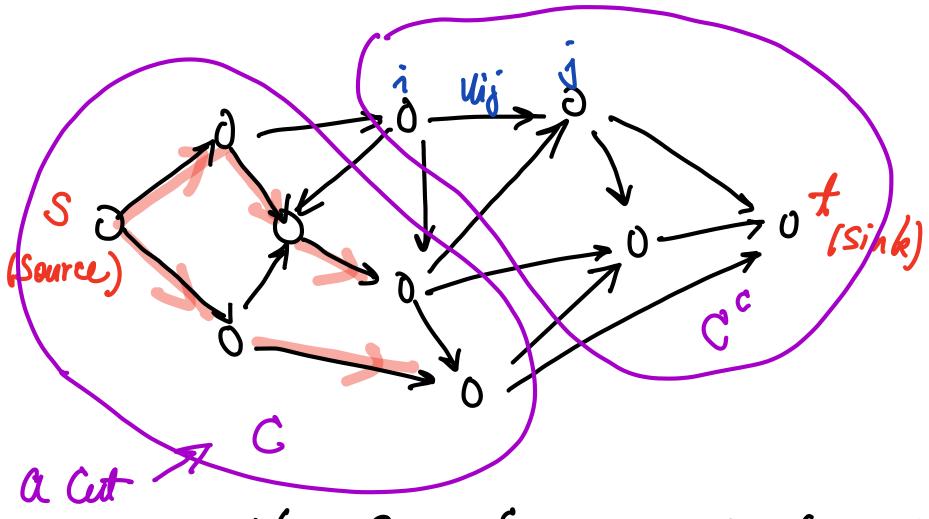


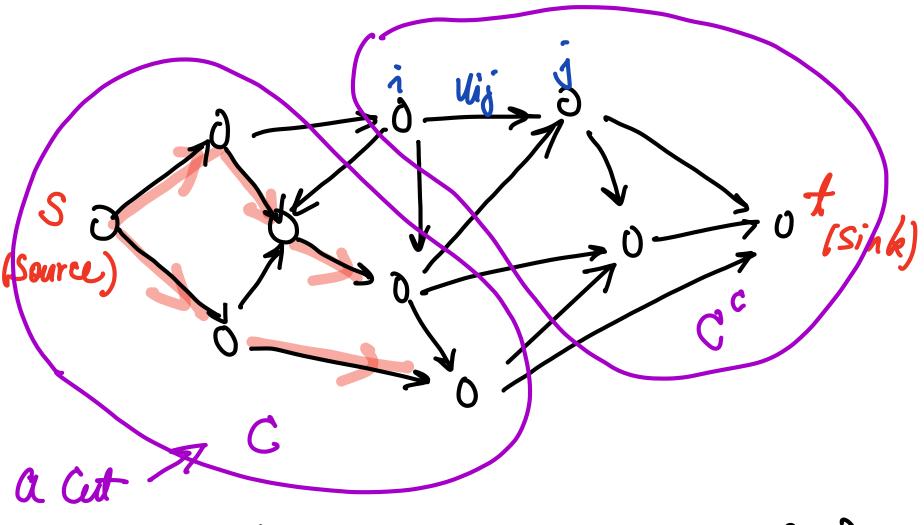
What is the max. Flow from 5 to t subject to O & xij & 44j ?



