some blocks of H and further have some attractive features.83

Thus, this work aims to give an intuitive algebraic way to reveal and extract84

the underlying structure within fast transforms based on SoE expansions. Next, the85

structured matrix form makes it convenient to analyze the numerical error propagation86

and uncover potential stability issues in the transforms. Also, we obtain another87

structured matrix transform with superior stability and reduced error growth.88

Specifically, the main contributions of this work include the following.89

1. We provide an intuitive matrix version that facilitates the understanding of90

the mechanism of some fast transforms and helps to make the ideas more ac-91

cessible. We show that they essentially perform matrix-vector multiplications92

in terms of some rank-structured approximations to relevant kernel matrices.93

The SoE framework is a strategy to organize data points into certain sepa-94

rated clusters that correspond accurate low-rank off-diagonal approximations.95

For the Hilbert transform above, the structured form is just a generalization96

of the so-called sequentially semiseparable (SSS) matrix [8, 11], represented97

by a sequence of smaller matrices called generators. With SoE expansions,98

the so-called translation generators further have diagonal forms.99

2. The matrix version further makes it convenient to inspect the stability and er-100

ror propagation of the transforms. It has long been suspected that SSS matri-101

ces may be susceptible to stability issues and the stability of SSS matrix-vector102

multiplications may be much worse than that of usual full matrix-vector mul-103

tiplications [1]. However, the general stability analysis is lacking. Here, we104

provide a comprehensive rigorous study of the stability of (generalized) SSS105

matrix-vector multiplications and show that the backward error may poten-106

tially grow exponentially with respect to the matrix size (Theorem 4.9). This107

clearly reveals the stability risk.108

3. To improve the stability, we convert the generalized SSS form into a general-109

ized form of the hierarchically semiseparable (HSS) structure [9, 29] that has110

superior stability in its operations. The error propagation of generalized HSS111

matrix-vector multiplications is significantly lower than with generalized SSS112

forms (Theorem 4.13). What’s more, when SoE expansions are used to obtain113

the generalized HSS forms, the error propagation can be further reduced.114

4. The studies give comprehensive insights into the stability of structured algo-115

rithms like matrix-vector multiplications. That is, there are two key compo-116

nents that impact the stability: algorithm architecture and norm bounds of117

generators. The former controls the length of the error propagation path and118

the latter determines the error growth rate at each algorithm step. Hierar-119

chical structured algorithms like HSS ones have lower error growth than se-120

quential ones like SSS. Carefully bounded norms of generators (like from SoE121

expansions) can significantly lower the error growth factor. See Theorems 4.9122

and 4.13 and Corollaries 4.10 and 4.14 and some numerical validations.123

The paper is organized as follows. Section 2 shows how some fast transforms via124

SoE expansions may be formulated as matrix forms by constructing generalized SSS125

approximations to the kernel matrices. Section 3 further shows how SoE expansions126

may be used to produce generalized HSS approximations. The stability of transforms127
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4 KERNEL MATRIX APPROXIMATIONS AND STABILITY

via these two types of structures is then analyzed in Section 4, with some proofs128

supplied in Appendix A. The stability results are verified by some numerical tests in129

Section 5. Finally, Section 6 concludes the paper.130

The following is a collection of commonly used notation in the paper.131

• Throughout the presentation, bold lower-case letters are used for vectors and132

sets of points.133

• Without loss of generality, assume x and y in (1.1) can be partitioned as134

(1.7) x = x1 ∪ · · · ∪ xN , y = y1 ∪ · · · ∪ yN ,135

where each cluster xk has m points so that xk = (x(k−1)m+1, . . . , xkm)T and136

n = Nm, and yk has a similar form.137

• diag(v) denotes a diagonal matrix defined by a vector v.138

• For a vector v, a function f(v) represents a vector function defined entrywise.139

• For a matrix A, a function f(A) is a matrix function defined entrywise. For140

example, exp(A) represents a matrix with entries exp(Aij) (instead of the141

usual matrix exponential).142

• For a vector v and a scalar c, c+v or v+c is the vector resulting from entrywise143

summation by c. For a matrix A, c+A can be similarly understood.144

2. Matrix version of fast transforms via SoE expansions of kernel func-145

tions. In this section, we present some types of fast transforms in terms of structured146

matrix-vector multiplications. Selected types of kernel functions are shown as exam-147

ples. For simplicity, we focus on the real line with the points xi ∈ x and yj ∈ y inside148

an interval [a, b] and suppose the points in each set are ordered from the smallest to149

the largest. Generalization to higher dimensions will be discussed in Section 2.3.150

2.1. Matrix version of the fast Hilbert transform. The first transform we151

consider is the Hilbert transform defined in (1.2). It corresponds to the Cauchy kernel152

κ(x, y) = 1
x−y .153

2.1.1. Fast Hilbert transform via SoE expansions. We first provide some154

details on how to quickly perform the Hilbert transform via SoE expansions for the155

Cauchy kernel. The discussions in this subsection are based on [13, 21, 32].156

To utilize the expansion in (1.3), pick δ ∈ (0, 1) so that the number of xi, yj points157

satisfying |xi − yj | ≤ δ(b− a) is small. Then rewrite (1.2) as158

(2.1) fi = f+
i + f−

i + f0
i ,159

where f+
i has the form in (1.4) and consists of all xi, yj points satisfying xi − yj >160

δ(b−a), f−
i consist of all xi, yj points satisfying xi−yj < −δ(b−a), and f0

i corresponds161

to the remaining points. It is then sufficient to just consider f+
i since f−

i can be162

handled in the same way for its negative. The choice of α in (1.4) is to make163

(2.2) xi − yα+1 ≤ δ(b− a) < xi − yα.164

To accurately approximate f+
i , it can be shown that there exist quadrature nodes165

t1, . . . , tp and weights w1, . . . , wp with p = O(log(ϵ−1) log(δ−1)) such that [2, 7, 13]166

(2.3)

∣∣∣∣∣1s −
p∑

k=1

wke
−stk

∣∣∣∣∣ ≤ ϵ for s ∈ [δ(b− a), b− a].167

(Note that for s = xi − yj , we also have s ≤ b − a.) In practice, the quadrature168

nodes and weights are first found for a single interval [1, δ−1] and then adapted to169

[δ(b− a), b− a] by scaling.170
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CHENYANG CAO AND JIANLIN XIA 5

With this quadrature approximation, we obtain (1.5)–(1.6). For all k = 1, 2, . . . , p,171

α = 2, . . . , n, βk,α in (1.6) can be precomputed via updates:172

(2.4) βk,α = e−(yα−yα−1)tk

α−1∑
j=1

zje
−(yα−1−yj)tk + zα = βk,α−1e

−(yα−yα−1)tk + zα,173

where βk,1 = z1 for all k. The total cost of these updates is O(pn). Accordingly, f+
i174

for all i = 1, 2, . . . , n can be approximated using (1.5) in O(pn) complexity. Similarly,175

apply the idea to f−
i . f0

i is directly evaluated, which costs O(mn). With small p and176

m, the Hilbert transform can be accurately performed in linear complexity.177

2.1.2. Matrix form of the SoE expansion. The fast Hilbert transform in178

[13] as in the previous subsection may be made more intuitive through a matrix form179

of the SoE expansion. For the quadrature weights wk and nodes tk in (2.3), let180

(2.5) w =
(
w1 · · · wp

)T
, t =

(
t1 · · · tp

)T
.181

Picking α as in (2.2), we can rewrite (1.3) as a matrix form182

1

xi − yj
≈ pT

i Bsj with(2.6)183

pi = exp(−(xi − yα)t), B = diag(w), sj = exp(−(yα − yj)t).(2.7)184

Then f+
i can be approximated as185

f+
i ≈ pT

i Bβα with βα =
(
s1 · · · sα

)
zα, zα =

(
z1 · · · zα

)T
.186

We essentially have βα = (β1,α, β2,α, . . . , βp,α)
T with βk,α given in (1.6). Furthermore,187

the updates of βk,α in (2.4) may be written in the following matrix form:188

βα = zα +
(
s1 s2 · · · sα−1

)
zα−1 = zα + Λα−1βα−1 with(2.8)189

Λα−1 = diag(exp(−(yα − yα−1)t)), β1 =
(
z1 · · · z1

)T
.(2.9)190

(Note the notation of scalar vector summation in (2.8).) This clearly illustrates why191

βα for all α = 1, 2, . . . , n can be precomputed in O(pn) complexity.192

The process of approximating f+
i , i = 1, . . . , n can then be summarized as follows.193

1. With β1 in (2.9), for j = 2, 3, . . . , n, compute194

βj = zj + Λj−1βj−1.195

2. For i = 1, 2, . . . , n, pick α by using i in (2.2) and compute196

f+
i ≈ pT

i Bβα.197

2.1.3. Structured matrix approximation to the Cauchy kernel matrix.198

The approximation (2.6) suggests that the SoE expansion essentially leads to low-199

rank approximations to some blocks of the kernel matrix H in (1.1) with the Cauchy200

kernel. It further means we can essentially get a structured matrix approximation201

to H. In this section, we derive this structured approximation, which can reveal the202

actual structured matrix operations beneath the fast Hilbert transform.203
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6 KERNEL MATRIX APPROXIMATIONS AND STABILITY

For the clusters in (1.7), the size m of each cluster is made small by choosing204

appropriate δ in (2.3) such that205

(2.10) xi − yj > δ(b− a) for all |i− j| ≥ m.206

For convenience, we assume that the clusters xk and yk fully interlace in the following207

sense:208

(2.11) xmax
k < ymin

k+1, ymax
k < xmin

k+1,209

where xmax
k and xmin

k respectively represent the largest and the smallest points in xk,210

and ymax
k and ymin

k are similarly defined. (If the clusters are not interlaced as this, it211

can actually be shown that the rank structure below becomes simpler.)212

Then consider a block Hk,l =
(

1
xi−yj

)
xi∈xk,yj∈yl

of H defined by the clusters xk213

and yl, where k > l+ 1. For each xi ∈ xk, yj ∈ yl, (2.6) holds. It is obvious that we214

can replace yα in (2.7) by ymax
k−2 so that the approximation (2.6) remains unchanged.215

