Primal and Dual Problems

(P) max $j(x) = c^T X$ subject to AX ≤ b X≥0

(D) min $\xi(y) = b^T y$ $soliget to A^T y \ge C$ $y \ge 0$ $y \ge 0$

Primal and Dual Problems

(P) max $\xi(x) = c^T X$ $\sum_{i} G(x_i)$ subject to $AX \leq b$ $\chi \geq 0$ $\frac{\sum_{i} y_i \left(\sum_{j} a_{ij} \chi_j \leq b_i \right), \quad y_i > 0$ $\sum_{i} \left(\sum_{i} a_{ij} y_{i} \right) x_{j} \leq \sum_{i} b_{i} y_{i}$ $C_{j} \leq \frac{Thm 5.1}{N} = \sum_{i} C_{j} \chi_{j} \leq \sum_{i} b_{i} \chi_{i} = \xi(\chi)$

Matrix Representations *C*, G $\dot{S}(x) = \dot{S}_0 + c^T \chi$ max 6, - 9, -ain $W = b - A \chi \ge 0$ $\chi \ge 0$ W_{ND} $\begin{array}{c} (z_{1}) \\ (z_{2}) \\ (z_{n}) \end{array} \end{array} \begin{pmatrix} z_{1} \\ z_{n} \\ z_{n} \end{pmatrix} = -\xi_{0} - b^{T} \\ (z_{2}) \\ (z_{n}) \end{array} \begin{pmatrix} z_{2} \\ z_{n} \\ z_{n} \end{pmatrix} = -\xi_{0} - b^{T} \\ (z_{0}) -\xi_{0} \\ (z_{0}) \\ (z_{0}) -\xi_{0} \\ (z_{0}) \\ (z_{$ روا

Matrix Representations marx $\dot{S}(x) = \dot{S}_{+} c^{T} \chi$ $W = b - A \chi \ge 0$ $\chi \ge 0$ $\chi \ge 0$ - H negative transpose b È (D) max - 3/Y) = -30-6TY

Complementary Variables

 $(\chi_{1}, \chi_{2}, ..., \chi_{n}, \omega_{1}, \omega_{2}, ..., \omega_{m})$ $\chi_{1} \sim \omega_{1}$ $\chi_{1} \sim \omega_{1}$ $\chi_{1} \sim \omega_{1}$ $\chi_{1} \sim \omega_{1}$ $\chi_{1} \sim \omega_{2}$ $\chi_{1} \sim \chi_{2}$ $\chi_{2} \sim \chi_{2}$ $\chi_{1} \sim \chi_{2}$ $\chi_{2} \sim \chi_{2}$ $\chi_{2} \sim \chi_{2}$ $\chi_{1} \sim \chi_{2}$ $\chi_{2} \sim \chi_{2}$ $\chi_{3} \sim \chi_{2}$ $\chi_{3} \sim \chi_{3}$ $\chi_{3} \sim \chi_{3}$

Xij enter (leaves), Wienter (leaves) (\mathcal{P}) Z; leaves (enters), Yr leaves (enters) (\mathfrak{D})

Neg. Transpose Property is Preserved in each Simpler Step [V] p.64

Neg. Transpose Property is Preserved in each Simpler Step [V] p.64

(P)
$$\chi$$

 $(x_{1} = 1 - x_{1} - 4 x_{2} + x_{3} = 3 - 3 x_{1} + x_{2} - w_{2}$
 $(x_{3} = 3 - 3 x_{1} + x_{2} - w_{2}$
 $(x_{3} = 3 - 3 x_{1} + x_{2} - w_{2}$
 $(x_{3} = 3 - 3 x_{1} + x_{2} - w_{2}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{2} - w_{2}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + x_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 3 z_{3} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3} + z_{3} + z_{3}$
 $(x_{3} = -9 - 1 y_{1} - 2 - y_{2} + z_{3} + z_{3$