 $N = C U C^{c}, \quad sec \quad (tec^{c})$

 $K(C) = \sum_{i \in C, j \notin C} u_{ij}$

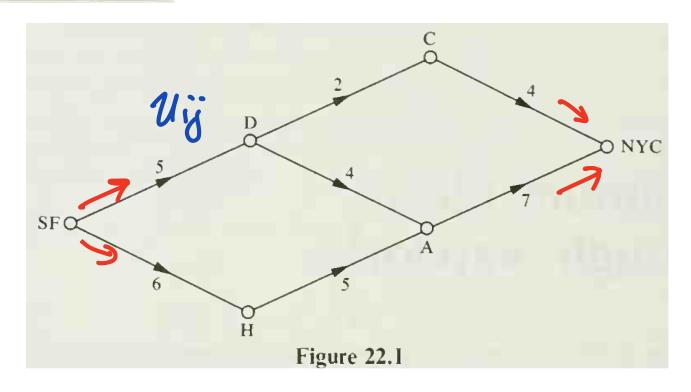
capacity of the

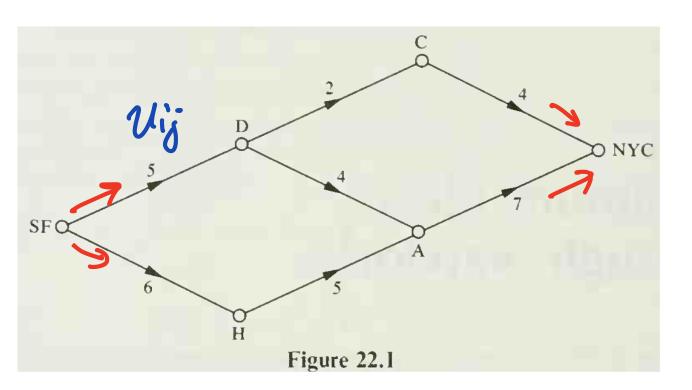


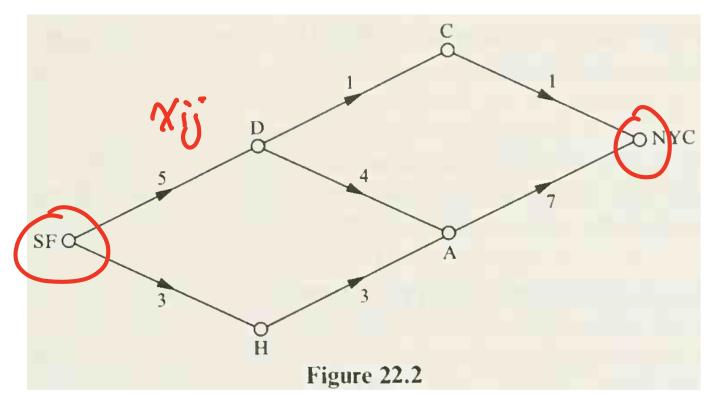
$$(any)$$
 $\mathcal{F}(any)$ $\mathcal{F}(any)$ $\mathcal{K}(C)$

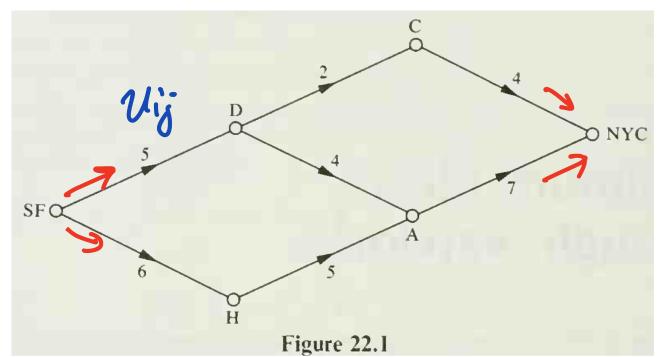
Table	e 22.1	The	Travelers'	Example:
Seat	Availal	bility		

From	То	Number of seats	
San Francisco	Denver	5	
San Francisco	Houston	6	
Denver	Atlanta	4	
Denver	Chicago	2	
Houston	Atlanta	5	
Atlanta	New York	7	
Chicago	New York	4	