Accordingly, we get a low-rank approximation216

(2.12) Hk,l ≈ PkBSl,217

where Pk is formed by stacking the rows pT
i corresponding to all xi ∈ xk and Sl218

consists of the columns sj corresponding to all yj ∈ yl:219

(2.13) Pk =
(
exp(−(xk − ymax

k−2)t
T )
)
, Sl =

(
exp(−t(ymax

k−2 − yl)
T )
)
.220

(Again, here the exponential functions are defined entrywise and are not matrix ex-221

ponentials.) Note that (2.12) holds for all 1 ≤ l ≤ k − 2 and Pk only depends on k.222

Thus, Pk can serve as a column basis matrix for the low-rank approximation of the223

following off-diagonal block row:224

(2.14)
(
Hk,1 · · · Hk,l · · · Hk,k−2

)
.225

See Figure 2.1(i) for an illustration.

yl

xk

Pl+2BQT

l

PNBRN−2 · · ·Rl+1Q
T

l

PkBRk−2 · · ·R2Q
T

1

yl

xk

PkBQT

k−2

PkBRk−2 · · ·Rl+1Q
T

l

(i) Off-diagonal blocks (ii) Structured off-diagonal approximations

Fig. 2.1. How the off-diagonal blocks (pattern-filled blocks in (i)) of the kernel matrix H
are approximated by low-rank forms from SoE expansions as in (ii).

226
Similarly, we may obtain an approximate row basis matrix QT

l for Hk,l, where227

Ql =
(
exp(−(ymax

l − yl)t
T )
)
.228

Ql only depends on l and can serve as a row basis matrix for the low-rank approxi-229

mation of the following off-diagonal block column:230

(2.15)
(
HT

l+2,l · · · HT
k,l · · · HT

N,l

)T
.231
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Also see Figure 2.1(i). Therefore, Hk,l has an approximation column basis matrix232

Pk and row basis matrix Ql. To reflect such a structure for all k = 3, . . . , N, l =233

1, . . . , k − 2, we may rewrite (2.12) as234

(2.16) Hk,l ≈ PkBRk−2Rk−3 · · ·Rl+1Q
T
l ,235

where each Rs is defined to make Sl = Rk−2Rk−3 · · ·Rl+1Q
T
l and has the form236

(2.17) Rs = diag(exp(−(ymax
s − ymax

s−1 )t)).237

At this point, the block row (2.14) and block column (2.15) both appear in nested238

structured forms as illustrated in Figure 2.1(ii). Such a structure is consistent with239

the SSS structure in [10, 11], except that the blocks with l = k ± 1 are kept dense.240

Similarly, when k + 1 < l, we may consider241

Hk,l =
(

1
xi−yj

)
xi∈xk,yj∈yl

= −
(

1
yi−xj

)T
yi∈yl,xj∈xk

.242

Following the same strategy as above, we can get a structured approximation243

Hk,l ≈ UkWk+1Wk+2 · · ·Wl−2BV T
l with(2.18)244

Uk = − exp(−(xmax
k − xk)t

T ), Vl = exp(−(yl − xmax
l−2 )t

T ),245

Ws = diag(exp(−(xmax
s − xmax

s−1 )t)).246

To summarize, we have a structured matrix A that approximates H as follows:247

(2.19) Hk,l ≈ Ak,l :=


Dk, if k = l,
Ek, if k = l − 1,
Fk−1, if k = l + 1,
UkWk+1 · · ·Wl−2BV T

l , if k < l − 1,
PkBRk−2 · · ·Rl+1Q

T
l , if k > l + 1,

248

where Dk, Ek, and Fk are equal to the corresponding dense blocks in H and249

(2.20)


Uk = − exp(−(xmax

k − xk)t
T ), Vl = exp(−(yl − xmax

l−2 )t
T ),

Pk = exp(−(xk − ymax
k−2)t

T ), Ql = exp(−(ymax
l − yl)t

T ),
Ws = diag(exp(−(xmax

s − xmax
s−1 )t)), Rs = diag(exp(−(ymax

s − ymax
s−1 )t)).

250

To better illustrate the block structure in (2.19), an example is shown as follows:251

252

(2.21) A =


D1 E1 U1BV T

3 U1W2BV T
4 U1W2W3BV T

5

F1 D2 E2 U2BV T
4 U2W3BV T

5

P3BQT
1 F2 D3 E3 U3BV T

5

P4BR2Q
T
1 P4BQT

2 F3 D4 E4

P5BR3R2Q
T
1 P5BR3Q

T
2 P5BQT

3 F4 D5

 .253

The matrix A has a form as mentioned in [11] that generalizes the classical SSS254

form, and is said to be a generalized SSS matrix for convenience. That is, its blocks255

on and below the first block sub-diagonal form a block lower triangular part of an256

SSS matrix and its blocks on and above the first block super-diagonal form a block257

upper triangular part of an SSS matrix. Note that the matrices P,Q,U, V,R,W , etc.258

that define the generalized SSS form are still the generators of SSS forms so we just259
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8 KERNEL MATRIX APPROXIMATIONS AND STABILITY

call them SSS generators. The generators P,Q,U, V are basis generators and R,W260

are translation generators. Note that SoE expansions further produce translation261

generators in diagonal forms and with norm bound 1.262

The generalized SSS form in (2.19) can be quickly multiplied with a vector via263

the SSS matrix-vector multiplication algorithm in [10, 11]. Write A(≈ H) as264

(2.22) A = AD +AL +AU,265

where AD is a block banded form corresponding to all the D, E, and F generators in266

(2.19), and the nonzero blocks of AL and AU are respectively block lower and upper267

triangular SSS forms. See Figure 2.2. Each part can be multiplied with a vector268

quickly. To facilitate our later stability analysis, we present the process to compute269

f+ = ALz with a vector z in Algorithm 2.1. Suppose the block sizes is m = O(p) and270

the W,R generators are p× p. Then the entire matrix-vector multiplication Az costs271

O(pn) flops.272

=

A AD AL AU

++

Fig. 2.2. Splitting of a generalized SSS matrix.

Algorithm 2.1 Fast lower-triangular SSS matrix-vector multiplication for f+ [11]

Input: SSS generators {Pk, Ql, Rs, B} of AL and vector z
Output: matrix-vector product f+ = ALz

1: Partition z =
(
zT1 · · · zTN

)T
conformably following the block partitioning of AL

2: v1 ← QT
1 z1

3: for k = 2, 3, . . . , N − 2 do
4: vk ← QT

k zk +Rkvk−1; ▷ Backward traversal
5: end for
6: for k = 3, 4, . . . , N do
7: f+k ← PkBvk−2; ▷ Forward traversal
8: end for
9: f+ ← (0, 0, (f+3 )

T . . . , (f+N )T )T ▷ Attaching zeros for the zero block rows in AL

Remark 2.1. SoE expansions of κ(x, y) like in (1.3) depend on the sign of x− y.273

An SoE expansion valid for x − y > 0 may need to change the signs of exponentials274

for x − y < 0. Thus in the splitting (2.22), the subblocks of AL and those of AU275

typically do not share the same block row or column basis matrices.276

2.2. Approximations to other kernel matrices. The generalized SSS struc-277

ture given in (2.19) also holds for kernel matrices H defined by various other κ(x, y)278

that can be approximated by SoE expansions. Some generators may differ. We follow279

similar notation as in the previous subsection and also suppose all xi, yj ∈ [a, b].280

2.2.1. Gaussian kernels. In the fast Gauss transform, it needs to quickly eval-281

uate matrix-vector products involving the kernel matrix H in (1.1) with the Gaussian282
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kernel κ(x, y) = e−(x−y)2/(4µ), where µ > 0. SoE expansions for the Gaussian kernel283

based on the Carathéodory-Fejér method [25] have been well studied [21]. They can284

be used to obtain a generalized SSS approximation to H as follows.285

• Rewrite e−s2/(4µ) through an inverse Laplace transform in the complex plane286

for s ∈ R and then discretize the complex integral to obtain an SoE form:287

(2.23) e−s2/(4µ) =
1

2πi

∫
Γ

ez
√

π

z
e−
√

z/µ|s|dz ≈ −
p∑

k=1

ck

√
π

zk
e−
√

zk/µ|s|,288

where Γ is a carefully chosen contour in the complex plane and ck, zk are289

generated from an algorithm developed in [26] that computes a nearly optimal290

approximation to ez based on the Carathéodory-Fejér method.291

• Substitute s = xi−yj into (2.23) for xi > yj to obtain the SoE approximation292

e−(xi−yj)
2/(4µ) ≈

p∑
k=1

wke
−(xi−yj)tk ,293

where wk = −ck
√
π/zk and tk =

√
zk/µ.294

• This approximation holds for all xi ∈ x, yj ∈ y that are used to define H in295

(1.1). Use it to obtain a generalized SSS approximation similarly to that in296

Section 2.1.3. Since the Gaussian kernel function has no singularity at the297

origin, the dense blocks Ek, Fk are omitted from the generalized SSS form in298

(2.19). Accordingly, the matrix approximation is given by299

(2.24) Hk,l ≈ Ak,l =

 Dk, if k = l,
UkWk+1 · · ·Wl−1BV T

l , if k ≤ l − 1,
PkBRk−1 · · ·Rl+1Q

T
l , if k ≥ l + 1,

300

where Dk is equal to the corresponding dense block in H and301

(2.25)
Uk = exp(−(xmax

k − xk)t
T ), Vl = exp(−(yl − xmax

l−1 )t
T ),

Pk = exp(−(xk − ymax
k−1)t

T ), Ql = exp(−(ymax
l − yl)t

T ),
Ws = diag(exp(−(xmax

s − xmax
s−1 )t)), Rs = diag(exp(−(ymax

s − ymax
s−1 )t)).

