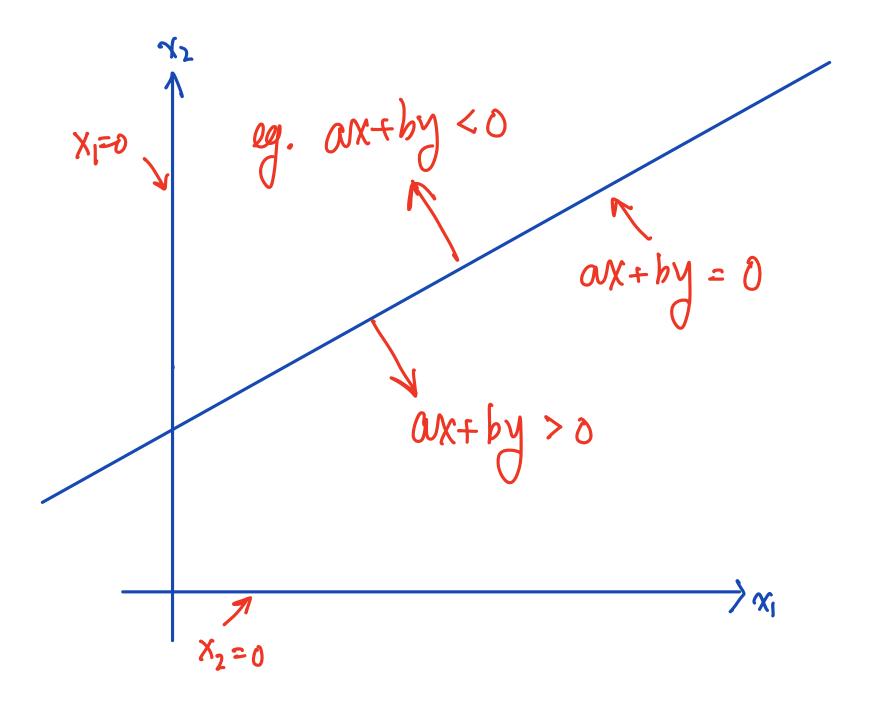
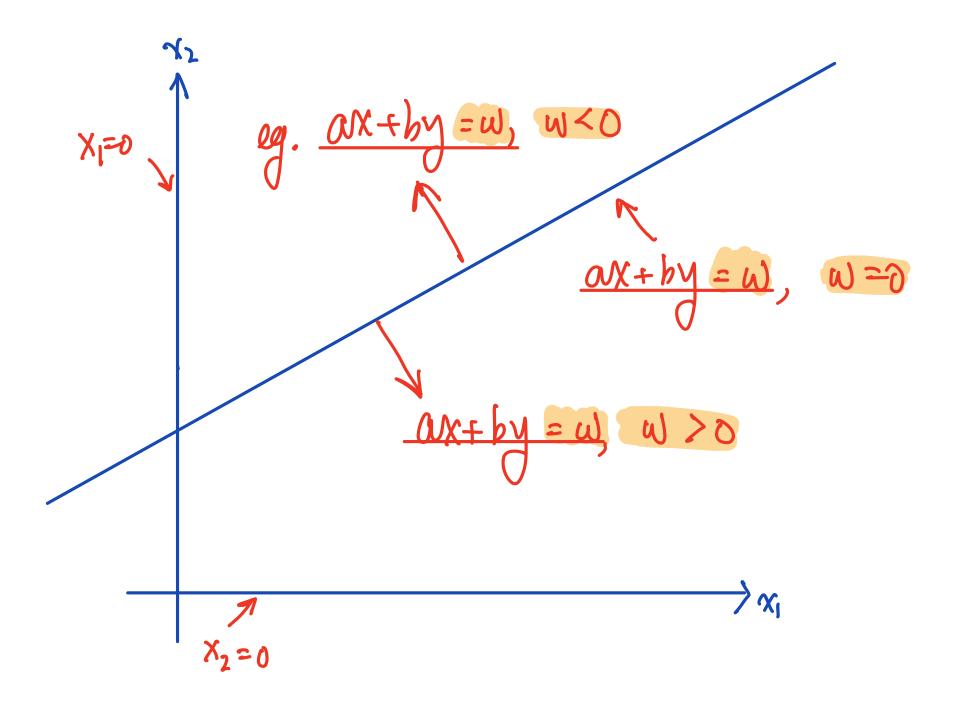
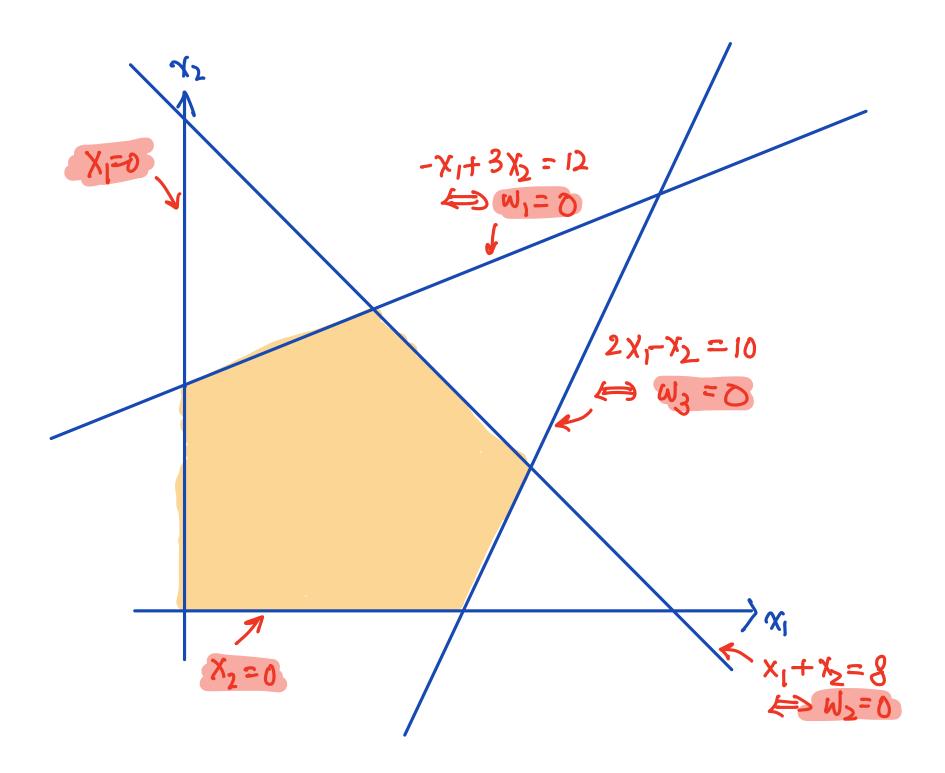
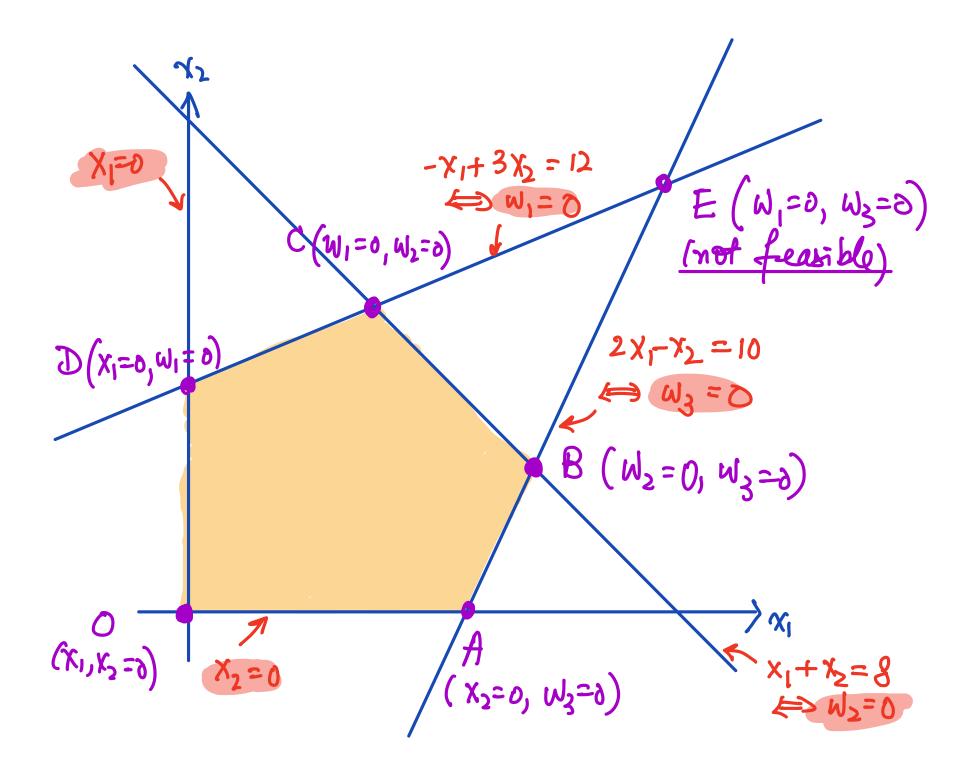
Simplex Method [V] p.20 $max \int = 3\chi_1 + 2\chi_2$ Subject to -X, + 3/2 5/2 X1+ X2 5 8 $\begin{array}{c} 2\chi_{1} - \chi_{2} < 10 \\ \chi_{1}, \chi_{2} > 0 \end{array}$ Slack Variable form: $\omega_1 = 12 + \chi_1 - 3\chi_2$ $\dot{W_2} = g - g_1 - g_2$ $\omega_{2} = 10 - 2\kappa_{1} + \chi_{2}$ $\chi_1, \chi_2, \chi_3, W_1, W_2, W_3 \ge 0$