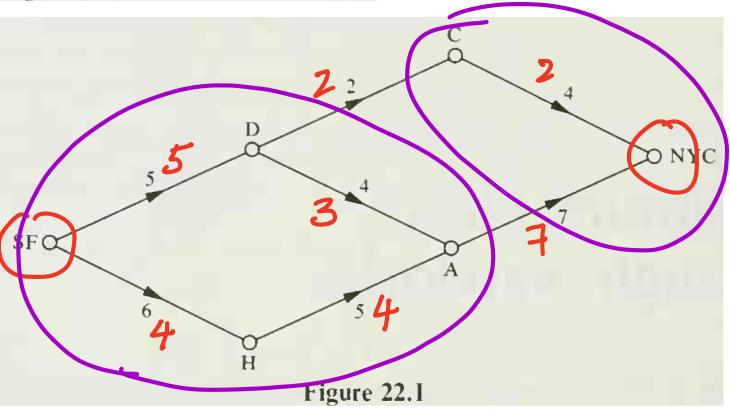








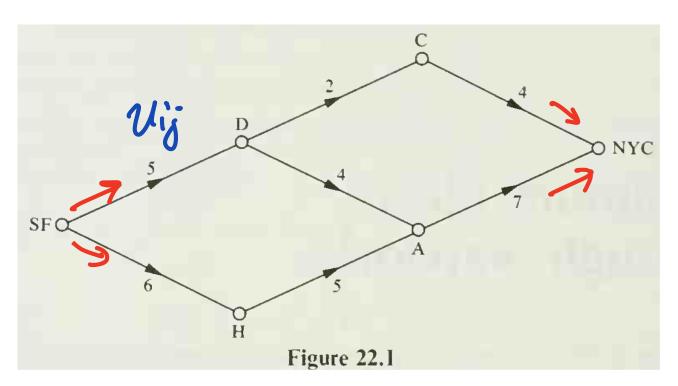
How = 9

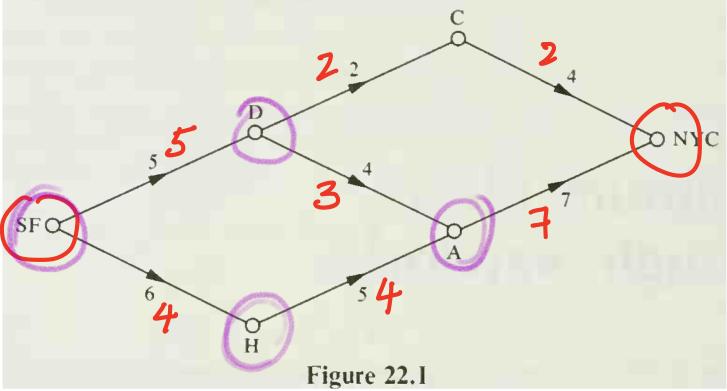


- · Let { Xij & be a (optimal) max flow
- Let C* be those nodes that some more flow can be pushed from s.
 t € C** (By default, s ∈ C*)