Neg. Transpose Property is Preserved in each Simpler Step [V] p.64 Optimal for (P) $\zeta = 10 - 6 \quad x_1 - 1 \quad w_1 - 3 \quad w_2$ $x_2 = 0.25 - 0.25 x_1 - 0.25 w_1$ **(P)** $x_3 = 3.25 - 3.25 x_1 - 0.25 w_1$ w_2 neg. transpose Optimal for (D) $-\xi = -10 - 0.25 \ z_2 - 3.25 \ z_3$ $6 + 0.25 z_2 + 3.25 z_3$ $z_1 =$ (D) $1 + 0.25 z_2 + 0.25 z_3$ $y_1 =$ $+ 1 z_3$ $y_2 =$ Optimal values for $y_1, y_2 \ (z_2, z_3 = 0, y_1 = 1, y_2 = 3, z_1 = 0)$

Strong Duality Theorem If (P) has an optimal Solution (x;) then (D) also has an optimal solution (y;) and $\left(\underbrace{\xi^{*}}_{i} = \right) \underbrace{\sum}_{i} \underbrace{\zeta_{i}}_{i} \chi_{i}^{*} = \underbrace{\sum}_{i} \underbrace{b_{i}}_{i} \underbrace{\chi_{i}^{*}}_{i} \left(= \underbrace{\xi^{*}}_{i} \right)$ is. duality gap = 0 (The proof gives a formula for Yi)

Strong Duality Theorem Pf (N: non-basic vars) B: basic vars)

Strong Duality Theorem Pf (2) at (P)'s optimal $\int = \int^{*} + \sum \widehat{C_{j}} \widehat{X_{j}} + \sum \widehat{C_{j}} \widehat{W_{j}} + \sum \widehat{U} \widehat{W_{j}} \widehat{W_{j}} - \sum \widehat{W_{j}} \widehat{W_{j}} \widehat{W_{j}} + \sum \widehat{U} \widehat{W_{j}} \widehat{W_{j}} \widehat{W_{j}} - \sum \widehat{W_{j}} \widehat{W_{j}} \widehat{W_{j}} \widehat{W_{j}} \widehat{W_{j}} \widehat{W_{j}} - \sum \widehat{W_{j}} \widehat$ $= \int_{i}^{*} + \sum_{j} C_{j}^{*} \chi_{j} + \sum_{i} d_{i}^{*} \omega_{i}$ $= \int_{i}^{*} + \sum_{i} C_{j}^{*} \chi_{j} + \sum_{i} d_{i}^{*} (b_{i} - \sum_{j} \alpha_{i} \chi_{j})$

Strong Duality Theorem Pf (2) at (P)'s optimal $\int = \int_{x}^{x} + 2 \int_{y}^{x} \int_{y}^{x} + 2 \int_{z}^{x} \int_{z}^{x} \int_{z}^{z} \int_$ $=\left(\zeta^{*}+\overline{\zeta}d_{i}^{*}b_{i}\right)$ $+ \sum_{i} \left(\hat{c}_{j}^{\star} - \sum_{i} \hat{a}_{ij} d_{i}^{\star} \right) \hat{X}_{j}$

Strong Duality Theorem Pf Compare () and (2) Constatern: $0 = \dot{S}^* + = \dot{S} \dot{G} \dot{B} \dot{C}$ $\frac{\gamma}{J} : C_j = C_j - \sum_i Q_i j d_i$ Let $M_{\overline{i}}^{*} = -d_{\overline{i}}^{*}(\ge 0)$. Then $\int t = \sum_{i} b_{i} y_{i}^{*}$

Strong Duality Theorem Pf Compare () and (2) Constatern: $0 = \dot{S}^* + \dot{\Sigma} d\bar{b};$ $C_j = (f_j - \sum_i Q_i) di$ $C_{j} = C_{j}^{*} + \sum_{i} Q_{ij} y_{i}^{*} \leq \sum_{i} Q_{ij} y_{i}^{*}$ ((, 50)