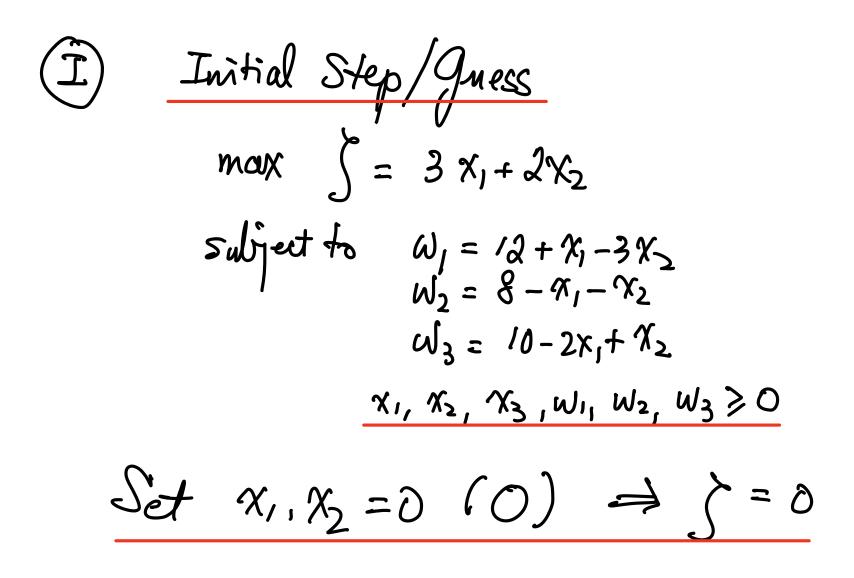








(0) max $\int = 3x_1 + 2x_2$ Subject to $W_1 = 12 + \chi_1 - 3\chi_2$ $W_2 = 8 - \chi_1 - \chi_2$ $\omega_3 = 10 - 2\kappa_1 + \kappa_2$ $\chi_1, \chi_2, \chi_3, W_1, W_2, W_3 \ge 0$ X1, X2, X3 on the RHS - non-basic variables W, W2, W3 on the LHS - basic variable Idea of Simplex Mothod: (1) set all non-basic var. to zero - correspond to a vertex (2) choose a new set of (non) basic vars, to improve f. ((1) of (2) is the same as moving from vertex to vertex.)



) $H(\chi_2 \rightarrow 0, \lambda_3 \rightarrow 0)$ Interchange X, and Wz with Wz leaving basic and X, entering basic $\int = 3 \chi_1 + 2 \chi_2$ $\omega_1 = 12 + \chi_1 - 3\chi_2$ $\omega_2 = 8 - \chi_1 - \chi_2$ $w_3 = 10 - 2x_1 + x_2 \rightarrow x_1 = 5 - \frac{w_3}{2} + \frac{1}{2}x_2$ $12+5-\frac{W_3}{2}+\frac{1}{2}(X_2-3X_2=17-\frac{W_3}{2}-\frac{5X_2}{2})$ $8 - 5 + \frac{1}{2} - \frac{1}{2}x_2 - x_1 = 3 + \frac{1}{2} - \frac{3x_2}{2}$ $\dot{S} = 3\left(5 - \frac{4}{3} + \frac{1}{2}x_2\right) + 2x_2 = 15 - \frac{3}{3}x_3 + \frac{7}{2}x_2$

 $(\#) H(\chi_2 \sim 0, \omega_3 \sim 0)$ Interchange X, and W2 with W3 leaving basic and X, entering basic $mar_{x} = \frac{15 - \frac{3}{2}w_{3} + \frac{7}{2}x_{2}}$ subject to $x_1 = 5 - \frac{1}{2}a_3 + \frac{x_2}{5}$ $W_1 = 17 - \frac{1}{2}W_3 - \frac{5}{5}\chi_2$ $W_3 = \frac{3}{2} + \frac{1}{2} W_3 - \frac{3}{2} \chi_2$ basic var. non-basic var.

