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Average Number of Iterations
Required by the Largest-Coefficient Rule
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D. Avis and V. Chvatal (1978).
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The example 1s quite simple to state:

n
maximize E 2" I j

j=1
i—1
4.1 o .
4.1 subject to QZQZ_ij—I—CUiS 100°~1 1=1,2,....n
j=1
ZEJZO j:1,2,...,n.
It is instructive to look closely at the constraints. The first three constraints are
1 S 1
41 + x9 < 100
8r1 +4xy + x3 < 10,000.



Worst Cue Famplt : Klea-Minty ¢197)

[V]

n 1 n
. =3, _ n—jg3.
maximize E 2" 5 E 2" B,

i—1 i—1

4.2 - o

(4.2) subject to 2 E 2" x4 x; < E 2" B + Bi i =1,2,..., n
j=1 =1

ijO j:1,2,...,n.
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Using the largest-coetlicient rule, we construct the following sequence of dictionaries.
The imitial dictionary:

. — | — X,

3
xs= 100 — 20x, — x, A~ S’h-lbs

X, = 10,000 — 200x, — 20x, — X,
100x, + 10x, + X;5.

L

In the first iteration, we were led to an unfortunate choice of the entering variable:
had we made x, rather than x, enter the basis, we would have pivoted directly to the
final dictionary. In view of this blunder, it is natural to question the expediency of
the largest-coefficient rule: perhaps the simplex method would always go through
only a small number of iterations if it were directed by some other rule. In fact, the
largest-coeflicient rule is not quite natural. More specifically, it ranks the potential

candidates for entering the basis according to their coeflicients in the last row of the
dictionary: variables with larger coetlicients appear to be more promising. But
appearance$ arc mislcading and the ranking order 1s eastly upset by changes in the
scale on which each candidate 1s measured. For instance, the substitution
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Using the largest-coetlicient rule, we construct the following sequence of dictionaries.
The imitial dictionary:

o — 1 — X,

3
xs= 100 — 20x, — x, A=) S’h-le

X = 10,000 — 200x; — 20x, — X;
5= 100x, + 10x, + X;5.

,\_’1 == .\.1. f: = 001.\'2. f3 - 0.000].\‘3

converts the Klee -Minty problem (4.3) into the form

maximize 100X, + 1,000x, + 10.000x,

subject to Xy < 1
20%, + 100X, < 100

200X, + 2,000x, + 10,000x; < 10.000

Xph Xp0 Ny = 0.

In the first dictionary associated with this new version of (4.3), the nonbasic variable
X, appears most attractive, and so the simplex method reaches the optimal solution
in only one 1iteration.
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ALTERNATIVE PIVOTING RULES

Thus we are led to ranking the candidates x; for entering the basis according to
criteria that are independent of changes of scale. One criterion of this kind is the in-
crease in the objective function obtained when x; actually enters the basis. The

resulting rule (always choose that candidate whose entrance into the basis brings
about the largest increase in the objective function) is referred to as the largest-
increase rule. On the Klee Minty examples (4.2), the largest-increase rule leads the
simplex method to the optimal solution in only one iteration, as opposed to the
2" — 1 iterations required by the previously used largest-coeflicient rule. However,
the new rule does not always lead to a small number of iterations: R. G. Jeroslow
(1973) constructed LP problems that are to the largest-increase rule what the Klee
Minty problems are to the largest-coethicient rule. (More precisely, the number of
iterations required by the largest-increase rule grows exponentially with m and n.)
Again, these examples exploit the myopia inherent i the simplex method. It is
concelvable that every easily implemented rule for choosing the entering variable
can be tricked 1n a similar way into requiring very large numbers of iterations.
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Which of the two rules is better? On problems arising from applications, the
number of iterations required by the largest increase is wsually smaller than the
number of iterations required by the largest coeflicient. Simulation experiments lead
to a sumilar outcome (see Table 4.2).

TABLE 4.1 Average Number of Iterations

. Table 4.2 ‘erage Numbers of Iterati
Required by the Largest-Coefficient Rule e AFerage.lsugbers of Jterations

Required by the Largest-Increase Rule

n

m 020 30 49| w10 20 3 a0 | so
1L S | IS | A (R | {0 702 917 108 | 120 | 126
0 252 307 380 | 415 - R 0 e
30 444 527 | 629 30 287 345 394
40 676 = 187 n 33 399
50 95.2 50 58.9

Source: D. Avis and V. Chvatal (1978). Source: D. Avis and V. Chvatal (1978).
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Which of the two rules is better? On problems arising from applications, the
number of iterations required by the largest increase 1s wusually smaller than the
number of iterations required by the largest coeflicient. Simulation experiments lead
to a stmilar outcome (see Table 4.2).

Nevertheless, as the largest-coefficient rule takes less time to execute than the
largest increase, 1t is the former that usually wins 1n terms of total computing time.
More generally, the number of iterations i1s a poor criterion for assessing the effi-
ciency of a rule for choosing the entering variable. It is the total computing time that
counts, and rules that tend to reduce the number of iterations often take too much

time to execute. In this light, even the largest-coetticient rule is found too time-

consuming and therefore rarely, if ever. used in practice. The choice of entering
variables in efficient implementations of the simplex method is influenced by the
logistics of handling large problems on a computer: this matter will be studied in
Chapter 7.
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EM G] Later on, very slow examples of a similar type were discovered for many
otlieT pivot rules, among them all the rules mentioned above. Many people
have tried to design a pivot rule and prove that the number of pivot steps is
always bounded by some polynomial function of m and n, but nobody has
succeeded so far. The best known bound has been proved for the following
simple randomized pivot rule: Choose a random ordering of the variables at
the beginning of the computation (in other words, randomly permute the
indices of the variables in the input linear program); then use Bland’s rule
for choosing the entering variable, and the lexicographic method for choosing
the leaving variable. For every linear program with at most n variables and
at most n constraints, the expected number of pivot steps is bounded by

eCvVninn where C is a (not too large) constant. (Here the expectation means
the arithmetic average over all possible orderings of the variables.) This bound
is considerably better than 2™, say, but much worse than a polynomial bound.

This algorithm was found independently and almost at the same
time by Kalai and by Matousek, Sharir, and Welzl. For a recent treat-
ment in a somewhat broader context see

B. Gartner and E. Welzl: Explicit and implicit enforcing—ran-
domized optimization, in Lectures of the Graduate Program
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In spite of the Klee—Minty cube and similar artificial examples,
the simplex method is being used successfully. Remarkable theoret-
ical results indicate that these willful examples are rare indeed. For
instance, it is known that if a linear progrém in equational form is
generated in a suitable (precisely defined) way at random, then the
number of pivot steps is of order at most m? with high probability.
More recent results, in the general framework of the so-called smoothed
complexity, claim that if we take an arbitrary linear program and then
we change its coefficients by small random amounts, then the simplex
method with a certain pivot rule reaches the optimum of the resulting
linear program by polynomially many steps with high probability (a
concrete bound on the polynomial depends on a precise specification
of the “small random amounts” of change). The first theorem of this
kind is due to Spielman and Teng, and for recent progress see

R. Vershynin: Beyond Hirsch conjecture: Walks on ran-
dom polytopes and the smoothed complexity of the simplex
method, preprint, 2006.
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