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Preface

This book is written at a time of revived activity in the field of applied
mathematics. ‘“Revived” is perhaps the wrong word to use in this
connection, for the characteristic feature of the new applied mathe-
matics is not an intensification of work on old problems but rather an
attempt to extend the application of mathematical reasoning to
entirely new kinds of situations. Information theory, cybernetics,
game theory, theory of automata are but a few of the new disciplines.
Naturally, much of the work in these subjects is of a tentative and
experimental nature. On the other hand, there have been certain
developments which after a decade’s experience seem to be of perma-
nent usefulness. One such is probably information theory. Another
is linear programming and the related linear models. Being con-
vinced that this latter subject is “here to stay,” I felt it was appro-
priate to try preparing a suitable text. This book is the result.
Before asking the reader to plunge into the subject of linear models
I shall, in accordance with a sensible custom, attempt in the few pages
which follow to give some idea of what this subject is. An ideal
preface is one which tells the reader in a few words exactly what the
rest of the book contains and thus saves him the trouble of reading it.
I regret that the writing of such a preface in the present case is beyond
my powers of exposition. The best I can do is to describe in a general
way the sort of problems we shall be concerned with, the approach we
shall take to these problems, and the manner in which the relevant

material will be organized.
iii
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The Subject Matter. The term “economic model” is admittedly
a vague one, but for our purposes we may think of such a model as an
abstraction and simplification of some typical economic situation. As
an example, the first model we shall take up is that of linear program-
ming, which in its abstract formulation is a certain kind of mathe-
matical maximum or minimum problem. The importance of this
model derives from the fact that many actual economic situations lead
to precisely this problem after the appropriate simplifying assumptions
have been made. Later we take up the two-person game model.
This is again formulated in a purely abstract manner, but the signifi-
cance of the model for us comes from the fact that it is designed to
reflect the essential features of certain games of strategy, and thus
indirectly certain aspects of economic competition. Other models to
be treated concern patterns of exchange between countries or indus-
tries, alternative schemes of production, certain economic equilibrium
situations, and so on. In each case the models will be introduced by
first describing the economic situation, next stating what simplifica-
tions are to be made, and then giving the purely abstract formulation.

Having arrived at this abstractly formulated model, what do we
intend doing with it? By way of answer let us first state clearly some
of the things we do not intend doing. A very important question in
relation to any model is that of applicability. Does the model really
give a reasonable approximation to the situation which gave rise to
it? Is it to be relied on in making decisions and predictions? To
what extent have predictions based on the model been borne out
experimentally? Such questions belong to pure economics and will
not be touched on here. Indeed, the models we have chosen to dis-
cuss vary widely as regards applicability. At one extreme we have
linear programming, which is already being used quite extensively in
industrial planning. At the other we have topics like game theory
and some of the equilibrium models, which are in no sense ready for
practical application in their present stage of development.

But if applicability is not the criterion for selection how then have
we decided which topics to discuss? The answer is this: We have
tried to select those models which best illustrate the manner in which
mathematical reasoning can be used to obtain information about
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idealized economic situations. In some instances we have had to
make rather drastic simplifications. The resulting lack of realism is
unfortunate but is to be expected in early attempts at understanding
complex situations.

Having formulated our models, the rest of the task consists in ana-
lyzing them, that is, of deducing in a rigorous fashion the consequences
of the assumptions which have been made. The procedure is quite
analogous to deducing theorems from the axioms of, say, plane geom-
etry. As in the case of geometry, some of the results we shall obtain
could hardly have been guessed in advance. It is this fact which
encourages one to believe that mathematical analysis may help to
bring about new and significant advances in the understanding of
economic phenomena.

We have restricted our presentation to the study of lnear models,
that is, roughly speaking, models in which the mathematical relations
have the form of equations or inequalities of degree one. This restric-
tion is due simply to limitations of space and time. An equal number
of pages could have been devoted to nonlinear models. This would,
however, have involved developing a great deal of additional mathe-
matical machinery, and for this reason we chose to remain within the
linear framework. A further justification for this decision was the
fact that most of the nonlinear results make use of the linear theory.
Much of this book may thus be regarded as foundation material for
work on more advanced levels.

