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FIGURE 14.1. A network having 7 nodes and 14 arcs. The numbers
written next to the nodes denote the supply at the node (negative
values indicate demands; missing values indicate no supply or de-
mand). FIGURE 14.2. The costs on the arcs for the network in Figure 14.1.
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values indicate demands; missing values indicate no supply or de-

mand).

i

@)
(b)

(¢)

4
¢
(8)

T

(J% A= 1

T

FIGURE 14.2. The costs on the arcs for the network in Figure 14.1.
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FIGURE 14.6. The fat arcs show a spanning tree for the network in
Figure 14.1. The numbers shown on the arcs of the spanning tree are
the primal flows, the numbers shown next to the nodes are the dual
variables, and the numbers shown on the arcs not belonging to the
spanning tree are the dual slacks.
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FIGURE 14.6. The fat arcs show a spanning tree for the network in
Figure 14.1. The numbers shown on the arcs of the spanning tree are
the primal flows, the numbers shown next to the nodes are the dual
variables, and the numbers shown on the arcs not belonging to the
spanning tree are the dual slacks.
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shown 1n Figure 14.1. They were obtained by starting at the “leaves” of the tree and
working “inward.” For instance, the flows could be solved for successively as follows:

!ch' —> flow bal at d: Tag = O,
flow bal at a: Tgg — Lag = 0 — I = 0,
flow bal at f: —Tta — Ty = —9 — T =3,
flow bal at c: Tphe = 0,
flow bal at b: Tp + Tgp — Tpe = 0 — X = 3,
flow bal at e: Tge = 2.

It is easy to see that this process always works. The reason is thad every tree must have
at least one leaf node, and deleting a leaf node together with the,edge leading into it

Rrimad o)
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The above computation suggests that spanning trees are related to bases in the sim-
plex method. Let us pursue this idea. Normally, a basis 1s an invertible square subma-
trix of the constraint matrix. But for incidence matrices, no such submatrix exists. To
see why, note that if we sum together all the rows of A, we get a row vector of all ze-
ros (since each column of A has exactly one +1 and one —1). Of course, every square
submatrix of A has this same property and so is singular. In fact, we shall show in a
moment that for a connected network, there is exactly one redundant equation (i.e.,
the rank of A is exactly m — 1).

Let us select some node, say, the last one, and delete the flow balance constraint
associated with this node from the constraints defining the problem (since it 1s redun-
dant anyway). Let us call this node the root node._Let A denote the incidence matrix
A without the row corresponding to the root node (i.e., the last row), and let b denote
the supply/demand vector with the last entry deleted. The most important property of
network flow problems 1s summarized 1n the Tollowing theorem:

THEOREM 14.1. A square submatrix of A is a basis if and only if the arcs to which
its columns correspond form a spanning tree.
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THEOREM 14.1. A square submatrix of A is a basis if and only if the arcs to which
its columns correspond form a spanning tre

g tree. '[_ ‘
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For example, let node “g” be the root node in the spanning tree in Figure 14.6.
Starting with it, we compute the dual variables as follows:

'('BO% nO& — yg =0,

across arc (g,e): Ye — Y =19 —  y. =19,
across arc (g,b): Yo — Yg =33 —  yp = 33,
across arc (b,c): Ye — Y =65 —> y. =98,
across arc (f,b): Y — Y =48 — yr= —15,
across arc (f,a): Yo — Yp = 06 — 1y, = 41,
across arc (a,d): Yd — Ya =28 = 1yq = 69.

Now that we know the dual variables, the dual slacks for the arcs not in the spanning
tree 7 can be computed using

Zij = Yi T Cij — Yj, (4,J) €T

(which 1s just the dual feasibility condition solved for z;;). These values are shown on
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FIGURE 14.6. The fat arcs show a spanning tree for the network in
Figure 14.1. The numbers shown on the arcs of the spanning tree are
the primal flows, the numbers shown next to the nodes are the dual
variables, and the numbers shown on the arcs not belon&ir@o the

spanning tree are the dual slacks.
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From duality theory, we know that the current tree solution 1s optimal if all the flows
are nonnegative and if all the dual slacks are nonnegative. The tree solution shown 1n
Figure [4.6 satisfies the first condition but not the second. That is, it 1s primal feasible
but not dual feasible. Hence, we can apply the primal simplex method to move from
this solution to an optimal one. We take up this task in the next section.
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