302

Here, the same notation as in (2.5), (1.7), and (2.11) is used (throughout this303

entire paper). Fast evaluation of the Gauss transform is achieved through a304

procedure similar to Algorithm 2.1 with O(pn) complexity given the block305

size m = O(p).306

2.2.2. Logarithmic kernels. For the logarithmic kernel log |x − y|, one way307

to obtain a generalized SSS approximation to the corresponding kernel matrix H is308

based on the SoE expansion in [32]. In the following, we let λ = δ(b− a).309

• Represent the function log(s) for s > λ in an integral form:310

log(s) = log(λ) +

∫ s

λ

1

t
dt.311

• Apply the SoE expansion in (1.3) to 1/t and integrate explicitly:312

log(s) ≈ log(λ) +

p∑
k=1

wk

tk
e−λtk +

p∑
k=1

−wk

tk
e−stk .313

This manuscript is for review purposes only.



10 KERNEL MATRIX APPROXIMATIONS AND STABILITY

• Replace s by xi − yj for xi − yj > λ:314

log(xi − yj) ≈ c+

p∑
k=1

ŵke
−(xi−yj)tk ,315

where ŵk = −wk/tk and c = log(λ) +
∑p

k=1 ŵke
−λtk .316

• Accordingly, the generalized SSS approximation to the logarithmic kernel317

matrix H is given by318

(2.26) Hk,l ≈ Ak,l =


Dk, if k = l,
Ek, if k = l − 1,
Fk−1, if k = l + 1,
c− UkWk+1 · · ·Wl−2BV T

l , if k < l − 1,
c+ PkBRk−2 · · ·Rl+1Q

T
l , if k > l + 1,

319

where Dk, Ek, and Fk are equal to the corresponding dense blocks in H,320

B = −diag(w1/t1, . . . , wp/tp), and Pk, Rs, Ql, Uk, Ws, Vl are the same as321

those in (2.20).322

2.2.3. Square-root kernels. Next, consider the square-root kernel κ(x, y) =323

1/
√
|x2 − y2|. Without loss of generality, assume the data sets x and y are in [a, b] ⊂324

R+. A generalized SSS approximation to the corresponding kernel matrix may be325

obtained following an SoE approximation procedure in [32].326

• For xi > yj , write the kernel as the Laplace transform of the modified Bessel327

function I0(·) of the first kind of order zero:328

1√
x2
i − y2j

=

∫ ∞

0

I0(yjt)e
−xitdt =

∫ ∞

0

I0(yjt)

eyjt
e−(xi−yj)tdt.329

The last equality is to use the scaled modified Bessel function I0(x)/e
x to330

avoid computational instability since it is a bounded function on R+.331

• Apply the algorithm provided in [32] to get a generalized Gaussian quadrature332

approximation and thus the SoE expansion for xi − yj > δ(b− a):333

1√
x2
i − y2j

=

∫ ∞

0

I0(yjt)

eyjt
e−(xi−yj)tdt ≈

p∑
k=1

wk
I0(yjtk)

eyjtk
e−(xi−yj)tk ,334

where the quadrature weights wk and nodes tk are close to those in (1.3).335

• Based on this expansion, we get a generalized SSS approximation to the336

square-root kernel matrix almost in the same form as in (2.19)–(2.20) other337

than slight modifications to some generators:338

(2.27)



Uk = exp(−(xmax
k − xk)t

T )⊙ I0(xkt
T )

exp(xktT )
,

Ws = diag(exp(−(xmax
s − xmax

s−1 )t)),
Vl = exp(−(yl − xmax

l−2 )t
T ),

Pk = exp(−(xk − ymax
k−2)t

T ),
Rs = diag(exp(−(ymax

s − ymax
s−1 )t)),

Ql = exp(−(ymax
l − yl)t

T )⊙ I0(ylt
T )

exp(ylt
T )
,

339

where ⊙ denotes the Hadamard product.340
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2.3. SoE approximations for other kernels and higher dimensions. SoE341

expansions for more kernel functions have been studied in various literatures and gen-342

eralized SSS approximations may be obtained for the corresponding kernel matrices.343

For instance, strategies similar to those in Sections 2.1 can also be applied to other344

functions that can be rewritten as Laplace transforms [7, 32]. Another such example345

is 1√
x2+y2

, which is useful for designing fast Hankel transforms. An SoE expansion346

can be obtained similarly to those for 1
x−y and 1√

x2−y2
based on generalized Gauss-347

ian quadratures [31]. This idea can also be extended to find SoE expansions of the348

Cauchy kernel in certain specific regions on the complex plane [31].349

In [2, 6], some algorithms are designed to obtain SoE expansions for some one-350

dimensional translation-invariant kernels κ̃(s) := κ(x, y) with s = x − y. The algo-351

rithms are based on solutions of some structured linear system and eigenvalue prob-352

lems. Examples of κ̃(s) mentioned in [2] include the following:353

• 1/sα with α a positive parameter;354

• J0(αs) with α a positive parameter and J0(·) the Bessel function of the first355

kind of order zero;356

• the Dirichlet kernel sin(Nπs)
N sin(πs) with N ∈ N;357

• kernels like log(sin2(πs)) and cot(πs) in harmonic analysis.358

In [22], a strategy based on Cauchy integration is used to construct SoE expansions359

for general analytical kernel functions κ̃(s) such as sn with odd n, sn log s with even360

n, exp(−αs2), the Helmholtz kernel e2πis/s,
√
s2 + α2, and 1/

√
s2 + α2 , where α is361

a certain a parameter. The main idea of this method is presented as follows.362

• Apply the Cauchy integral formula to κ̃(s):363

(2.28) κ̃(s) =
1

2πi

∫
Γ

κ̃(z)

z − s
dz, s ∈ R,364

where Γ is a Jordan curve in the complex plane and encloses the point (s, 0).365

• Partition Γ into pieces Γj such that ℜ(e−iθj (z − s)) > 0 after θj-rotation of366

z − s for any z ∈ Γj . Then an SoE expansion is given by367

(2.29)

κ̃(s) =
1

2πi

∑
j

e−iθj

∫ ∞

0

(∫
Γj

κ̃(z)e−tze−iθj
dz

)
etse

−iθj
dt ≈

p∑
k=1

wke
tks,368

where wk and tk are complex weights and quadrature nodes, respectively, and369

p = O
(∑

j log(maxz∈Γj |κ̃(z)|/ϵ)
)
for a given tolerance ϵ.370

Next, we comment on SoE expansions in higher dimensions. There are different371

ways to get multi-dimensional SoE expansions. As one example, for kernel functions372

like Gaussian in two dimensions, a splitting along the two directions may be made:373

(2.30) e−∥c−s∥2
2/(4µ) = e−(c1−s1)

2/(4µ)e−(c2−s2)
2/(4µ),374

where c = (c1, c2) and s = (s1, s2). When c and s are respectively located within two375

clusters of data points, SoE expansions like in (2.23) hold for each dimension if the376

two clusters are separated in that dimension. That is, if an interval for, say, all the377

c1 values does not overlap with an interval for all the s1 values. If this does not hold378

for a certain dimension, other expansions (like Hermite expansions) may be used [21],379

which leads to a mixture of expansions for the overall kernel.380
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12 KERNEL MATRIX APPROXIMATIONS AND STABILITY

As another example, consider the kernel function 1
∥c−s∥2

with c = (c1, c2) and381

s = (s1, s2) in two dimensions. As SoE expansion may be obtained based on a382

Laplace transform of the Bessel functions for c2 > s2 [15]:383

1

∥c− s∥2
=

∫ ∞

0

e−t(c2−s2)J0(t(c1 − s1))dt =
1

π

∫ ∞

0

e−t(c2−s2)

∫ π

0

eit(c1−s1) cos θdθdt384

≈
p∑

k=1

wk

qk

qk∑
l=1

e−tk[(c2−s2)−i(c1−s1) cos(πl/qk)],385

where wk and tk are respectively quadrature weights and nodes and qk is a positive386

integer depending on k. The fast algorithm in [15] provides a way to generate wk and387

tk from multipole expansions and is essentially performing a rank-structured matrix-388

vector multiplication like in this paper.389

There are also other useful techniques for generating SoE expansions for multi-390

dimensional kernels. The Cauchy integration method in [22] for finding SoE ex-391

pansions (like in (2.28)–(2.29) above) can be further extended to analytical kernels392

in higher dimensions. In [19], for the Cauchy kernel in complex regions, a system of393

quadrature weights and nodes is obtained via a conversion from multipole expansions.394

For multi-dimensional SoE expansions, similarly to the work here, it can be shown395

that fast algorithms like transforms are essentially performed in terms of certain rank-396

structured matrices.397

3. Stable transforms via generalized HSS approximations from SoE398

expansions. Fast transforms based on generalized SSS forms essentially compute399

matrix-vector products in a sequential way as in Algorithm 2.1. Later in subsec-400

tion 4.2, we shall see the potential stability limitation. In this section, we give a401

strategy that can significantly enhance the stability by converting the generalized402

SSS form resulting from SoE expansions into a generalized HSS form.403

3.1. Generalized HSS approximations from SoE expansions. We say a404

matrix A a generalized HSS matrix if it can be split as in (2.22) (also see Figure 2.2)405

and the nonzero parts of AL and AU are triangular lower and upper parts of standard406

HSS matrices, respectively.407

A brief review of the standard HSS structure in [9, 29] is as follows. An HSS408

matrix K has a block off-diagonal low-rank form and its blocks follow a partitioning409

strategy as given by a postordered binary tree T called HSS tree. To be specific,410

suppose T has nodes labeled as i = 1, 2, . . . , σ with σ the root of the HSS tree. Then411

for each non-leaf node i, the diagonal block Di has the form412

(3.1) Di =

(
Dc1 Uc1Bc1VT

c2
Uc2Bc2VT

c1 Dc2

)
,413

where c1, c2 are the left and right children of node i and the calligraphic letters D,414

U , V, B represent the so-called HSS generators so that Dσ ≡ K. U , V are basis415

generators for off-diagonal blocks and further satisfy the following nested relations:416