It might be thought from what has been said so far that we have
gathered together a miscellaneous collection of problems whose only
common features are an economic flavor and the occurrence of linear
relations. Fortunately, this is not the case, for although there is con-
siderable variety in the models to be studied, the mathematics involved
will exhibit a noteworthy degree of unity. Most of our analysis will
use the mathematical material developed in Chap. 2 on Real Linear
Algebra or, in more everyday language, the theory of linear equations
and inequalities in real numbers. The feature of this theory which
plays the unifying role in most of the applications is the fundamental
notion of duality. We shall not even attempt to define this term
here but remark that it is the recurrent theme which ties together
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the various parts of the book into what may legitimately be called a
theory.

The Approach. We have already remarked that this book is
intended as a text. We hesitate to use the words “advanced text,”
for this suggests that preliminary familiarity with the subject matter
is assumed, which is not the case. The book is advanced in the sense
that it attempts to bring the reader to the frontiers of the subject,
enabling him to understand and possibly contribute to current research
in the field. In other words, we are trying primarily to fill the needs
of the would-be specialist, be he mathematician, economist, business
student, or engineer. But while our main objective is the training of
experts, we have tried to arrange matters so that the book will also
be useful to readers who wish to go into the subject less intensively.
The less technical parts of the book, in particular Chapter 1 on linear
programming and most of Chapter 6 on game theory, are designed to
be usable in courses on these subjects on the level of an advanced
undergraduate course in economics or engineering.

Concerning the use of the book as a basic text for a course, it should
be explained that the book is itself based on a set of notes from a course
given to a group of graduate students in pure and applied mathe-
matics, and the treatment should be suitable for students at this level.
We suspect the average graduate student in economics would have
some difficulty in going through the book on his own, for we emphasize
that this is a text not in economics but in applied mathematics.
Nevertheless, the theorems we prove are about economics, are
used by economists, and in many cases were first discovered by
economists.

Concerning the use of this book by economists, a further word of
caution is in order. It has been brought to my attention by Professor
Dorfman that certain words and expressions mean quite different
things to economists on the one hand and mathematicians on the other.
It was both startling and illuminating to me to realize that the very
first words of my title ‘“The Theory of’ belong to this category. By
way of illustration, a mathematician or natural scientist on reading
one of the important theory of books of economics, say Hicks or Keynes,
might well remark ‘“very interesting, but where is the theory?”’ The
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remark would imply no disparagement of these works but would
simply point up a confusion of language, for the natural scientist
expects a theory to consist of a large body of results derived from a
small set of assumptions. What he has read consists instead of a
careful formulation and detailed justification of a particular set of
assumptions, with rather less formal deduction of implications than
he would find in a theoretical treatise in the natural sciences. Anal-
ogously, an economist reading the present volume will undoubtedly
feel that it has been misnamed in that most of the “theory’’ has been
left out, and he will correctly point out that the book is teeming with
economic assumptions for which little or no justification is given. We
reply that the word “theory’ is to be understood here as it is used
in the natural rather than the behavioral sciences and is therefore not
directly concerned with the justification of assumptions. We stress
this point in order not to mislead the reader concerning our intentions.

It is our hope that our presentation of results will be useful to the
economics student with exceptional aptitude for the mathematical
approach. It should also be useful in the hands of a teacher of mathe-
matical economics who can modify the exposition to suit the needs
of his students, skimming over portions which present purely technical
difficulties, elaborating on other parts in which our treatment has
not been sufficiently detailed. As such this book might usefully
supplement one of the texts in economics which covers the same mate-
rial, such as “Linear Programming and Economic Analysis’’ by
Dorfman, Samuelson, and Solow or ‘“Mathematical Economies’ by
R. G. D. Allen.

Finally, we hope the book will be used as a reference for workers in
the field of linear models who will find here a mathematically unified
treatment of many important results which were previously available
only in scattered sources in the economic and mathematical literature.

