Farkas Lemma

LEMMA 10.5. The system $Ax \leq b$ has no solutions if and only if there is a y such that

(10.8)
$$A^{T}y = 0$$
$$y \ge 0$$
$$b^{T}y < 0.$$

PROOF. Consider the linear program

$$\begin{array}{c}
\text{(P)} & \text{maximize} \quad 0 \\
\text{subject to} \quad Ax \leq b
\end{array}$$

and its dual

minimize
$$b^T y$$
subject to $A^T y = 0$
 $y \ge 0$.

Farkas Lemma (Other Versions)

6.4.1 Proposition (Farkas lemma). Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector. Then exactly one of the following two possibilities occurs:

(F1) There exists a vector $\mathbf{x} \in \mathbb{R}^n$ satisfying $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$. (F2) There exists a vector $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T A \geq \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} < 0$.

alternatives

[ME] Farkas Lemma (Other Versions)

6.4.1 Proposition (Farkas lemma). Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector. Then exactly one of the following two possibilities occurs:

(F1) There exists a vector $\mathbf{x} \in \mathbb{R}^n$ satisfying $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$. (F2) There exists a vector $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T A \geq \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} < 0$.

alternatives

Tredholm Alternatives AX = 6 (F1) AX=b has a solution

(F2) There is y s.t. yTA=0 and yb \=0

[ME] Jarkas Lemma (Other Versions)

- **6.4.3 Proposition (Farkas lemma in three variants).** Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector.
 - (i) The system $A\mathbf{x} = \mathbf{b}$ has a nonnegative solution if and only if every $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq \mathbf{0}$.
- (ii) The system $A\mathbf{x} \leq \mathbf{b}$ has a nonnegative solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.
- (iii) The system $A\mathbf{x} \leq \mathbf{b}$ has a solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A = \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.

(in fact, (i) (i) (ii))

	The system	The system
	$A\mathbf{x} \leq \mathbf{b}$	$A\mathbf{x} = \mathbf{b}$
has a solution	$\mathbf{y} \geq 0, \mathbf{y}^T A \geq 0$	$\mathbf{y}^T A \geq 0^T$
$\mathbf{x} \geq 0$ iff	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$
has a solution	$\mathbf{y} \geq 0, \mathbf{y}^T A = 0$	$\mathbf{y}^T A = 0^T$
$\mathbf{x} \in \mathbb{R}^n$ iff	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$	$\Rightarrow \mathbf{y}^T \mathbf{b} = 0$

Frecholm AH.

[MG] Jarkas Lemma (Other Versions)

- **6.4.3 Proposition (Farkas lemma in three variants).** Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector.
- (i) The system $A\mathbf{x} = \mathbf{b}$ has a nonnegative solution if and only if every $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq \mathbf{0}$.
- (ii) The system $A\mathbf{x} \leq \mathbf{b}$ has a nonnegative solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.
- (iii) The system $A\mathbf{x} \leq \mathbf{b}$ has a solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A = \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.

(in fact, (i)
$$\Leftrightarrow$$
 (ii) \Leftrightarrow (iii))

~ (i) $AX=b$, $X \geqslant 0$ has not solution

iff there is $y = s.+t.$ $y^TA \geqslant 0^T$, $y^Tb < 0$

[MG] Jarkas Lemma (Other Versions)

- **6.4.3 Proposition (Farkas lemma in three variants).** Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector.
- (i) The system $A\mathbf{x} = \mathbf{b}$ has a nonnegative solution if and only if every $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq \mathbf{0}$.
- (ii) The system $A\mathbf{x} \leq \mathbf{b}$ has a nonnegative solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.
- (iii) The system $A\mathbf{x} \leq \mathbf{b}$ has a solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A = \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.

(in fact, (i)
$$\Leftrightarrow$$
 (i) \Leftrightarrow (ii))

Nii) $AX \leq b$, $X \geq 0$ has no solution iff there is $Y \geq 0$ s.t. $YA \geq 0^T$, $Yb < 0$

[Mé] Jarkas Lemma (Other Versions)

- **6.4.3 Proposition (Farkas lemma in three variants).** Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector.
- (i) The system $A\mathbf{x} = \mathbf{b}$ has a nonnegative solution if and only if every $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq \mathbf{0}$.
- (ii) The system $A\mathbf{x} \leq \mathbf{b}$ has a nonnegative solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A \geq \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.
- (iii) The system $A\mathbf{x} \leq \mathbf{b}$ has a solution if and only if every nonnegative $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{y}^T A = \mathbf{0}^T$ also satisfies $\mathbf{y}^T \mathbf{b} \geq 0$.

(in fact, (i)
$$\Leftrightarrow$$
 (ii) \Leftrightarrow (iii))

N(iii) $AX \leq b$ has no Solution

iff there is $Y \leq s+t$. $YA = o^T$, $Yb < o$

[ma] Jarkas Lemma (Other Versions)

6.4.1 Proposition (Farkas lemma). Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector. Then exactly one of the following two possibilities occurs:

(F1) There exists a vector $\mathbf{x} \in \mathbb{R}^n$ satisfying $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \ge \mathbf{0}$. (F2) There exists a vector $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T A \ge \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} < 0$.

alternatives

[ME] Farkas Lemma (Other Versions)

6.4.1 Proposition (Farkas lemma). Let A be a real matrix with m rows and n columns, and let $\mathbf{b} \in \mathbb{R}^m$ be a vector. Then exactly one of the following two possibilities occurs:

There exists a vector $\mathbf{x} \in \mathbb{R}^n$ satisfying $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$. There exists a vector $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T A \geq \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} < 0$.

alternatives

The plan of the proof is straightforward: We let **z** be the point of C nearest to **b** (in the Euclidean distance), and we check that the vector $\mathbf{y} = \mathbf{z} - \mathbf{b}$ is as required; see the following illustration:

Cone:
$$\{AX \ge 0\}$$

$$a_1$$

$$a_2$$

$$b$$

$$0$$

Farkas Lemma (Other Versions)

[c] P.248 #16.10

Derive the following theorems (with the vector inequality $\mathbf{v} > \mathbf{w}$ meaning, as usual, $v_k > w_k$ for all k) from the result of problem 16.9.

- (i) P. Gordan (1873): The system Ax < 0 is unsolvable if and only if the system yA = 0, $y \ge 0$, $y \ne 0$ is solvable.
- (ii) J. Farkas (1902): The system $Ax \le 0$, bx > 0 is unsolvable if and only if the system yA = b, $y \ge 0$ is solvable.
- (iii) E. Stiemke (1915): The system Ax = 0, x > 0 is unsolvable if and only if the system $yA \ge 0$, $yA \ne 0$ is solvable.
- (iv) J. A. Ville (1938): The system Ax < 0, $x \ge 0$ is unsolvable if and only if the system $yA \ge 0$, $y \ge 0$, $y \ne 0$ is solvable.
- (v) A. W. Tucker (1956): The system $Ax \ge 0$, $x \ge 0$ has no solution with $x_k > 0$ if and only if the system $yA \le 0$, $y \ge 0$ has a solution with

$$\sum_{i=1}^{m} a_{ik} y_i < 0.$$