(3.2) Ui =
(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
,417

where R, W are known as translation generators.418

In the following, we convert the generalized SSS approximations in the previous419

section into generalized HSS approximations. More specifically, for an generalized420
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SSS form like in (2.22) and Figure 2.2, we may write the nonzero blocks of, say, AL421

in an HSS form. That is, in an HSS construction process, all the generators in (3.1)422

and (3.2) can be explicitly written based on SoE expansions.423

Remark 3.1. (Notation) The HSS construction is essentially for the submatrix of424

AL corresponding to block rows 2 to N and block columns 1 to N − 1, denoted by425

ÂL. Without loss of generality, assume N in (1.7) satisfies N = 2L + 1 so that ÂL426

has 2L block rows and 2L block columns and can be converted into an HSS matrix427

corresponding to an L-level full binary HSS tree T . The HSS form has an L-level428

hierarchical block structure. The leaf-level blocks correspond to the same partitioning429

as used in the SSS form of ÂL. For convenience, we relabel the point sets associated430

with the block rows and columns. That is, the set xj corresponding to the jth block431

row of ÂL is relabeled as x̂i, where i is the node of T that is the jth leaf ordered from432

the left. Then for a non-leaf node i with children c1 and c2, define x̂i = x̂c1 ∪ x̂c2 .433

Similarly, define sets ŷj . See Figure 3.1 below. We also introduce notation x̂max
i and434

x̂min
i like in (2.11). We further define the point that immediately precedes x̂min

i , if435

any, to be the predecessor of x̂, denoted x̂pred
i . If this point does not exist (when i is436

the leftmost node at its level of the tree), then x̂pred
i is set to be empty.437

Without loss of generality, we just show the HSS generators for translation-438

invariant kernels κ(x, y) with SoE expansion439

(3.3) κ(x, y) ≈
p∑

k=1

wke
−(x−y)tk with x− y ∈ [δ(b− a), b− a].440

For other kernels with different SoE expansions, minor modifications may be made to441

the HSS generators.442

Following (3.3), for any clusters xk,yl satisfying xmin
k − ymax

l > δ(b− a), we can443

obtain a low-rank approximation to the corresponding block in the kernel matrix as444

(κ(x, y))x∈xk,y∈yl
≈

p∑
k=1

wke
−tk(xk−yl) =

p∑
k=1

e−tk(xk−ymax
l )wke

−tk(y
max
l −yl)(3.4)445

= exp(−(xk − ymax
l )tT )B exp(−t(ymax

l − yl)
T ),446

where B = diag(w) as before. Now, for xk,yl corresponding to any nonzero off-447

diagonal block of ÂL, with the interlacing of the point sets as in (2.11), (3.4) naturally448

holds. Based on this, we can find the low-rank form of the corresponding block of ÂL.449

The following lemma shows how to obtain the HSS generators.450

Lemma 3.2. Suppose the kernel function κ(x, y) satisfies (3.3). Then ÂL can be451

written as an HSS form with generators as follows.452

• For a leaf node i of T ,453

Di = 0, Ui = exp(−(x̂i − ŷpredi )tT ), Vi = exp(−(ŷmax
i − ŷi)t

T ).454

• For a non-leaf node i with left and right children c1 and c2, respectively,455

456

Bc1 = 0, Bc2 = B(= diag(w)).457

If further i ̸= σ, then458

Rc1 = I, Rc2 = diag(exp(−(ŷmax
c1 − ŷpredc1 )t)),459

Wc1 = diag(exp(−(ŷmax
c2 − ŷmax

c1 )t)), Wc2 = I.460
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14 KERNEL MATRIX APPROXIMATIONS AND STABILITY

Proof. Let i and j be leaf nodes and respectively be the left and right children of461

their parent r. Clearly, Di = Dj = 0 by the definition of ÂL. According to (3.4), the462

lower off-diagonal block corresponding to x̂j and ŷi has a low-rank approximation463

(3.5) UjBjVT
i = exp(−(x̂j − ŷmax

i )tT )B exp(−t(ŷmax
i − ŷi)

T ).464

Since i is the left sibling of j, ŷpredj = ŷmax
i . We can then let465

Bj = B, Uj = exp(−(x̂j − ŷpredj )tT ), Vi = exp(−(ŷmax
i − ŷi)t

T ).(3.6)466

The upper off-diagonal block UiBiVT
j = 0 so we may set467

Bi = 0, Ui = exp(−(x̂i − ŷpredi )tT ), Vj = exp(−(ŷmax
j − ŷj)t

T ),(3.7)468

where Ui and Vj have forms consistent with those in (3.6).469

If i and j are non-leaf sibling nodes, (3.5) still holds so the same forms of U ,B,V470

generators as above can be used.471

We then derive the translation generators R,W. For convenience, suppose i has472

children c1 and c2, and j has children c3 and c4, as shown in Figure 3.1. The U ,B,V473

generators associated with c1, . . . , c4 can be similarly written out.474

ŷ
c1

ŷ
c2

ŷ
c3

ŷ
c4

x̂c1

x̂c2

x̂c3

x̂c4

ŷi ŷj

x̂i

x̂j

Dc1

Dc2Uc2
Bc2

VT

c1

UjBjV
T
i

Uc4
Bc4

VT

c3

Dc3

Dc4

i

j

c1 c2 c3 c4

i j

r

(i) Partition of Dr (ii) The HSS tree for matrix structure in (i)

Fig. 3.1. Partitioning of Dr corresponding to the tree nodes.

Noticing ŷpredj = ŷpredc3 and ŷmax
i = ŷmax

c2 , we have475

UjBjVT
i = exp

(
−
(
x̂c3 − ŷpredc3
x̂c4 − ŷpredc3

)
tT
)
B exp

(
−t
(
ŷmax
c2 − ŷT

c1 ŷmax
c2 − ŷT

c2

))
(3.8)476

=

(
Uc3

Uc4diag(exp(−(ŷmax
c3 − ŷpredc3 )t))

)
B

(
Vc1diag(exp(−(ŷmax

c2 − ŷmax
c1 )t))

Vc2

)T

477

=

(
Uc3Rc3

Uc4Rc4

)
B

(
Vc1Wc1

Vc2Wc2

)T

.478

Accordingly, we can set479

Rc3 = I, Rc4 = diag(exp(−(ŷmax
c3 − ŷpredc3 )t)),480

Wc1 = diag(exp(−(ŷmax
c2 − ŷmax

c1 )t)), Wc2 = I.481

Now, when UiBiVT
j is considered, we can similarly obtain482

Rc1 = I, Rc2 = diag(exp(−(ŷmax
c1 − ŷpredc1 )t)),483

Wc3 = diag(exp(−(ŷmax
c4 − ŷmax

c3 )t)), Wc4 = I.484

To summarize, we get the generators as given in the lemma.485
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From this lemma, we can see that the HSS form for ÂL further has highly struc-486

tured generators. That is, other than the leaf-level U ,V generators, all the other487

generators are diagonal matrices (with some even equal to 0 or I).488

By comparing the HSS generators in Lemma 3.2 with the generalized SSS gener-489

ators in (2.19), we can observe their connections. The HSS generators U , V, and D490

corresponding to the leaf nodes are just the P , Q generators of the SSS form. The491

translation generators R, W are basically the products of some R generators. This492

motivates a way to convert a general SSS form (not necessarily from SoE approxima-493

tions) to an HSS form.494

Remark 3.3. As mentioned in Remark 3.1, when i is the leftmost node at its level495

of the tree, then x̂pred
i is set to be empty. This does not impact the HSS generators496

above needed for multiplying ÂL with a vector. The reason is that ÂL is block lower497

triangular and any nonzero block UiBiVT
j in its block lower triangular part satisfies498

i > j. Accordingly, this i is never the leftmost node at its level.499

3.2. Fast transforms via HSS matrix-vector multiplications. Following500

the splitting (2.22), it suffices to look at the multiplication of AL with a vector z.501

With the notation in Remark 3.1, this is just to multiply the block lower triangular502

HSS matrix ÂL with a part of z. We may adapt the HSS matrix-vector multiplication503

algorithm in [9, 27] and further take advantage of the diagonal forms of many gener-504

ators. To facilitate the stability analysis later, we briefly review a telescoping form of505

an HSS matrix and list the main steps of the HSS matrix-vector multiplication.506

The telescoping form of ÂL with generators D,U ,V,R,W,B corresponding to an507

L-level full binary HSS tree looks like [23, 27]508

ÂL =

L∑
k=1

 k∏
j=L

U (j)

B(k)

 L∏
j=k

(V (j))T

 with(3.9)509

B(l) = diag({Bi : i at level l − 1}),510

U (l) = diag({Ui : i at level l}) and V (l) = diag({Vi : i at level l}),511

where512

Bi =

(
0 Bc1
Bc2 0

)
, i: non-leaf node with children c1, c2,513

Ui =

 Ui, i: leaf,(
Rc1

Rc2

)
, i: non-leaf node,

Vi =

 Vi, i: leaf,(
Wc1

Wc2

)
, i: non-leaf node.