We come next to the question of mathematical prerequisites. It is
customary to remark at this point that the only requirement for an
understanding of what is to follow is a knowledge of elementary cal-
culus. In the present case even this requirement may be waived, for
calculus is never used. Our principal tool is matrix algebra, but no
previous knowledge is required here either, as all necessary facts are
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developed in the text. What is required is the ability to follow a
moderately involved mathematical argument, an ability which gen-
erally comes only with a fair amount of experience and is often charac-
terized by the illusive phrase “mathematical maturity.” Some of the
proofs we shall present are quite difficult. Even the proof of the
“theorem of the separating hyperplane,” which is the key mathe-
matical result of the book, is not entirely straightforward. There is
no way around this difficulty, for most of the results we wish to present
are not mathematical trivialities, and one cannot make things easy
without omitting proofs altogether, which would defeat our main
purpose. We shall, of course, use all the available devices to help
the reader’s understanding such as geometric pictures, plausibility
arguments, and numerical examples.

We may summarize what has been said in the foregoing paragraphs
by remarking that a course based on this book would occupy a position
somewhat analogous to a course in mathematical statistics. Such
courses are generally given in a mathematics department but are avail-
able to students in other fields with the necessary mathematical
qualifications.

The Organization. How to Use the Book. We envision four
possible courses which could be based on this book.

1. A full-year course covering the entire nine chapters. It would
not be necessary to take them up in order, as will be seen from the
diagram on page ix.

2. A one-semester course on linear programming. This would cover
the first five chapters of the book.

3. A one-semester course in linear programming and game theory.
This would consist of Chaps. 1,2, 3, 6, and 7, omitting Sec. 2 of Chap. 7.

4. A one-semester course in linear economic models. This would
cover Chaps. 1, 2, 3, 8, and 9.

The schematic diagram on page ix shows how the various chapters
depend on each other.

As the figure shows, Chap. 2 on Real Linear Algebra is necessary
for all later chapters. However, the second half of the chapter, from
Sec. 5 on, is used only occasionally in subsequent chapters. The
instructor may wish, therefore, to take up only the first four sections
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of this chapter, which are sufficient for all the applications in Chaps. 3,
4, 6, and 8.

From a logical point of view it would have been most natural to
begin with Chap. 2, in which the mathematical machinery is devel-
oped. This procedure would have the disadvantage, however, of
requiring the reader to absorb a considerable amount of abstract
material without knowing what it was to be used for. For this reason
it seemed preferable to start with the applications, in this case linear
programming, and state the main theoretical results without proof in
order to motivate further study in the algebraic foundations. Chap-
ter 1 is therefore devoted to describing the linear programming prob-
lem first by means of a set of illustrative examples, then by a formal
definition. The discussion of the next section leads up to the state-

o

Chapter 2
Real linear algebra

Chapter 1

Linear programming
examples, definitions

Chapter 5 Chapter 3 Chapter 6 Chapter 8 Chapter 9
Integral linear Theory of Two-person Linear models Linear models
programming linear games, of exchange of production
programming examples,
definitions
Chapter 4 Chapter 7.
Computation, Solution of
simplex method| | matrix games

ment (but not the proof) of the fundamental duality theorem, which
is then illustrated in specific cases. Assuming the duality theorem
we then prove the important “equilibrium theorem’’ and give appli-
cations. The chapter, like all the others, ends in a short set of biblio-
graphical references and a somewhat longer set of exercises of varying
degrees of difficulty.

The first sections of Chap. 2 are devoted to introducing vectors
and matrices and developing the classical theory of linear equations
in a rapid but complete and self-contained manner. The mathe-
matical heart of the chapter, and, in fact, of the book, is in Secs. 3
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and 4, in which we develop the not so classical theory of real linear
equations and linear inequalities. The latter half of the chapter is
devoted to a more detailed and somewhat geometric analysis of the
solutions of inequalities.

The reader who is acquainted with linear algebra may be struck by
the fact that certain popular topics in this subject are conspicuous by
their absence, among them the theory of determinants and of char-
acteristic roots or eigen-values. The reason for this omission is simply
that we know of no cases in which these particular algebraic objects
are useful in drawing conclusions about economic models, and there-
fore there is no reason why the reader should spend time trying to
master these somewhat intricate topics.!

In Chap. 3 we return to linear programming problems, which are
now defined in complete generality. Using the algebraic apparatus
developed in Chap. 2 it is possible to give a complete treatment of
the duality and equilibrium theorems as well as the important result
on basic solutions. The last part of the chapter is concerned with a
most important economic application of linear programming theory,
namely, the solution of the problem of optimal resource allocation by
the method of price equilibrium under free competition.