Strong Duality Theorem Hence there exists an Y s.t. $\int^{\mathbf{T}} = \int (\chi^{\mathbf{T}}) = \hat{\xi}(\gamma^{\mathbf{T}})$ This must be opt. for(D) (By Weak Duality, $S(X^{*}) \leq S(Y^{*})$

Four and Only Four Possibilities (P) has an optimal solution ⇒ (D) also has on optimal solution $5^{*}=\xi^{*}$, duality gap = 0 (2) (P) is feasible but unbounded \rightarrow (D) must be infeasible $\dot{S} = \dot{S} = +00$ $\frac{f(x)}{\rightarrow +\infty} \leqslant \frac{f(y)}{\rightarrow}$ (min empty Set = +00)

Four and Only Four Possibilities (3) (D) is feasible but unbounded \rightarrow (P) must be infeasible
$$\begin{split} \zeta(X) \leqslant \dot{\xi}(Y) & \dot{\xi} = \dot{\xi} = -60 \\ \rightarrow -\infty & (max - empty Set = -60) \end{split}$$
(A) Both (P) and (D) are infeasible $\implies \int_{-\infty}^{\infty} -\infty, \quad \xi = +\infty$ (duality gap = +00)

Four and Only Four Possibilities [V, p.69]maximize $2x_1 - x_2$ subject to $x_1 - x_2 \leq 1$ $-x_1 + x_2 \leq -2$ \leftarrow (\mathbf{P}) $x_1, x_2 \geq 0.$

min $y_1 - 2y_2$ subject to $y_1 - y_2 \ge 2$ $-y_1 + y_2 \ge -1$

Complomentory Slackness

[P]

THEOREM 5.3. Suppose that $x = (x_1, x_2, ..., x_n)$ is primal feasible and that $y = (y_1, y_2, ..., y_m)$ is dual feasible. Let $(w_1, w_2, ..., w_m)$ denote the corresponding primal slack variables, and let $(z_1, z_2, ..., z_n)$ denote the corresponding dual slack variables. Then x and y are optimal for their respective problems if and only if

5.7)

$$x_{j}z_{j} = 0, \quad \text{for } j = 1, 2, \dots, n,$$

$$w_{i}y_{i} = 0, \quad \text{for } i = 1, 2, \dots, m.$$
(pairing of variables)
i.e. either χ_{j} on $Z_{j} = 0$ $j = 1, \dots, n$
and either χ_{j} or $Z_{j} = 0$ $j = 1, \dots, n$

Complementory Slackness $f = \sum_{j \in \mathcal{X}_{j}} x_{j} \leq \sum_{j \in \mathcal{Y}_{j}} \sum_{j \in \mathcal{Y}_{j}} x_{j}$ $= \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i} \leqslant \sum_{i} b_{i} y_{i}$ $\sum_{j} c_{j} \chi_{j} \leq \sum_{j} \left(\sum_{i} a_{ij} \chi_{i} \right) \chi_{j}$ $= \sum_{i} \left(\sum_{j} a_{ij} \chi_{j} \right) \chi_{i} \leq \sum_{i} b_{i} \chi_{i}$

Complementory Slackness

 $\sum_{j} c_j x_j = \sum_{j} \left(\sum_{i} a_{ij} y_{ij} \right) x_j$ **P**‡ $0 = \sum_{j} \left(\sum_{i} a_{ij} y_{i} - c_{j} \right) \chi_{j}$ $= \sum_{j} Z_{j} X_{j} > 0$ $Z_{j} \ll = 0$

Complamentory Slackness $\sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i} = \sum_{i} b_{i} y_{i}$ Pf $0 = \sum_{i} \left(b_{i} - \sum_{i} a_{ij} x_{j} \right) \begin{cases} y_{i} \\ y_{i} \end{cases}$ = Jwiyi >0 $\implies \quad \text{Wiy}_i = 0$