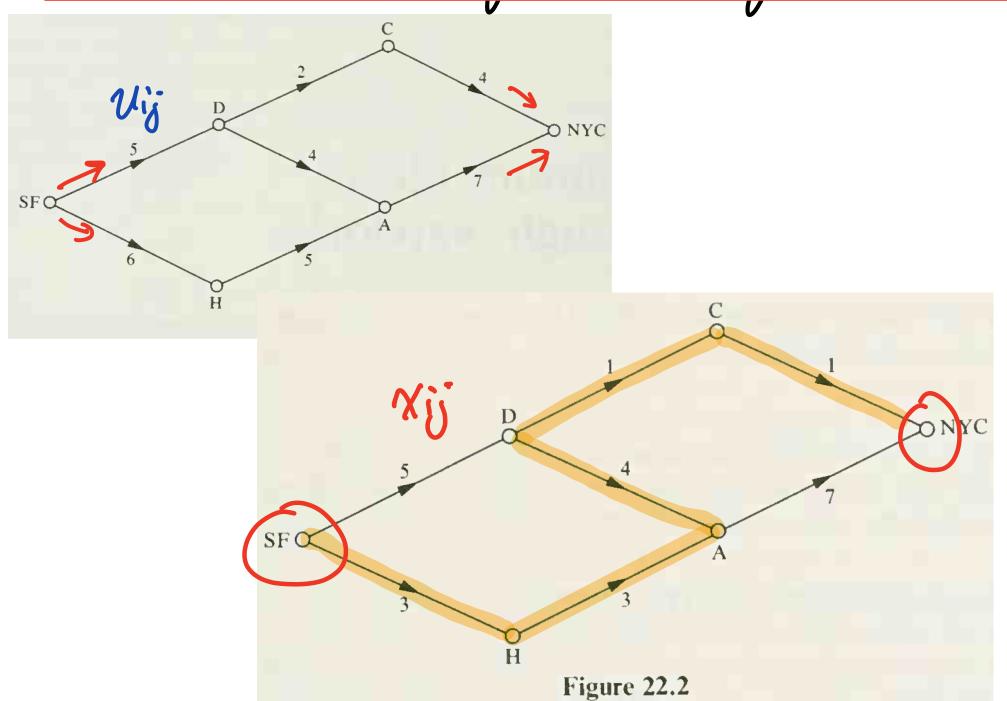
$$i \in C^*, j \notin C^*$$

$$i \in C^*, j \notin C^*$$

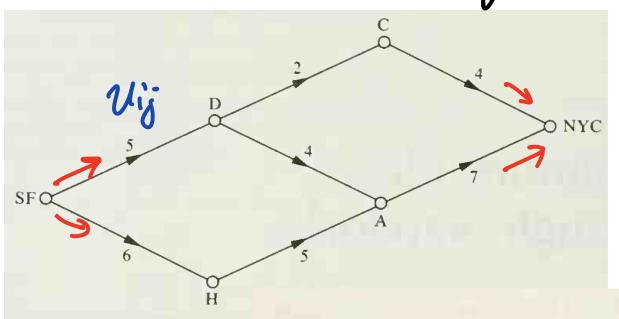




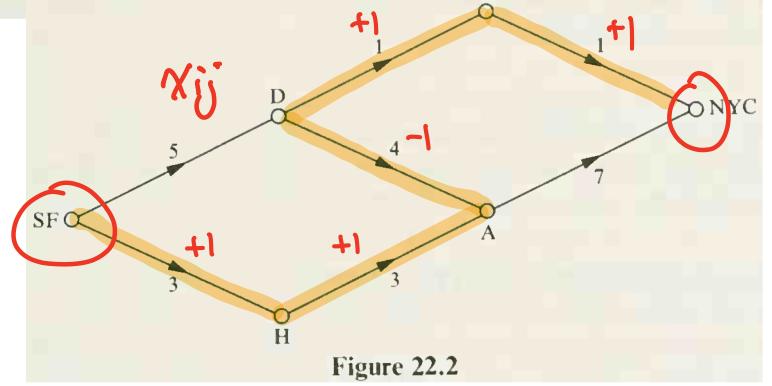
Ford- Fulkerson Algorithm (Augmented Path)



Ford-Fulkerson Algorithm (Augmented Path)



[C] p. 374



Ford-Julkerson Algorithm (Augmented Path)

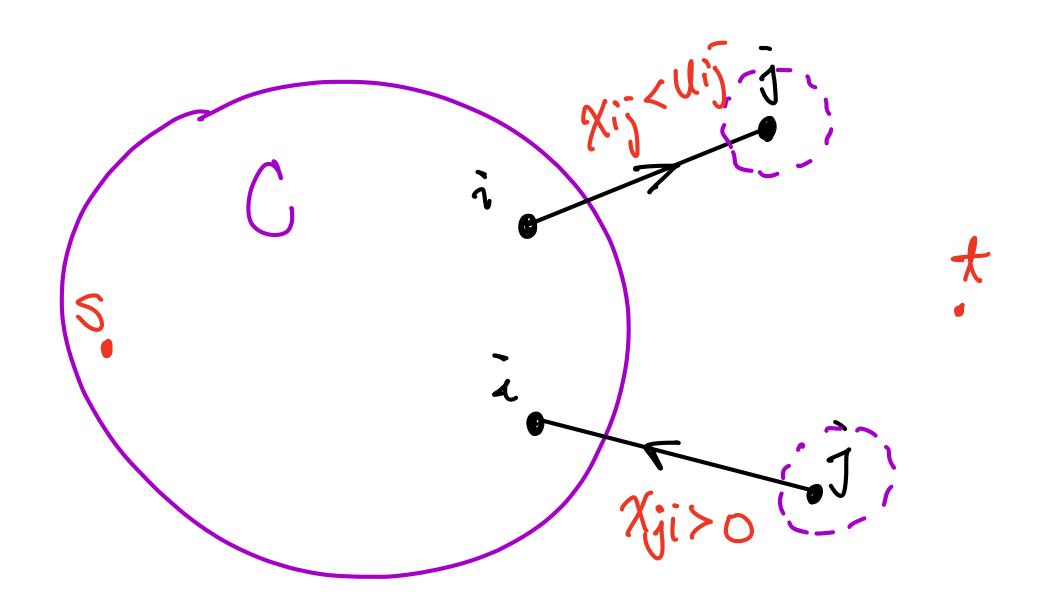
Implementations

Our description of the augmenting path method does not specify a way of searching for the arcs ij such that $i \in C$, $j \notin C$, $x_{ij} < u_{ij}$, and the arcs ji such that $j \notin C$, $i \in C$, $x_{ji} > 0$. Ford and Fulkerson did specify a way of doing that. In their terminology, nodes in C are called *labeled* and nodes outside C are called *unlabeled*; the labeled nodes are divided further into *scanned* and *unscanned*. Initially, the source s is labeled but unscanned and all the remaining nodes are unlabeled. Scanning a labeled node s is means examining all the arcs s if and, whenever such an arc satisfies s if s is esting s if s is extring s if s is examining all the arcs s if and, whenever such an arc satisfies s is s if s is extring s if s is extring s if s is examining all the arcs s if and, whenever such an arc satisfies s is s in s in