Chapter 4 is devoted primarily to an exposition of the simplex
method of Dantzig and its application not only to linear programming
but also to such general problems as solving systems of inequalities
and finding nonnegative solutions of linear equations. Our approach
has been to show that the simplex method may be looked upon as an
extension of the ordinary ‘“high-school method of elimination’’ for
solving sets of simultaneous linear equations. In vector language the

1In view of the rather frequent occurrence in the economic literature of results
involving determinants and eigen-values, this statement perhaps calls for some
amplification. An example will perhaps illustrate the point. It is a true theorem
that a Leontief model is capable of producing a positive bill of goods if and only
if the principal minors of the production matrix are all positive. This fact, how-
ever, gives us no new economic insight into the properties of Leontief models
because there is no economic interpretation to be attached to these principal minors.
Contrast this result with the theorem that if a Leontief model can produce one
positive bill of goods it can produce any positive bill of goods. The latter state-
ment is a useful and interesting result about the model itself, since both the
hypothesis and the conclusion have an obvious economic meaning.
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elimination of a variable becomes the replacement of a vector in a
basis, and it is this ‘“replacement operation’’ which becomes the basic
computational unit in our presentation. The final section of the
chapter presents the generalized simplex method of Dantzig, Orden,
and Wolfe for resolving the problem of degeneracy.

Chapter 5 is devoted to the very important class of linear programs,
including transportation problems, which always have integral solu-
tions if the initial data are integral. As indicated by our schematic
diagram, the material of this chapter is essentially independent of
the previous theory. We begin by presenting the network-flow theory
of Ford and Fulkerson which, together with the method of Kuhn for
the optimal-assignment problem, provides us with a complete and
elegant theory for a wide class of integral problems. The relationship
of this theory to the classical notion of price equilibrium is given in
Sec. 6. The Hitchcock transportation problem is treated in detail
as well as various other applications. Again in this chapter it is the
duality concept which does the work.

In Chap. 6 we introduce two-person zero-sum games by a sequence
of examples which lead first to the statement and then the proof of
von Neumann’s minimax theorem. The proof is that of Gale, Kuhn,
and Tucker using the symmetrization of a game of von Neumann.

The “equivalence’ of linear programming and matrix games is the
first topic of Chap. 7, and it is shown that the minimax theorem can
be derived as a special case of the fundamental duality theorem of
linear programming. A short section is devoted to solving games by
the simplex method. Several sections are then devoted to a detailed
analysis of the structure of the sets of optimal strategies of a matrix
game. The final sections are devoted to a description of the method
of fictitious play of Brown and to Robinson’s proof that the method
converges.

Chapter 8 is concerned first with a linear exchange model, equiva-
lent versions of which seem to have been discovered independently by
Frisch, Remak, and Bray. A complete analysis is given of the equi-
libria of such models. A dynamic theory of linear trade models is
then treated along the lines of some work of Solow. The theorems
here are exactly the same as those which occur in the theory of Markov
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chains in probability theory. The final sections of the chapter treat
a particular model of price equilibrium.

Among the topics treated in the final chapter are Leontief models,
including the Samuelson-Koopmans-Arrow substitutability theorem,
the work of Koopmans on the relation between efficiency and profit
maximization, and von Neumann’s expanding linear model. ’

Terminology, Notation, Bibliography. We shall, of course,
define all technical terms and symbols as they are introduced. For
the most part we have adhered to standard terminology and notations
when such things existed. On the other hand, we have exercised the
mathematical equivalent of poetic license to institute an occasional
“improvement,” mostly in the interests of typographical simplicity.
Thus the scalar product of two vectors is simply indicated by their
juxtaposition, no unnecessary dots, parentheses, commas, or brackets.
Also, we do not make the distinction between row and column vectors,
though this seems still to be the vogue in many quarters, for what
reason we cannot imagine. Perhaps we are carrying typographical
economy too far when we denote the vector x with coordinates from
%1 to &, by the symbol (&) instead of the conventional (&, . . . , &),
but why not? After all, nobody objects to indicating a matrix A4 in
terms of its coordinates by the symbol (a;). We have gone to con-
siderable length to avoid hanging subsecripts on subscripts. The gen-
eral philosophy has been that a clean-looking page of symbols will
have a good psychological effect on the reader, or to put it the other
way, a tangled symbolism suggests a tangled argument and is likely
to frighten rather than entice.