514

To evaluate f+ = ALz, we apply the fast HSS matrix-vector multiplication algo-515

rithm in [9, 27] to find f̂+ = ÂLẑ, where ẑ is the portion in z corresponding to ÂL516

and f+ =

(
0

f̂+

)
. The main steps are as follows.517

1. (Bottom-up traversal) Let z(L+1) = ẑ. For l from L to 1, compute518

(3.10) z(l) = V (l)T z(l+1), y(l) = B(l)z(l).519

2. (Top-down traversal) Let f(0) = y(1). For l from 1 to L, compute520

(3.11) f(l) = U (l)f(l−1) + y(l+1).521

Then output f̂+ = f(L).522
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16 KERNEL MATRIX APPROXIMATIONS AND STABILITY

4. Stability analysis for generalized SSS and HSS matrix-vector multi-523

plications. In this section, we discuss the stability of matrix-vector multiplications524

with generalized SSS and HSS forms. The results are presented in a general framework525

so that they hold for all (generalized) SSS and HSS matrices and the fast transforms526

via SoE approximations in this paper may be treated as special cases.527

4.1. Motivations and preliminaries. Our motivations for the stability analy-528

sis are as follows.529

• For an SSS matrix A with non-orthogonal basis generators, rigorous stability530

analysis for the matrix-vector multiplication has not been done before. The531

work in [1] illustrates the potential instability via an example, although the532

multiplication is structured backward stable in terms of the generators. As533

a remedy, reorthogonalization of basis generators is used to improve stability534

in [1]. Here, we would like to show the stability in terms of A without or-535

thogonality of the basis generators. The errors may grow exponentially with536

respect to the matrix size n, which rigorously confirms the stability risk.537

• When A is written in an HSS form, stability analysis is done in [27] for the538

case again when the basis generators have orthonormal columns. Here, we539

also relax this requirement and show the stability of HSS transforms. Another540

related study is the stability analysis in [24] for the more sophisticated 2D541

FMM. However, the stability study in [24] has a very strict assumption on542

the norm bounds of off-diagonal basis generators at all hierarchical levels. In543

the following, we use separate norm bounds for leaf-level basis generators and544

translation generators, which enables to reveal the importance of the norm545

bounds of translation generators.546

In the stability analysis below, we study perturbation terms like ∆A arising from547

floating point operations involving A. The analysis will frequently utilize the following548

preliminary lemmas.549

Lemma 4.1. [17, p. 69] Let A ∈ Rn×p, z ∈ Rp, and550

(4.1) τp = pϵmach/(1− pϵmach),551

where ϵmach is the machine epsilon. Then the floating point result of the numerical552

matrix-vector multiplication Az, denoted fl(Az), satisfies553

fl(Az) = (A+∆A)z with |∆A| ≤ τp|A|.554

Lemma 4.2. [17, p. 67] For i, j ∈ N+, τi and τj defined as in (4.1) satisfy555

iτj ≤ τij , τi + τj + τiτj ≤ τi+j ,556

τiτj ≤ τmin(i,j) for max(i, j)ϵmach ≤ 1/2.557

Lemma 4.3. [24] Let P ∈ Cm×r and Q ∈ Cr×n . Then,558

∥PQ∥max ≤ ∥P∥∞∥Q∥max and ∥PQ∥max ≤ ∥P∥max∥Q∥1.559

The following multi-index notation (see, e.g., [24]) will be used for convenience.560

Definition 4.4. (Notation) Let ξ be a multi-index ξ = (ξk, ξk+1 . . . , ξl) with ξj ∈561

{0, 1} for k ≤ l and k, l ∈ N. Define562

∆ξ

 l∏
j=k

Aj

 =

l∏
j=k

∆ξjAj ,563

This manuscript is for review purposes only.



CHENYANG CAO AND JIANLIN XIA 17

where ∆0Aj = Aj, ∆
1Aj = ∆Aj. Also, denote |ξ| = ξk + · · ·+ ξl. It is easy to verify564

the following identity [24]:565

(4.2)

l∏
j=k

(Aj +∆Aj) =

l∏
j=k

Aj +

l−k+1∑
|ξ|=1

∆ξ

 l∏
j=k

Aj

 .566

Throughout the stability analysis, we suppose the generalized SSS/HSS matrices567

meet the following assumptions.568

Assumption 4.5. For a generalized SSS or HSS matrix A, assume the following.569

1. Since the algorithm under consideration is matrix-vector multiplication and570

our focus is the stability study related to off-diagonal structures, we suppose571

all the entries of A that are not from AD are nonzero. (Also note that A is572

used to approximate kernel matrices in this work.)573

2. The generators of the generalized SSS form defined in (2.19) satisfy574

∥Uk∥max ≤ cU , ∥Vl∥max ≤ cU , ∥Pk∥max ≤ cU , ∥Ql∥max ≤ cU ,575

∥Rs∥1 ≤ cT , ∥WT
s ∥1 ≤ cT , ∥B∥max ≤ cB |A|min.576

where cB is a constant and |A|min is the minimum magnitude of those entries577

of A that are not from AD. For convenience, we assume that Uk, Vl, Pk, Ql578

have sizes m× p and Rs, Ws, B have sizes p× p.579

3. The generators of the generalized HSS form like in (3.1) and (3.2) satisfy580

∥Ui∥max ≤ cU , ∥Vi∥max ≤ cU , ∥Ri∥∞ ≤ cT , ∥Wi∥∞ ≤ cT ,581

∥Bi∥max ≤ cB |A|min.582

Note that for A in (2.22), the generators for AL and AU may be differ-583

ent. Nevertheless, we suppose all the relevant generators satisfy these norm584

bounds. For convenience, we also assume that the HSS tree T is a full binary585

tree with L(≈ logN) levels, where N is the number of leaves in T . Also, we586

assume that Ui, Vi have sizes m× p and Ri, Wi, Bi have sizes p× p.587

4. For m, p, and N , we assume that p ≤ m as in typical structured matrix588

algorithms (so that the leaf-level block sizes are not too small to have any589

cost saving), and assume nϵmach ≈ Nτm ≪ 1 as in typical backward stability590

analysis. (Note n = Nm.)591

Remark 4.6. To validate such assumptions within the context of this paper, we592

take the Cauchy kernel matrices in Section 2.1 as an example, where the generalized593

HSS matrix is constructed in Lemma 3.2 with the SoE expansion in the form of (3.3)594

and further satisfying wk, tk ≥ 0 for all k. (The assumptions can be similarly validated595

for the other kernel matrices.) Notice that the generators U ,V,R,W have entries with596

magnitudes bounded by 1. In this case, cU = cT = 1. For the B generators,597

∥Bi∥max = max
k=1,...,p

|wk| ≤
p∑

k=1

wk ≤
p∑

k=1

wke
[(b−a)−|x−y|]tk(4.3)598

≤ cB

p∑
k=1

wke
−|x−y|tk with cB := max

k=1,...,p
e(b−a)tk .599

Since this holds for all |x − y| ≥ δ(b − a), we get ∥Bi∥max ≤ cB |A|min. Note (3.3)600

means |A|min = min|x−y|≥δ(b−a)

∑p
k=1 wke

−|x−y|tk .601

We then present the stability analysis in the next two subsections.602
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18 KERNEL MATRIX APPROXIMATIONS AND STABILITY

4.2. Stability analysis for generalized SSS matrix-vector multiplica-603

tions. The fast transforms in Section 2 are done through generalized SSS matrix-604

vector multiplications following the splitting (2.22): Az = ADz+ALz+AUz, where605

ADz is computed through a direct block banded matrix-vector multiplication, ALz is606

computed following Algorithm 2.1, and AUz is computed similarly to ALz because of607

the structural symmetry. Hence, it suffices to analyze the stability of f+ = ALz.608

Suppose fl(f+) = (AL +∆ÃL)z with ∆ÃL the perturbation due to the numerical609

computation. For a block Ak,l with k > l+1 like in (2.19), the perturbation ∆Ãk,l (a610

block of ∆ÃL) is produced from fl(f+k ) =
∑k−2

l=1 (Ak,l+∆Ãk,l)zl via the two traversals611

in Algorithm 2.1. Our task is to find an entrywise bound for each such ∆Ãk,l. Two612

lemmas in the following measure the perturbations in these traversals and will be used613

in the proof of the main Theorem 4.9. The proofs of these lemmas are included in614

Appendix A. The discussions below involve the following notation from [24]:615

≥l∏
s=k

As =

{
AkAk−1 · · ·Al, k ≥ l,
I, k < l.

616

Lemma 4.7. Suppose A in the form of (2.22) is a generalized SSS matrix satisfy-617

ing the assumptions in Assumption 4.5. Then in the evaluation of f+ = ALz, fl(vk)618

produced via the backward traversal stage of Algorithm 2.1 for 1 ≤ k ≤ N − 2 satisfies619

fl(vk) = vk +∆vk with ∆vk =

k∑
l=1

k−l+1∑
|ξ|=1

∆ξ

((≥l+1∏
s=k

R̃s

)
Q̃T

l

) zl,(4.4)620

where621

∆ξQ̃T
l :=

{
QT

l , ξ = 0,
∆QT

l +∆YlQ
T
l +∆Yl∆QT

l , ξ = 1,
with |∆QT

l | ≤ τm|QT
l |,(4.5)622

∆ξR̃s :=

{
Rs, ξ = 0,
∆Rs +∆YsRs +∆Ys∆Rs, ξ = 1,

with |∆Rs| ≤ τp|Rs|,(4.6)623

|∆Yl| ≤ ϵmachI, and the notation in (4.1) is used. Besides, we have624

∥∆1Q̃T
l ∥1 ≤ pcUτ3m, ∥∆1R̃s∥1 ≤ cT τ3p.625

Lemma 4.8. Suppose A in the form of (2.22) is a generalized SSS matrix satisfy-626

ing the assumptions in Assumption 4.5. Then in the evaluation of f+ = ALz, fl(f
+
k )627

produced after the forward traversal in Algorithm 2.1 for 3 ≤ k ≤ N satisfies628

fl(f+k ) = f+k +∆f+k with ∆f+k =

k−2∑
l=1

∆Ãk,lzl,629

where630

∆Ãk,l =

k−l+1∑
|ξ|=1

∆ξ

[
PkB

( ≥l+1∏
s=k−2

R̃s

)
Q̃T

l

]
, |∆Pk| ≤ τp|Pk|, |∆B| ≤ τp|B|,631

and ∆ξR̃s and ∆ξQ̃T
l are respectively defined in (4.5) and (4.6). Besides,632

(4.7) |∆Ãk,l| ≤
4

3
(k − l + 1)τ3mp2cBc

2
Uc

k−l−2
T |Ak,l| for k > l + 1.633
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We can now inspect the stability of generalized SSS matrix-vector multiplications.634

Theorem 4.9. Suppose A in the form of (2.22) is a generalized SSS matrix sat-635

isfying the assumptions in Assumption 4.5. Then the matrix-vector multiplication of636