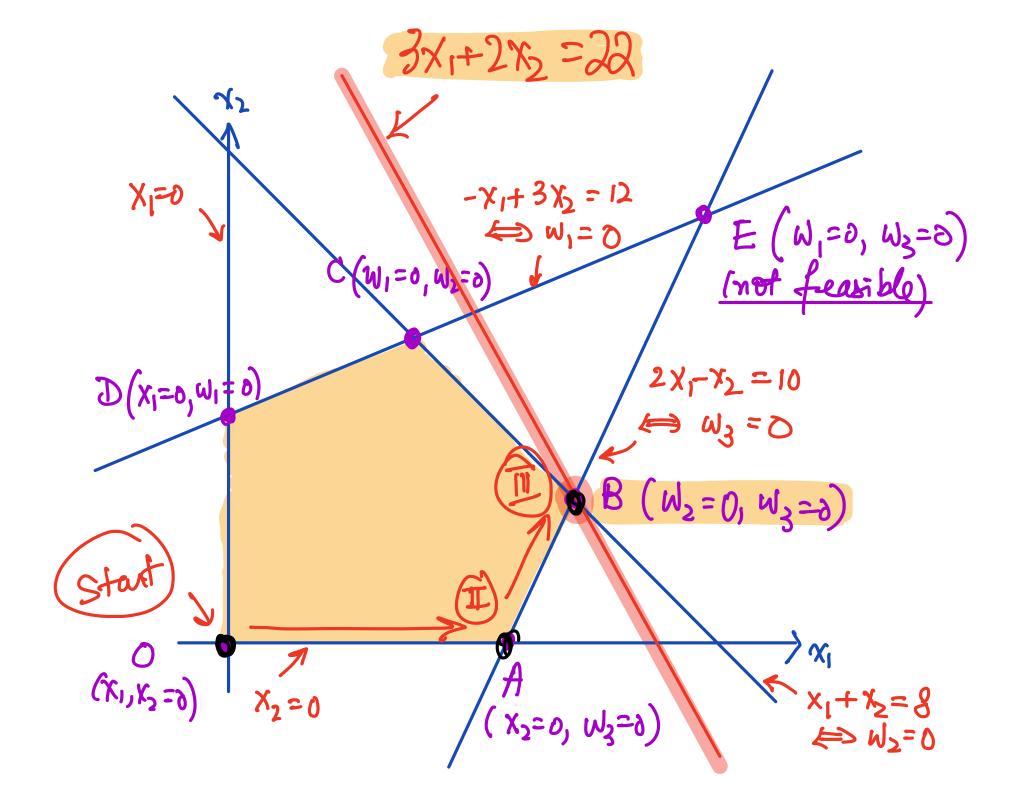
 $\overline{II}) Improve: A(\chi_2=0, \omega_3=0)$ increase X2, Mary $\zeta = 15 - \frac{3}{2}w_3 + \frac{7}{2}x_2$ keeping $w_2=0$ subject to $x_1 = 5 - \frac{1}{2}k_3 + \frac{x_2}{5}$ $\omega_1 = 17 - \frac{1}{2}\omega_3 - \frac{5}{3}\chi_2$ $W_2 = 3 + \frac{1}{2}W_3 - \frac{3}{2}\chi_2$ basic var. non-basic var. X2 can be as large as possible XIE $17 - \frac{5}{2} \pi_2 > 0 \implies \chi_2 < \frac{54}{5}$ ω_{i} : $3 - \frac{3}{5} \chi_{2} \approx 0 \implies \chi_{2} \ll 2$ W_2 : $\implies W_3 = 0 \text{ and } W_2 = 0 \implies \mathcal{B}$ Set 1/2=2

 $\mathcal{B}(\omega_2 = \omega, \omega_3 = \partial)$ Interchange X2 and W2 with W2 leaving basic and X2 entering basic. $max \int_{2}^{2} \sqrt{5} - \frac{3}{2}w_{3} + \frac{7}{2}x_{2}$ subject to $x_1 = 5 - z h_3 + \frac{x_2}{2}$ $\omega_1 = 17 - \frac{1}{2}\omega_3 - \frac{5}{3}\chi_2$ $W_2 = 3 + \frac{1}{2}W_3 - \frac{3}{2}X_2$ $-\frac{1}{2}(\omega_3 + \frac{1}{2}(2+\frac{1}{3}\omega_3 - \frac{1}{3}\omega_2) = 6 - \frac{1}{3}\omega_3 - \frac{1}{3}\omega_2$ $\omega_{1} = (7 - \frac{1}{2}\omega_{3} - \frac{5}{2}(2 + \frac{1}{2}\omega_{3} - \frac{2}{3}\omega_{6}) = (2 - \frac{4}{3}\omega_{3} + \frac{5}{2}\omega_{5})$

 $\mathcal{D}(\omega_2 = v, \omega_3 = 0)$ Interchange X2 and W2 with W2 leaving basic and X2 entering basic. $max_{15} = \frac{3}{2}w_{3} + \frac{7}{2}x_{2}$ subject to $x_1 = 5 - \frac{1}{2}a_3 + \frac{x_2}{2}$ $\omega_1 = 17 - \frac{1}{2}\omega_3 - \frac{5}{3}\chi_2$ $W_2 = 3 + \frac{1}{2}W_3 - \frac{3}{2}X_2$ $\chi_{3} = \lambda + \overline{\chi}^{\prime} \omega_{3}$ $15 - \frac{3}{2}\omega_{3} + \frac{1}{2}(2 + \frac{1}{3}\omega_{3} - \frac{3}{3}\omega_{2})$ $= 22 - \frac{1}{2}\omega_2 - \frac{7}{2}\omega_2$

 $(\underline{II}) \quad \mathcal{B}(\omega_{1} = v, \omega_{3} = v)$ $max \int = 22 - \frac{1}{3}\omega_3 - \frac{7}{3}\omega_2$ Subject to $X_{1} = 6 - \frac{1}{3}w_{3} - \frac{1}{3}w_{2}$ $W_1 = 12 - \frac{4}{3}W_3 + \frac{5}{3}W_2$ $\chi_2 = d + \overline{z} \omega_3 - \frac{a}{\overline{z}} \omega_2$ non-basic $X_1, X_2, W_1, W_2, W_3 > 0$ mar (= 22 is optimal ... $\int = \partial \partial - \frac{1}{3} \omega_3 - \frac{7}{3} \omega_2$