About the most radical innovation in terminology is the replacement
of the universally used “nonsingular’ by ‘“regular’ in describing a
square matrix of maximal rank. We just didn’t like the sound of the
double negative. Vector spaces have a certain “rank’ rather than
“dimension” simply because there is no reason to use two words for
the same thing. ‘“Polyhedral cone’’ hasn’t been around very long
yet. Perhaps we can persuade others to join usin calling them *finite
cones.” It does sound better, and as Professor Coxeter has pointed
out, “polyhedron” belongs to the 3-space just as “polygon’’ belongs
to the plane. The correct n-dimensional word is “polytope,” and
this is the word that will be encountered here.
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Our system for numbering displayed relations is admittedly unortho-
dox. In each proof we start numbering the relations from the begin-
ning starting with (1). Thus, if we argue that a certain conclusion
follows from (3) we are referring to (3) in that same proof.

If the reader disagrees with some of the liberties we have taken we
hope he will simply attribute them to temperament and forgive us.
To ensure against the possibility of serious confusion we have included
a table of notations at the front of the book and an index of terms at
the back.

Finally, a word concerning the bibliography. We have listed con-
scientiously at the end of each chapter all sources which were actually
used in its preparation. We have, however, made no attempt at
bibliographical completeness, as this is not generally done in textbooks.
The people whose names appear in the bibliography at the end of the
book represent but a fraction of those who have made significant con-
tributions to the subject—an ever-dwindling fraction since new
investigators are constantly entering the field. For the reader who
is interested in bibliographical matters we recommend the very com-
plete “Bibliography on Linear Programming and Related Techniques”
by Riley and Gass (Johns Hopkins Press, Baltimore, 1958).
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List of Notations

Below are listed the principal mathematical notations used in this
book. The notations are listed in the order in which they occur in
the text.

a, B, v, ..., & n ¢ and other Greek letters represent numerical
quantities also referred to as scalars

a,byc, ...,z ¥,z and other italic letters represent vector quantities

r = (&) the vector whose 7th coordinate is &

b = (B;) the vector whose jth coordinate is 8;

y=(m, ...,n) the vector whose coordinates are 71, . . . , 7

F»  the set of all n-vectors over the field F

R® n space, the set of all real n-vectors

u, v the unit vectors all of whose coordinates are one

u;, (v;) the th (jth) unit vector whose 7th (jth) coordinate is one and
whose other coordinates are zero

Az product of scalar A with vector z

¢ symbol for set-theoretic membership, ‘“‘is an element of’’

zy scalar product of vectors x and y

A = (ey;) the matriz whose 4jth coordinate is aj;

a; = (a1, . . ., ain) the sth row vector of the matrix A

@ = (ay, . . . , am;) the jth column vector of the matrix A

zA, (Ay) the product of the matrix A with the vector z(y)

L linear subspace of a vector space

L* orthogonal or dual subspace of L
Xxv
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z = 0 vector z is nonnegative

z > 0 vector x is semipositive

z > 0 vector z is positive

M={1...,m}, N={1,...,n} thesetof positive integers
from 1 to m and 1 to n, respectively

C, D set-theoretic inclusion, ‘‘is contained in’’ and ‘‘contains,
respectively

{le} the set of all z such that x has property P

U set-theoretic union

M set-theoretic intersection

C convex cone

C; + C: algebraic sum of convex cones

C* dual cone of C

P the positive orthant, all nonnegative vectors

(b) the halfline generated by the vector b

(b)* the halfspace generated by the vector b

(a1) + - -+ + (am) the finite cone generated by a;, . . . , an

K convex set

<X> the convex hull of the set X

<y .. .,%s,> the convex hull of vectors zy, . . . , zn

I = (5;;) the identity matriz

A-' the tnverse of the matrix 4

A* the transpose of the matrix A

z > 0 =z is lexicographically positive

(N, k) capacitated network with nodes N and capacity function k

(z, y) edge from node z to node y .