A with a vector z via Algorithm 2.1 satisfies637

fl(Az) = (A+∆A)z with638

|∆A| ≤ max{1, 4
3
Np2cBc

2
U max{1, cN−3

T }}τ3m+4|A|.639

Proof. We discuss the perturbations to a nonzero block Ak,l from AL, AU, or AD640

in (2.22) due to the multiplications f0 = ADz, f+ = ALz, and f− = AUz, respectively.641

According to Lemma 4.1,642

fl(f0) = (AD +∆ÃD)z,643

where ∆ÃD has the same block structure as AD and its blocks satisfy |∆Ãk,l| ≤644

τ3m|Ak,l| since there are at most 3m nonzero columns in each block row of AD.645

Next,646

fl(f+) = (AL +∆ÃL)z,647

where ∆ÃL has the same block structure as AL and its blocks ∆Ãk,l satisfy (4.7) in648

Lemma 4.8. Then, by the structure symmetry between AU and AL, Lemma 4.7 and649

Lemma 4.8 also apply to Ak,l from AU or when k < l − 1. Thus,650

fl(f−) = (AU +∆ÃU)z,651

where ∆ÃU has the same block structure as AU and its blocks ∆Ãk,l satisfy the same652

bound (4.7) in Lemma 4.8 when k > l + 1. Thus, for any 1 ≤ k, l ≤ N ,653

(4.8) |∆Ãk,l| ≤
{

τ3m|Ak,l|, |k − l| ≤ 1,
4
3 (|k − l|+ 1)p2cBc

2
Uc

|k−l|−2
T τ3m|Ak,l|, otherwise.

654

In the final summation stage, we then have655

fl(Az) = fl
(
fl(f0) + fl(f+) + fl(f−)

)
656

= (I +∆f2)
(
(I +∆f1)(f

0 +∆ÃDz+ f+ +∆ÃLz) + f− +∆ÃUz)
)
,(4.9)657

where ∆f1 results from the floating point addition fl(f0)+fl(f+) and ∆f2 results from658

the further floating point addition of fl(f−) and they are diagonal matrices satisfying659

|∆f1| ≤ ϵmachI, |∆f2| ≤ ϵmachI.660

Let661

(4.10) ∆Ã = ∆ÃD +∆ÃL +∆ÃU.662

Then663

fl(Az) = f0 + f+ + f− + (∆A)z = Az+ (∆A)z,(4.11)664

∆A = ∆Ã+∆f2(A+∆Ã) + (∆f2∆f1 +∆f1)(AD +AL +∆ÃD +∆ÃL).(4.12)665
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Since ∆f1 and ∆f2 are diagonal and AD and AL have non-overlapping nonzero pat-666

terns, we then have667

|∆A| ≤ |∆Ã|+ |∆f2|(|A|+ |∆Ã|)(4.13)668

+ (|∆f2||∆f1|+ |∆f1|)(|AD|+ |AL|+ |∆ÃD|+ |∆ÃL|)669

≤ |∆Ã|+ ϵmach(|A|+ |∆Ã|) + (ϵmach + ϵ2mach)(|A|+ |∆Ã|)670

≤ (2ϵmach + ϵ2mach)|A|+ (1 + ϵmach)
2|∆Ã|671

≤ (τ2 + (1 + τ2)max{1, 4
3
Np2cBc

2
U max{1, cN−3

T }}τ3m)|A|672

≤ max{1, 4
3
Np2cBc

2
U max{1, cN−3

T }}τ3m+4|A|,673

where the last two steps follow from Lemma 4.2 and (4.8).674

Theorem 4.9 shows that generalized SSS transforms may potentially have expo-675

nential error growth with respect to N when cT , the norm bound of the translation676

generators, is larger than 1. (Note N is proportional to n.) Translation generators677

with large norms may cause instability. On the other hand, SoE expansions provide678

an effective way to resolve this issue by producing nice bounds for the translation679

generators.680

Corollary 4.10. Suppose the generators of the generalized SSS matrix A are681

produced via SoE expansions as in (3.4) so that the generators further satisfy cT =682

cU = 1.Then, generalized SSS matrix-vector multiplications via Algorithm 2.1 satisfy683

fl(Az) = (A+∆A)z with |∆A| ≤ max{1, 4
3
Np2cB}τ3m+4|A|.684

In this corollary, the error grows at most linearly with respect to N .685

4.3. Stability analysis for generalized HSS matrix-vector multiplica-686

tions. The previous subsection shows the importance of controlling the norms of687

translation generators. In practice, it is possible for structured representations to688

have translation operators with norms larger than 1. In this subsection, we consider689

another important factor that impacts the stability of transforms: the algorithm ar-690

chitecture. As mentioned in [27, 28], hierarchical structured (like HSS) algorithms691

can further reduce the length of the error propagation path or the number of times692

the error gets magnified by.693

Theorem 4.13 below shows how the HSS architecture benefits the stability and694

can be shown based on the following two lemmas, which are proved in Appendix A.695

Lemma 4.11. Suppose A in the form of (2.22) is a generalized HSS matrix sat-696

isfying the assumptions in Assumption 4.5. Then in the evaluation of f̂+ = ÂLẑ,697

fl(y(i)) produced via the bottom-up traversal in (3.10) for 1 ≤ i ≤ L satisfies698

fl(y(i)) = y(i) +∆y(i) with ∆y(i) =

L−i+2∑
|ξ|=1

∆ξ
(
B(i)

L∏
j=i

(V (j))T
) ẑ,(4.14)699

where |∆B(i)| ≤ τp|B(i)| and |(∆V (j))T | ≤ τ |(V (j))T | for τ = max{τm, τ2p}. Besides,700

∥∆ξ(
∏L

j=i(V
(j))T )∥1 ≤ pcUc

L−i
T τ

|ξ|
2m.701
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Lemma 4.12. Suppose A in the form of (2.22) is a generalized HSS matrix satis-702

fying the assumptions in Assumption 4.5. Then in the evaluation of f̂+ = ÂLẑ, fl(f̂
+)703

produced after the top-down traversal in (3.11) satisfies704

(4.15) fl(f̂+) = (ÂL +∆ÂL)ẑ with ∆ÂL =

L∑
k=1

∆Â
(k)
L ,705

where706

(4.16) ∆Â
(k)
L =

2L−2k+3∑
|ξ|=1

∆ξ

( ≥k∏
j=L

Ũ (j)
)
B(k)

( L∏
j=k

(V (j))T
) ,707

∆V (j) and ∆B(k) are defined in Lemma 4.11, and708

∆ξŨ (j) :=

{
U (j), if ξ = 0,
∆U (j) + U (j)∆Z(j−1) +∆U (j)∆Z(j−1), if ξ = 1,

with709

|∆Z(j)| ≤ ϵmachI, |∆U (j)| ≤ τp|U (j)|.710

Besides,711

(4.17) |∆ÂL| ≤
4

3
(2L+ 1)p2cBc

2
U max{1, c2L−2

T }τ3m|ÂL|.712

We can then show the backward stability of transforms with generalized HSS713

matrix-vector multiplications.714

Theorem 4.13. Suppose A in the form of (2.22) is a generalized HSS matrix715

satisfying the assumptions in Assumption 4.5. Assume the matrix-vector multiplica-716

tion of A with a vector z is performed with ALz computed via the traversals in (3.10)717

and (3.11), AUz computed similarly based on structure symmetry, and ADz computed718

directly. Then719

fl(Az) = (A+∆A)z with720

|∆A| ≤ max{1, 4
3
(2L+ 1)p2cBc

2
U max{1, c2L−2

T }}τ3m+4|A|.721

Proof. The framework of the stability analysis is similar to that in the proof of722

Theorem 4.9. For convenience, we follow the same definitions and notation as in the723

proof of Theorem 4.9 up to (4.12).724

Note that ∆ÃL and ∆ÃU in (4.10) are perturbations generated from HSS matrix-725

vector multiplications that have the same nonzero structure as AL and AU, respec-726

tively. According to (4.17) in Lemma 4.12, we have727

|∆ÃL| ≤
4

3
(2L+ 1)p2cBc

2
U max{1, c2L−2

T }τ3m|AL|.728

By the structure symmetry between AU and AL, Lemmas 4.11 and 4.12 also apply729

to ∆ÃU. Then,730

|∆ÃU| ≤
4

3
(2L+ 1)p2cBc

2
U max{1, c2L−2

T }τ3m|AU|.731
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Since the nonzero patterns of ∆ÃD, ∆ÃL, and ∆ÃU do not overlap, we then have732

|∆Ã| ≤ max{1, 4
3
(2L+ 1)p2cBc

2
U max{1, c2L−2

T }}τ3m|A|,733

Accordingly, by (4.13), we have734

|∆A| ≤ |∆Ã|+ (2ϵmach + ϵ2mach)(|A|+ |∆Ã|)735

≤ (τ2 + (1 + τ2)max{1, 4
3
(2L+ 1)p2cBc

2
U max{1, c2L−2

T }}τ3m)|A|736

≤ max{1, 4
3
(2L+ 1)p2cBc

2
U max{1, c2L−2

T }}τ3m+4|A|.737

Theorem 4.13 shows that the generalized HSS transform is backward stable. This738

holds even if the norm bound cT of the translation generators is larger than 1. In739

that case, the backward error has polynomial (instead of exponential) growth. With740

further control on the norm bounds of the generators (via the SoE expansions), the741

error propagation of the generalized HSS transform can be even reduced to poly-742

logarithmic.743

Corollary 4.14. Suppose the generators of the generalized HSS matrix A are744

produced via the SoE expansions as in (3.4) so that the generators further satisfy cT =745

cU = 1. Then the generalized HSS matrix-vector multiplication as in Theorem 4.13746

satisfies747

fl(Az) = (A+∆A)z with |∆A| ≤ max{1, 4
3
(2L+ 1)p2cB}τ3m+4|A|.748

Remark 4.15. (Key observations) The studies in this section provide some useful749

insights into the stability of rank-structured algorithms like matrix-vector multiplica-750

tions. Two key components play crucial roles in the stability: algorithm architecture751

and norm bounds of translation generators. As compared with sequential architec-752

tures, hierarchical architectures help reduce the length of the error propagation path753

from O(n) to O(log n). See Theorems 4.9 and 4.13. Smaller norm bounds for transla-754

tion generators yield lower error growth factors. Depending on these two components,755

the possible error growth patterns are as follows:756

• exponential (e.g., generalized SSS with cT > 1 as in Theorem 4.9);757

• polynomial (e.g., generalized SSS with cT = 1 as in Corollary 4.10, and HSS758

with cT > 1 as in Theorem 4.13);759

• poly-logarithmic (e.g, generalized HSS with cT = 1 as in Corollary 4.14).760

Thus, to perform the fast transforms in this paper, using generalized HSS structures761

derived from SoE expansions potentially has the best stability.762

5. Numerical experiments. In this section, we use some numerical exper-763

iments to illustrate the stability of transformations via generalized SSS and HSS764

matrix-vector multiplications. We also confirm the high accuracy and efficiency of765

the generalized HSS matrix-vector multiplication.766

Four kernel functions in Section 2 are considered in the tests: Cauchy (1/(x− y)),767