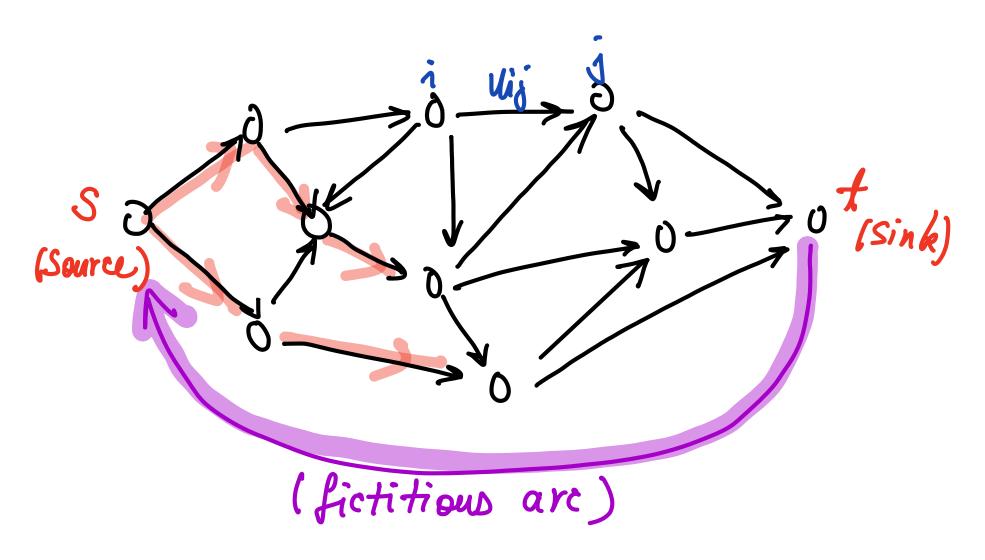
BOX 22.1 Search for an Augmenting Path

- Step 0. Mark s as labeled unscanned; mark the remaining nodes as unlabeled.
- Step 1. If all the labeled nodes are scanned then stop [the set C of labeled nodes satisfies (22.7) and (22.8)]; otherwise, choose a labeled unscanned node i.
- Step 2 Scan i. If t has become labeled then stop (an x-augmenting path has been found); otherwise return to step 1.

Ford-Fulkerson Algorithm (Augmented Path)



Max Flow Min Cut (LP Formulation)



$$\chi_{ts}$$
, $C_{ts}=-1$, $u_{ts}=+\infty$

Max Flow Min Cut (LP Formulation)

min
$$-\chi_{ts}$$

st. $\chi_{ts} = \sum_{j} \chi_{sj}$
 $\sum_{i} \chi_{it} = \chi_{ts}$
 $\sum_{i} \chi_{ik} = \sum_{j} \chi_{kj} \quad k + s, t$
 $0 \le \chi_{ij} \le u_{ij}$
 $u_{ts} = +\infty$

Proof of Max How = Min Cut (4P)

$$x_{ij} = 0 \Longrightarrow y_i + c_{ij} \ge y_j$$

$$x_{ij} = u_{ij} \Longrightarrow y_i + c_{ij} \le y_j$$

$$x_{ij} = u_{ij} \Longrightarrow y_i + c_{ij} \le y_j$$

$$0 < x_{ij} < u_{ij} \Longrightarrow y_i + c_{ij} = y_j.$$

$$0 < x_{ij} < u_{ij} \Longrightarrow y_i + c_{ij} = y_j.$$

FIGURE 15.4. Adding a new node, k, to accommodate an arc (i, j) having an upper bound u_{ij} on its flow capacity.

Proof of Max How = Min Cut (4P)

Let x_{ij}^* , $(i,j) \in \mathcal{A}$, denote the optimal values of the primal variables, and let y_i^* , $i \in \mathcal{N}$, denote the optimal values of the dual variables. Then the complementarity conditions (15.6) imply that

$$x_{ij}^* = 0$$
 whenever $y_i^* + c_{ij} > y_j^*$
 $x_{ij}^* = u_{ij}$ whenever $y_i^* + c_{ij} < y_j^*$.

$$x_{ij}^* = u_{ij}$$
 whenever $y_i^* + c_{ij} < y_j^*$.

In particular,

$$y_t^* - 1 \ge y_s^*$$

(since $u_{ts} = \infty$). Put $C^* = \{k : y_k^* \le y_s^*\}$. Clearly, C^* is a cut.

Consider an arc having its tail in C^* and its head in the complement of C^* . It follows from the definition of C^* that $y_i^* \leq y_s^* < y_i^*$. Since c_{ij} is zero, we see from (15.10) that $x_{ij}^* = u_{ij}$.

Now consider an original arc having its tail in the complement of C^* and its head in C^* (i.e., bridging the two sets in the opposite direction). It follows then that $y_j^* \leq$ $y_s^* < y_i^*$. Hence, we see from (15.9) that $x_{ij}^* = 0$.