 $(III) \quad B(w_2 = v, w_3 = v)$ $max \int = 22 - \frac{1}{3}\omega_3 - \frac{7}{3}\omega_2$ Subject to $\mathcal{K}_{l} = 6 - \frac{1}{3} \omega_{3} - \frac{1}{3} \omega_{2}$ $\omega_1 = 12 - \frac{4}{3}\omega_3 + \frac{5}{3}\omega_2$ $\chi_2 = d + \overline{z} \omega_3 - \overline{z} \omega_2$ $X_1, X_2, W_1, W_2, W_2 > 0$ V B is optimal !! mar f = 22 $\int = 22 - \frac{1}{3}w_3 - \frac{1}{3}w_2 \leq 22$, = 22 at $w_2 = 0$, $w_3 = 0$



[V] p. 11

 $max = 5x_1 + 4x_2 + 3x_3$ subject to 2X, + 3X2+ X3 <5 $4x, + x_2 + 2x_3 < 11$ $3\chi_1 + 4\chi_2 + 2\chi_3 < 8$ $\chi_1, \chi_2, \chi_3 \ge 0$ $\omega_{1} = 5 - 2\chi_{1} - 3\chi_{2} - \chi_{3}$ $\omega_{2} = 11 - 4\chi_{1} - \chi_{2} - 2\chi_{3}$ $W_3 = 8 - 3\chi_1 - 4\chi_2 - 2\chi_3$ $\chi_1, \chi_2, \chi_3, W_2, W_3 \ge 0$

LVJP. 11 Set $X_1 = X_2 = X_3 = D$ $J = 5x_1 + 4x_2 + 3x_3$ subject to 2X, + 3X2+ X3 5 $4\chi_{1} + \chi_{2} + 2\chi_{3} \leqslant 11$ $3\chi_{1} + 4\chi_{2} + 2\chi_{3} \leqslant 8$ $\chi_{1}, \chi_{2}, \chi_{3} \ge 0$ $\begin{aligned} \omega_1 &= 5 - 2x_1 - 3x_2 - x_3 &= 5 \ge 0 \\ \omega_2 &= 11 - 4x_1 - x_2 - 2x_3 &= 11 \ge 0 \end{aligned}$ $W_3 = 8 - 3\chi_1 - 4\chi_2 - 2\chi_3 = 2 = 0$ $\chi_1, \chi_2, \chi_3, \chi_2, \chi_3, \chi_2, \chi_2 \neq 0$

LVJP. 11 Set $X_1 = X_2 = X_3 = D$ increase X, max j= 5x1+4x2+3x3 $poop X_2 = \chi_3 = 0$ subject to $W_1 = 5 - 2x_1 - 3x_2 - x_3$ $W_2 = 11 - 4X_1 - X_2 - 2X_3$ $W_3 = 8 - 3\chi_1 - 4\chi_2 - 2\chi_3$ $\chi_1, \chi_2, \chi_3, W_2, W_3 \ge 0$ W3>2 => X1583 $\omega_2 > 0 \implies x_1 \le \frac{1}{4}$ $W_1 \ge 0 \implies X_1 \le \frac{3}{2} \le most$

LVJP. 11 Set $X_1 = X_2 = X_3 = D$ » increase X, poop X2 = X3 = 0 mar j= 5x, + 4x2 + 3x3 $\omega_{1} = 5 - 2\chi_{1} - 3\chi_{2} - \chi_{3}$ subject to $W_2 = 11 - 4x_1 - x_2 - 2x_3$ $W_3 = 8 - 3x_1 - 4x_2 - 2x_3$ $\chi_1, \chi_2, \chi_3, \omega_2, \omega_3 \neq 0$ Sot $X_1 = \frac{5}{2}$, $\Rightarrow W_1 = 0$, interchange X_1 , W_1 , $X_1 = \frac{5}{2} - \frac{w_1}{2} - \frac{5}{2}X_2 - \frac{X_3}{2}$ $w_{2} = 1 + 2w_{1} + 5x_{2}$ $w_{3} = \frac{1}{2} + \frac{3}{2}w_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3}$

LVJP. 11 Set $x_1 = x_2 = x_3 = D$ \gg increase $X_{1,}$ boop $X_2 = X_3 = 0$ max j= 5x, + 4x2 + 3x3 subject to $\omega_1 = 5 - 2\chi_1 - 3\chi_2 - \chi_3$ $\omega_2 = 11 - 4\chi_1 - \chi_2 - 2\chi_3$ $\omega_3 = 8 - 3\chi_1 - 4\chi_2 - 2\chi_3$ $\chi_1, \chi_2, \chi_3, \omega_2, \omega_3 \neq 0$ Set $X_1 = \frac{5}{2}$, $\Rightarrow W_1 = 0$, interchange X_1 , W_1 , $\int = 3\chi_1 + 4\chi_2 + 3\chi_3 - \frac{5}{2} - \frac{1}{2} - \frac{3}{2}\chi_2 - \frac{3}{2}$ $=\frac{35}{2}-\frac{5}{2}W_{1}-\frac{7}{2}X_{2}+\frac{7}{2}X_{3}$