Gaussian (e−(x−y)2), logarithmic (log |x − y|), and square-root (1/
√
|x2 − y2|). For768

convenience, we let the data sets x and y be identical. Whenever a diagonal entry769

κ(xi, xi) is undefined, it is set to be zero. This does not really matter for the stability770

tests related to off-diagonal structures.771
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For each kernel matrix, SoE expansions are used to obtain a generalized SSS or772

HSS approximation A. For SoE approximations to Cauchy, logarithmic, and square-773

root kernels, a parameter δ like in (2.3) is needed to determine the valid intervals774

of the approximations. With the finest-level block size m fixed, appropriate δ and775

the corresponding quadrature nodes and weights are chosen for different data sizes776

n to meet conditions (2.10)– (2.11). Given a tolerance ϵ = 10−15 of SoE approxi-777

mations, some sets of quadrature nodes and weights for δ = 1
4k
, k = 1, 2, . . . , 10 are778

precomputed. The number of quadrature points p varies from 30 to 67 among such δ.779

This is also the numerical rank for the off-diagonal low-rank approximations. For the780

Gaussian kernel case, they do not depend on δ (see Section 2.2.1) because the kernel781

function has no singularity at 0. Accordingly, one set of quadrature nodes and weights782

is sufficient for all Gaussian kernel tests. Note that this set of quadrature nodes and783

weights is calculated from a piece of Matlab code in a double-precision environment.784

This restricts a relative accuracy to up to 10−12 for the Gaussian kernel case [21].785

The tests are performed in Matlab R2021a on a server with two Intel Xeon E5-786

2660V3 CPUs and 192GB of memory.787

5.1. Stability of generalized SSS and HSS transforms. In exact arith-788

metic, the generalized SSS and HSS approximations A are equal. On the other hand,789

they have different stability behaviors in numerical computations.790

For the matrix-vector multiplication f = Az, the backward error of an approxi-791

mate product f̃ is as follows [18, (3.6)]:792

εbwd = min{ε > 0 : f̃ = (A+∆A)z, |∆A| ≤ ε|A|} = max
i=1:n

|f̃i − fi|
(|A||z|)i

,793

where ∆A is the perturbation of A when performing the matrix-vector multiplication.794

This guarantees |∆A| ≤ εbwd|A|. According to the stability analysis in Section 4,795

results like (4.7) indicate that a block Ak,l potentially has larger perturbation errors796

when |k− l| is larger. With fixed finest-level block size m, in order to test large |k− l|,797

large matrix sizes n are needed. Since it becomes impractical to evaluate f via dense798

A when n is too large, we can just look at the m × m finest-level lower-left corner799

block of A with row index set n−m+1 : n and column index set 1 : m. Denote such800

a block by Ac. We evaluate f c = Aczc with a vector zc. With numerical evaluations801

using either generalized SSS or HSS forms, we obtain f̃ c = fl(Aczc) and inspect the802

backward error803

(5.1) εcbwd = max
i=1:m

|f̃ ci − f ci |
(|Ac||zc|)i

.804

In the stability test, we use x with n equal-spaced data points distributed on805

[0, 1], where806

n = 2k × 104, k = 1, 2, . . . , 10.807

Set the size of the corner block Ac to be m = 100. Ac is multiplied with zc =808

(1, . . . , 1)T .809

With generalized SSS/HSS forms, we plot εcbwd in Figure 5.1. For the generalized810

SSS cases, εcbwd increases with n for different kernels. For the generalized HSS cases,811

εcbwd remains nearly steady for different n, which aligns with Lemma 4.12. The results812

are consistent with our analysis and confirm the superior stability of transforms via813

generalized HSS structures.814
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Fig. 5.1. Backward errors εcbwd in (5.1), with A being generalized SSS or HSS approximations
to some kernel matrices.

5.2. Efficiency and accuracy of generalized HSS matrix-vector mul-815

tiplications. We now demonstrate the efficiency and accuracy of generalized HSS816

matrix-vector multiplications. x has n random data points uniformly distributed on817

[0, 1]. We set the finest-level block size m = 200.818

For Cauchy kernel matrices with varying n, we report the time to construct the819

generalized HSS approximation from SoE expansions, the time to evaluate matrix-820

vector products with the generators, and the storage for the generators. See Figure 5.2,821

which shows nearly linear complexity and storage. For the other kernels mentioned822

above, the results are similar.823
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Fig. 5.2. Storage and timing for Cauchy kernel matrices.

For the four types of kernel matrices, Table 5.1 shows the relative errors for the824

generalized HSS matrix-vector multiplications. The results confirm the high numerical825

accuracy of the multiplications.826

6. Conclusions. This work reveals how some popular fast transforms via SoE827

expansions are eventually performing certain structured matrix-vector multiplications.828

This in turn leads to a valuable strategy for approximating some kernel matrices via829
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Table 5.1
Relative errors ∥Az−Hz∥2

∥Hz∥2
for different kernels and data sizes, where H is the original

kernel matrix.

n Cauchy Gaussian Logarithmic Square-root
(×103) ϵ = 10−15 ϵ = 10−12 ϵ = 10−15 ϵ = 10−15

4 5.24e-17 2.73e-13 1.34e-15 1.83e-16
8 3.42e-16 3.45e-13 7.25e-16 3.06e-16
16 1.36e-15 3.93e-13 3.68e-15 6.17e-16
32 9.62e-16 4.11e-13 1.53e-14 7.27e-16
64 1.79e-15 4.28e-13 9.66e-15 6.83e-16

128 2.95e-15 4.38e-13 2.18e-15 9.91e-16
256 3.59e-15 4.42e-13 1.95e-14 1.66e-15
512 2.28e-14 4.43e-13 1.83e-14 2.08e-15
1024 5.15e-14 4.43e-13 2.17e-15 3.13e-15

SoE expansions. It also gives an intuitive way to study the backward stability of830

these transforms. We have shown the stability limitation of the previous transforms831

based on generalized SSS forms, and demonstrated how the stability may be further832

improved via generalized HSS forms. Following the stability studies, the work even-833

tually provides a comprehensive picture of stability issues of structured algorithms.834

That is, algorithm architectures and norm bounds of translation generators determine835

the backward stability. Hierarchical structured algorithms are typically preferred to836

sequential ones. Methods like SoE expansions are nice ways to produce generators837

with controlled norms. In future work, it would be interesting to lay out the detailed838

matrix structures for algorithms based on higher dimensional SoE expansions like839

mentioned in Section 2.3. We expect that the essential ideas of our stability studies840

can be naturally extended to higher dimensions.841
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A. Appendix: Proofs of the lemmas in Section 4. This appendix includes912

proofs for some lemmas in the stability analysis. We first give a lemma that will be913

used in later proofs.914

Lemma A.1. Let n ∈ N+ and ϵ be a small quantity such that 0 < nϵ < 1/2. Then915

n∑
k=1

(
n

k

)
ϵk ≤ 4

3
nϵ.916

Proof. By the binomial theorem, for 0 < nϵ < 1/2,917

n∑
k=1

(
n

k

)
ϵk ≤

n∑
k=1

(nϵ)k

k!
≤ (nϵ)

n−1∑
k=0

(nϵ
2

)k
≤ nϵ

1− (nϵ)/2
≤ 4

3
nϵ.918
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Proof of Lemma 4.7. In the backward traversal stage, we have the following re-919

cursive relation of fl(vk) through the update formula vk = QT
k zk +Rkvk−1:920

(A.1)

fl(vk) =

{
(I +∆Y1)(Q1 +∆Q1)

T z1, k = 1,
(I +∆Yk)

[
(Qk +∆Qk)

T zk + (Rk +∆Rk) fl(vk−1)
]
, 2 ≤ k ≤ N − 2,

921

where |∆QT
k | ≤ τm|QT

k |, |∆Rk| ≤ τp|Rk| by Lemma 4.1, and |∆Yk| ≤ ϵmachI.922

By expanding the recursive relation (A.1) and applying identity (4.2), we obtain923

the following summation form of fl(vk), for k = 1, . . . , N − 2:924

fl(vk) =

k∑
l=1

[≥l+1∏
s=k

(I +∆Ys)(Rs +∆Rs)

]
(I +∆Yl)(Ql +∆Ql)

T zl925

=

k∑
l=1

≥l+1∏
s=k

Rs +

k−l∑
|ξ|=1

∆ξ

(≥l+1∏
s=k

R̃s

) (Ql +∆Q̃l)
T zl926

=: vk +∆vk with927

∆vk =

k∑
l=1

k−l+1∑
|ξ|=1

∆ξ

[(≥l+1∏
s=k

R̃s

)
Q̃T

l

] zl,928

where ∆ξQ̃T
l and ∆ξR̃s, for ξ ∈ {0, 1}, are given by (4.5) and (4.6), respectively.929

With Assumption 4.5, QT
l is a p × m matrix for each l. Then, ∥QT

l ∥1 ≤ cUp.930

Thus, with (4.5) and (4.6),931

∥∆1Q̃T
l ∥1 ≤ τm∥QT

l ∥1 + ϵmach∥QT
l ∥1 + ϵmachτp∥QT

l ∥1 ≤ pcUτ3m,932

∥∆1R̃s∥1 ≤ τp∥Rs∥1 + ϵmach∥Rs∥1 + ϵmachτp∥Rs∥1 ≤ cT τ3p.933

Proof of Lemma 4.8. In this stage, we compute fl(f+k ) by multiplying PkB with934

fl(vk−2) defined in (4.4). Combing with the definition of ∆vk−2 in Lemma 4.7 to get935

fl(f+k ) = (Pk +∆Pk)(B +∆B) fl(vk−2) = PkBvk−2 +

3∑
|ξ|=1

∆ξ(PkBvk−2)936

= f+k +∆f+k with937

∆f+k =

k−2∑
l=1

k−l+1∑
|ξ|=1

∆ξ

[
PkB

( ≥l+1∏
s=k−2

R̃s

)
Q̃T

l

] zl,(A.2)938

where |∆B| ≤ τp|B|, |∆Pk| ≤ τp|Pk| by Lemma 4.1 and ∆ξQ̃T
l and ∆ξR̃s are respec-939

tively defined as in (4.5) and (4.6).940

Let ∆Ãk,l :=
∑k−l+1

|ξ|=1 ∆ξ
[
PkB

(∏≥l+1
s=k−2 R̃s

)
Q̃T

l

]
for k > l + 1. It has the fol-941

lowing norm relation by setting ξ = (ξk, ξk−1, . . . , ξl) and using Lemma 4.3:942

(A.3) ∥∆Ãk,l∥max ≤
k−l+1∑
|ξ|=1

∥∆ξkPk∥∞∥∆ξk−1B∥max

≥l+1∏
s=k−2

∥∆ξsR̃s∥1∥∆ξlQ̃T
l ∥1.943
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To bound the right-hand side of (A.3), we list the norm bounds for the matrices944

(derived from Assumption 4.5 or given in Lemma 4.7):945

∥∆0Pk∥∞ ≤ pcU , ∆0B∥max ≤ cB |A|min, ∥∆0R̃s∥1 ≤ cT , ∥∆0Q̃T
l ∥1 ≤ pcU ,946

∥∆1Pk∥∞ ≤ pcUτp, ∥∆1B∥max ≤ cBτp|A|min, ∥∆1R̃s∥1 ≤ cT τ3p,947

∥∆1Q̃T
l ∥1 ≤ pcUτ3m.948

Thus, from (A.3) and Lemma A.1, we obtain949

|∆Ãk,l| ≤ ∥∆Ãk,l∥max ≤
k−l+1∑
|ξ|=1

(pcUτ
ξk
p )(cB |A|minτ

ξk−1
p )

( ≥l+1∏
s=k−2

cT τ
ξs
3p

)
(pcUτ

ξl
3m)950

≤
k−l+1∑
|ξ|=1

(
k − l + 1

|ξ|

)
p2cBc

2
Uc

k−l−2
T |A|minτ

|ξ|
3m951

≤ 4

3
(k − l + 1)τ3mp2cBc

2
Uc

k−l−2
T |Ak,l|.952

Proof of Lemma 4.11. Following the bottom-up traversal in (3.10), we obtain the953

following equation for 1 ≤ i ≤ L via the recursive relations by noting z(L+1) = ẑ:954

fl(z(i)) =

L∏
j=i

(V (j) +∆V (j))T z(L+1) =

 L∏
j=i

(V (j))T +

L−i+1∑
|ξ|=1

∆ξ
L∏

j=i

(V (j))T

 z(L+1),955

where956

(A.4) |(∆V (j))T | ≤
{

τm|(V (j))T |, if j = L,
τ2p|(V (j))T |, if 1 ≤ j < L,

957

by Lemma 4.1. Hence, |(∆V (j))T | ≤ τ |(V (j))T |, with τ = max{τm, τ2p}, for all j.958

The coefficient for the case j = L in (A.4) is τm because (V (L))T is a block959

diagonal matrix with the blocks {VT
i } defined in (3.9) and each VT

i is a p×m matrix960

by Assumption 4.5. Based on this, we also obtain961

∥(V (L))T ∥1 ≤ pcU and ∥(∆V (L))T ∥1 ≤ pcUτm.962

For the cases when 1 ≤ j < L in (A.4), the coefficient would be τ2p since (V (j))T is a963

block diagonal matrix with p× 2p blocks
(
WT

c1 WT
c2

)
. Accordingly, for 1 ≤ j < L,964

∥(V (j))T ∥1 ≤ cT and ∥(∆V (j))T ∥1 ≤ cT τ2p.965

Thus, by Assumption 4.5, for 1 ≤ i ≤ L,966 ∥∥∥∥∥∥∆ξ
L∏

j=i

(V (j))T

∥∥∥∥∥∥
1

≤ τ
|ξ|
2m

L∏
j=i

∥∥∥(V (j))T
∥∥∥
1
≤ pcUc

L−i
T τ

|ξ|
2m.967

For fl(y(i)) obtained via recursive formulae in (3.10), we have968

fl(y(i)) = (B(i) +∆B(i))

 L∏
j=i

(V (j))T +

L−i+1∑
|ξ|=1

∆ξ
L∏

j=i

(V (j))T

 z(L+1)
969

= y(i) +

L−i+2∑
|ξ|=1

∆ξ

B(i)
L∏

j=i

(V (j))T

 z(L+1),970
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with |∆B(i)| ≤ τp|B(i)| for 1 ≤ i ≤ L.971

Proof of Lemma 4.12. Following the top-down traversal in (3.11), the following972

expansion of fl(f(i)) holds for 1 ≤ i ≤ L− 1:973

fl(f(i)) = (I +∆Z(i))((U (i) +∆U (i)) fl(f(i−1)) + fl(y(i+1)))974

=

i+1∑
k=1

(I +∆Z(i))

≥k∏
j=i

[
(U (j) +∆U (j))(I +∆Z(j−1))

] fl(y(k)),975

where |∆Z(j)| ≤ ϵmachI, and ∆U (j) is a block diagonal matrix with block size 2p× p976

that satisfies |∆U (j)| ≤ τp|U (j)| according to Lemma 4.1. Hence, for 1 ≤ j ≤ L− 1,977

(A.5) ∥U (j)∥∞ ≤ cT , ∥∆U (j)∥∞ ≤ cT τp.978

By multiplying U (L) with fl(f(L−1)) in the evaluation stage, we have979

fl(ÂLz
(L+1)) = (U (L) +∆U (L)) fl(f(L−1))(A.6)980

=

L∑
k=1

 ≥k∏
j=L

[
(U (j) +∆U (j))(I +∆Z(j−1))

]fl(y(k))981

=

L∑
k=1

 ≥k∏
j=L

U (j) +

L−k+1∑
|ξ|=1

∆ξ

 ≥k∏
j=L

Ũ (j)

fl(y(k)),982

where983

∆0Ũ (j) = U (j), ∆1Ũ (j) = ∆U (j) + U (j)∆Z(j−1) +∆U (j)∆Z(j−1),984

and ∆U (L) is a block diagonal matrix with block size m× p that satisfies |∆U (L)| ≤985

τp|U (L)|. Thus,986

(A.7) ∥∆Ũ (j)∥∞ ≤ (τp + ϵmach + ϵmachτp)∥U (j)∥∞ ≤ τ3p∥U (j)∥∞ ≤ cT τ3p,987

and by Assumption 4.5,988

(A.8) ∥U (L)∥∞ ≤ pcU and ∥∆U (L)∥∞ ≤ pcUτp.989

Moreover, if we combine (A.5), (A.8) together with (A.7), we get990

(A.9)

∥∥∥∥∥∥∆ξ

≥k∏
j=L

Ũ (j)

∥∥∥∥∥∥
∞

≤ τ
|ξ|
3p

≥k∏
j=L

∥∥∥Ũ (j)
∥∥∥
∞
≤ pcUc

L−k
T τ

|ξ|
3p , for 1 ≤ k ≤ L.991

Next, we discuss the perturbation ∆ÂL. If we plug (4.14) into (A.6), we obtain992

fl(ÂLz
(L+1)) = ÂLz

(L+1)+∆ÂLz
(L+1) with ∆ÂL defined in (4.15). To analyze |∆ÂL|,993

we observe that the nonzero patterns of ∆Â
(k)
L defined in (4.16) do not overlap for994

distinct k. Then995

(A.10) |∆ÂL| ≤ ∥∆ÂL∥max ≤ max
1≤k≤L

∥∆Â
(k)
L ∥max.996
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Hence, it suffices to find an upper bound for ∥∆Â
(k)
L ∥max, for each k.997

Let ξ = (ξ1, ξ2, ξ3). Based on (4.16), we use norm bounds (A.9) and Lemma 4.11998

to obtain999

∥∥∥∆Â
(k)
L

∥∥∥
max
≤

2L−2k+3∑
|ξ|=1

∥∥∥∥∥∥∆ξ1

≥k∏
j=L

Ũ (j)

∥∥∥∥∥∥
∞

∥∥∥∆ξ2B(k)
∥∥∥
max

∥∥∥∥∥∥∆ξ3

L∏
j=k

(V (j))T

∥∥∥∥∥∥
1

1000

≤
2L−2k+3∑

|ξ|=1

pcUc
L−k
T τ

|ξ1|
3p cB |A|minτ

|ξ2|
p pcUc

L−k
T τ

|ξ3|
2m1001

≤ p2cBc
2
Uc

2L−2k
T |A|min

2L−2k+3∑
|ξ|=1

(
2L− 2k + 3

|ξ|

)
τ
|ξ|
3m1002

≤ 4

3
(2L− 2k + 3)p2cBc

2
Uc

2L−2k
T τ3m|ÂL|,1003

where the last step is given by Lemma A.1.1004

By applying (A.10) and Assumption 4.5, we obtain (4.17).1005
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