 $[V] p. 11 \text{ Set } w_1 = 0, X_2 = 0, X_3 = 0$ $\square max. \quad \hat{S} = \frac{25}{2} - \frac{5}{2} \omega_1 - \frac{3}{2} \chi_2 + \frac{1}{2} \chi_3$ Subj. $X_{1} = \frac{5}{2} - \frac{w_{1}}{2} - \frac{3}{2}\chi_{2} - \frac{\chi_{3}}{2}$ $\omega_h = 1 + 2\omega_1 + 5\chi_2$ $W_3 = \frac{1}{2} + \frac{3}{2}W_1 + \frac{1}{2}X_2 - \frac{1}{2}X_3$ basic non-basic $\chi_1, \chi_2, \chi_3, W_1, W_2, W_3 \ge 0$

 $[V] p. 11 \text{ Set } w_1 = 0, X_2 = 0, X_3 = 0$ $max. \quad S = \frac{25}{2} - \frac{5}{2}w_1 - \frac{7}{2}x_2 + \frac{1}{2}w_2 + \frac{1}{2}$ 5 N3 Jacep $X_1 = \frac{5}{2} - \frac{w_1}{2} - \frac{3}{2}X_2 - \frac{X_3}{2}$ Subj. $\omega_1, \eta_2 = 0$ $w_{2} = 1 + 2W_{1} + 5X_{2}$ $W_3 = \frac{1}{2} + \frac{3}{2}W_1 + \frac{1}{2}X_2 - \frac{1}{2}X_3$ non-basic Sasic $\chi_1, \chi_2, \chi_3, W_1, W_2, W_3 \ge 0$ x s1 < most shict. $\omega_2 \gtrsim 0 \Rightarrow$ Kz Can be any number $\chi_1 > 0 \Longrightarrow$ X353

[V] p. 11 Set $w_1 = 0$, $X_2 = 0$, $W_3 = 0$ $\frac{1}{10} \text{ max. } \dot{S} = \frac{45}{2} - \frac{5}{2} W_{1} - \frac{7}{2} X_{2} + \frac{5}{2} X_{3} N_{3},$ increase Subj. $X_{1} = \frac{5}{2} - \frac{W_{1}}{2} - \frac{3}{2}\chi_{2} - \frac{\chi_{3}}{2}$ $\omega_1, \eta_2 = 0$ $\mathcal{W}_2 = 1 + 2\mathcal{W}_1 + 5\mathcal{X}_2$ $\gamma W_3 = \frac{1}{2} + \frac{3}{2}W_1 + \frac{1}{2}X_2 - \frac{1}{2}X_3$ Set $\chi_3 = 1 \implies W_3 = 0$. Interchange χ_3, W_3 $X_{2} = 1 + 3\omega_{1} + \chi_{2} - 2\omega_{3}$ $\chi_1 = 2 - 2\omega_1 - 2\chi_2 + \omega_3$ $\gg \omega_2 = 1 + 2\omega_1 + 5\chi_2$

$$\begin{bmatrix} V \end{bmatrix} p. 11 \quad \underbrace{Jet} \quad w_{1} = 0, \ \mathcal{K}_{2} = 0, \ w_{3} = 0 \qquad \text{increase} \\ max. \quad f = \frac{35}{2} - \frac{5}{2} \ w_{1} - \frac{7}{2} \ \mathcal{K}_{2} - \frac{7}{2} \ \mathcal{K}_{3} \\ h eep \\ Subj. \quad \mathcal{K}_{1} = \frac{5}{2} - \frac{w_{1}}{2} - \frac{3}{2} \ \mathcal{K}_{2} - \frac{\chi_{3}}{2} \\ w_{2} = 1 + 2 \\ w_{3} = \frac{1}{2} + \frac{3}{2} \\ w_{1} + \frac{1}{2} \\ \mathcal{K}_{2} - \frac{1}{2} \\ \mathcal{K}_{3} = \frac{1}{2} \\ h = \frac{1}{2} \\$$

[V] p. 11 Set $w_1 = 0$, $X_2 = 0$, $W_3 = 0$ increase $max. S = \frac{25}{2} - \frac{5}{2}W_{1} - \frac{7}{2}X_{2} + \frac{7}{2}X_{3}$ $N = \frac{35}{2} - \frac{5}{2}W_{1} - \frac{7}{2}X_{2} + \frac{7}{2}X_{3}$ $h = \frac{3}{2} - \frac{3}{2}W_{1} - \frac{7}{2}X_{3}$ Sup. $X_{1} = \frac{5}{2} - \frac{w_{1}}{2} - \frac{3}{2}\chi_{2} - \frac{\chi_{3}}{2}$ $W_1, \eta_2 = 0$ $\omega_2 = 1 + 2\omega_1 + 5\chi_2$ $W_3 = \frac{1}{2} + \frac{3}{2}W_1 + \frac{1}{2}X_2 - \frac{1}{2}X_3$ Set $\chi_3 = 1 \implies W_3 = 0$. Interchange χ_3, W_3 $\int = 13 - \omega_1 - 3\chi_2 - \omega_3 \leq 13$ max f = 13, achieved at $W_1 = \Re_2 = W_3 = 0$

Concept of a Dictionary of Variables Initially (X1, X2, ..., Xn, W1, W2, Wm) n non-basic vars m basic variables (X1, X2, ---, Xn, Xn+1, Xn+2, --- Xn+m)

Concept of a Dictionary of Variables Initially $(X_1, X_2, \dots, X_n, \omega_1, \omega_2, \dots, \omega_m)$ n non-basic vars m basic variables (X1, X2, --., Xn, Xn+1, Xn+2, --- Xn+m) interchange one basic and one nonbasic variable.

Concept of a Dictionary of Variables (X1, X2, ---, Xn, Xn+1, Xn+2, --- Xn+m) n non-basic m basic $\dot{\xi} = \overline{\zeta_0} + \overline{\zeta_1} \times 1 + \overline{\zeta_2} \times 2 + \cdots + \overline{\zeta_n} \times n$

Concept of a Dictionary of Variables

(1) In each dictionary, setting n non-basic variables to zero, corresponds to a vertex in a polyhedron.

(2) Total number of dictionaures = $\binom{n+m}{n} = \frac{(n+m)!}{n!m!}$ = "# ofvertices" (Note: not all vertices are feasible)

What if the origin is not feasible? [V] p.18 max $c = -2X_1 - X_2$ Subject to $-\chi_{1} - \chi_{2} < -1$ $-\chi_1 - 2\chi_2 \leq -2$ $\chi_1 \ll 1$ X1, X2 20 $\chi_2 = 1$ - +1-2+2=-2 +1+for ible set 1,0 X

Auxiliary Problem $max s = -x_{0}$ Subject to $-\chi_{1}+\chi_{2}-\chi_{0}\leq -1$ $-\chi_{1}-2\chi_{2}-\chi_{0}\lesssim -2$ $\chi_2 - \chi_0 \leq 1$ $\chi_1, \chi_2, \chi_0 > 0$ (1) Must be feasible : choose Xo large enough (2) Original problem is feasible $\iff \max \xi = 0$ (Note: $\max \xi \leq 0$)

Auxiliary Problem $max s = - x_0$ Subject to $\omega_l = -1 - (\chi_1 - \chi_2 - \chi_3)$ $W_2 = -2 - f \chi_1 + 2\chi_2 + \chi_3$ $W_3 = 1 - \chi_2 + \chi_0$ Setting $x_1, x_2, x_0 = 0$ $W_1 = -1$ $w_{1} = -2 \iff most in feasible$ $w_{3} = 1$ (interchange $x_{0} \neq w_{2}$)

Auxikiary Problem

$$max \quad s^{3} = -x_{0}$$
Subject to $W_{1} = -1 + x_{1} - x_{2} + x_{0}$
 $W_{2} = -2 + x_{1} + 2x_{2} + x_{0}$
 $W_{3} = 1 - x_{2} + x_{0}$
 $W_{3} = 1 - x_{2} + x_{0}$
 $W_{1} = -1 + x_{1} - x_{2} + 2 - x_{1} - 2x_{2} + w_{2}$
 $W_{1} = -1 + x_{1} - x_{2} + 2 - x_{1} - 2x_{2} + w_{2}$
 $W_{3} = 1 - x_{2} + 2 - x_{1} - 2x_{2} + w_{2}$
 $W_{3} = 1 - x_{2} + 2 - x_{1} - 2x_{2} + w_{2}$
 $W_{3} = 1 - x_{2} + 2 - x_{1} - 2x_{2} + w_{2}$

Auxiliary Problem max $s = -2 + x_1 + 2x_2 - w_2$ Subject to $\chi_{n} = 2 - \chi_{1} - 2\chi_{2} - 4u_{2}$ $W_1 = 1 - 3\chi_1 + W_2$ $W_{2} = 3 - \chi_{1} - 3\chi_{2} + \omega_{2}$ Set X1, X2, W2=0 feasible !!

Auxiliary Problem $max = -2 + x_1 + 2x_2 + w_2$ Subject to $\chi_0 = 2 - \chi_1 - 2\chi_2 + u_2$ $W_1 = 1 - 3\chi_2 + W_2$ $W_3 = 3 - \chi_1 - 3\chi_2 + \omega_2$ Set XI, X2, W2=0 feasible !! increase X2 $\chi_{1} \ll 1$ X0 : interchange X₂,ω₁ 而到 W1: x, <1 Wz:

Auxiliary Problem $max = -2 + x_1 + 2x_2 + w_2$ Subject to $\chi_0 = 2 - \chi_1 - 2\chi_2 + u_2$ $= 1 - 3\chi_{1} + W_{2}$ W_1 $W_3 = 3 - \chi_1 - 3\chi_2 + \omega_2$ $\frac{1}{3} - \frac{1}{3}W_1 + \frac{1}{3}W_2$ $W_{2} = 2 - \chi_{1} + W_{1}$ $\chi_{0} = \frac{4}{3} - \chi_{1} + \frac{2}{3}\omega_{1} + \frac{1}{3}\omega_{2}$

Auxiliary Problem max $\xi = -2 + \chi_1 + 2\chi_2 + \omega_2$ ext to $\chi_0 = 2 - \chi_1 - 2\chi_2 + \omega_2$ $\omega_1 = 1 - 3\chi_2 + \omega_2$ $\int \sqrt{3} = \frac{3}{3} - \chi_1 - 3\chi_2 + \omega_2$ $\int \chi_2 = \frac{1}{3} - \frac{1}{3}\omega_1 + \frac{1}{3}\omega_2$ $\dot{S} = -\frac{4}{3} + \chi_1 - \frac{2}{3} + \omega_1 - \frac{\omega_2}{3}$

Auxiliary Problem $3 = -\frac{4}{3} - (x_1) - \frac{2}{3} = -\frac{4}{3} - \frac{1}{3} = -\frac{1}{3} = -\frac{1$ Max Subje $\chi_2 = \frac{1}{3} - \frac{1}{3} \omega_1 + \frac{1}{3} \omega_2$ $W_2 = 2 - \chi_1 + \omega_1$ $X_0 = \frac{4}{3} - \chi_1 + \frac{2}{3}\omega_1 + \frac{1}{3}\omega_2$ x1 32 Wz : încrease Xj $\chi_1 \lesssim \frac{4}{3} \leftarrow intechange$ 20% χ_{0}, χ_{0}

Auxiliary Problem $\dot{S} = -\frac{4}{3} + \chi_1 - \frac{2}{3} \omega_1 - \frac{\omega_2}{3}$ Max Subject to $\chi_2 = \frac{1}{3} - \frac{1}{3} W_1 + \frac{1}{3} W_2$ $W_2 = 2 - \chi_1 + W_1$ $X_0 = \frac{4}{3} - \chi_1 + \frac{2}{3}\omega_1 + \frac{1}{3}\omega_2$ $\chi_1 = \frac{4}{3} + \frac{2}{3} \omega_1 + \frac{1}{3} \omega_2 - \chi_0$ $\chi_{2} = \frac{1}{3} - \frac{1}{3} w_{1} + \frac{1}{3} w_{2}$

Auxiliary Problem $\dot{S} = -\frac{4}{3} + \chi_1 - \frac{2}{3} \omega_1 - \frac{\omega_2}{3}$ Max Subje $\chi_2 = \frac{1}{3} - \frac{1}{3}\omega_1 + \frac{1}{3}\omega_2$ $W_2 = 2 - \chi_1 + W_2$ $X_{0} = \frac{4}{3} - \chi_{1} + \frac{2}{3} \omega_{1} + \frac{1}{3} \omega_{2}$ $\frac{4}{3} + \frac{2}{3} + \frac{1}{3} + \frac{1}$ χ_1 $S = -\frac{4}{3} + \frac{1}{3} - \frac{2}{3} \omega_1 - \frac{\omega_2}{3}$ $\chi_{\lambda} = \frac{1}{3} - \frac{1}{3} w_{1} + \frac{1}{3} w_{2}$ $-\chi_{0}$

Auxiliary Problem $S = -X_0$ Max Subject $\chi_1 = \frac{4}{3} + \frac{2}{3} \omega_1 + \frac{1}{3} \omega_2 - \chi_0$ $W_{3} = \frac{2}{3} + \frac{1}{3}W_{1} - \frac{1}{3}W_{2} + \chi_{0}$ $\chi_{2} = \frac{1}{3} - \frac{1}{3} w_{1} + \frac{1}{3} w_{2}$ Setting $W_1 = W_2 = X_0 = 0$ Optimal! max $-\chi_0 = 0$ 2

Back to Original Problem max $\int = -2X_1 - X_2$ Subject to -X1+X2 <-1 $-\chi_1 - 2\chi_2 \leq -2$ We already have $X_1 = \frac{4}{3} + \frac{2}{3} w_1 + \frac{1}{3} w_2 - x_0$ $W_{3} = \frac{3}{3} + \frac{1}{3}W_{1} - \frac{1}{3}W_{2} + 23$ $\chi_{3} = \frac{1}{3} - \frac{1}{3}W_{1} + \frac{1}{3}W_{2}$

Back to Original Problem max $f = -2x_1 - x_2$ $\chi_1 = \frac{4}{3} + \frac{2}{3} \omega_1 + \frac{1}{3} \omega_2$ $W_3 = \frac{3}{3} + \frac{1}{3}W_1 - \frac{1}{3}W_2$ $\chi_{2} = \frac{1}{3} - \frac{1}{3} w_{1} + \frac{1}{3} w_{2}$ $X_1, X_2, W_1, W_2, W_2 \ge 0$ $-2x_{1} - x_{2}$ Already of Oppinul $(w_1 = (w_2 = 0))$ $= -3 - w_1 - w_2$