g(A) values of function on nodes A of N given by g(4) = 2 g(x)

zed

h(A, B) value of function on edges from A to B given by h(4, B) =
h(z, y)

b2}

zeA,yeB
s source in a network
s’ sink in a network
(S, 8) a cutin a network
o symbol for infinity

I' two-person zero-sum game
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Py, P, first and second player

8,1 strategies for first and second players

S, T strategy sets for first and second players

(S, T; ) game with strategy sets S and 7 and payoff ¢

o, 7 mixed strategies for first and second players

<8>, <T> sets of mixed strategies for first and second players
&, 7 optimal mixed strategies

® value of a game

(7, 7; @) solution of a game in mixed strategies

T, 7 optimal sirategies for a matrix game

Un={uy, ... ,un} setof pure strategies for a matrix game
<Up> = <Uy, . . . ,uUn> set of mized strategies for a matrix game
X, Y set of optimal strategies for a matrix game

(X, Y;w) solution of a matrix game

T, — T Sequence T converges to x

|o| norm of x






Contents

Preface
List of Notations .

Chapter 1. Linear Programming: Examples, Definitions, and State-

1.

w

ments of the Principal Theorems

Examples .
The diet problem
The transportation problem
Production to meet glven demand at minimum cost
Production to maximize income from given resources

. Duality and prices .
. Further interpretation of duahty
. Price equilibrium

Bibliographical notes
Ezercises

Chapter 2. Real Linear Algebra .

1. Vectors

2. Scalar product, matrlces lmear equatlons

3. Real linear equations and inequalities

4. Basic solutions of equations e
5. Geometry of linear inequalities. Convex cones
6. Extreme vectors and extreme solutions .

7. Convex sets and polytopes

Bibliographical notes
Ezercises .

Chapter 3. The Theory of Linear Programming

1.
2.
3.

4.

Definitions .
The duality theorems .
The equilibrium theorems .
Basic solutions .
xix

iii

Xv



xx

5.

CONTENTS

An application: allocation of resources in a competitive economy
Bibliographical notes
Ezercises

Chapter 4. Computation. The Simplex Method

NO D W

. Solving simultaneous equations and inverting a matrix
. The simplex method for linear programming. Discussion
. Theory of the simplex method

Some numerical examples .

. Nonnegative solutions of linear equatlons

Solving linear inequalities .

. Degeneracy. The generalized snmplex method

Bibliographical notes
Exercises .

Chapter 5. Integral Linear Programming

1.

© 0 NS Gk W

Chapter 6.

1L

[

Examples .
Transportation problem w1th 1nd1v1s1ble commodxty
The optimal-assignment problem .
The loading problem.

. Flows in networks . .
. The simple-assignment problem .

The transshipment problem

The optimal-assignment problem e
A problem related to optimal assignment. Price equilibrium
The transportation problem

Other examples: shortest route; the caterer

. Concluding remarks and open questlons

Bibliographical notes
Ezercises

mentary Theory .

First examples and definitions.
Odds and evens (matching pennies)
Morra .

. Further examples of matnx games

Goofspiel .
Bluffing
A, B, C

. Solutions of games. Mixed strategies
. Value of a game and optimal strategies .
. Some infinite games

Continuous bluffing .

Duels . .

The oil prospector (a game agamst nature)
The bomber and the submarine

High number .

Low number .

. Saddle points and minimax

Two-person Games: Examples, Definitions, and Ele-

85
93
93

97

98
105
108
113
119
121
123
128
129

132

132
132
133
134
134
143
148
155
160
162
170
172
174
174

180

182
182
183
184
184
186
187
189
193
196
196
198
199
201
201
202
202



7.
8.

Symmetric games
Proof of the fundamental theorem

Appendiz to Chapter 6: A geometric ‘“proof’” of the fundamental

theorem of game theory.
Bibliographical notes .
Ezercises . .

Chapter 7. Solutions of Matrix Games.

—

SO PWND G AN~

Solutions.
Examples

. The structure of symmetnc games

. Constructing a game with prescribed solutlons
. Basic optimal strategies .

. A method of ‘learning” a game .

. Convergence of the learning method

Bibliographical notes
Ezercises

Chapter 8. Linear Models of Exchange.

1.

N T W

Examples . e
The simple exchange model The price problem
The simple linear model of international trade

. Equilibrium for the exchange model .
. Dynamic theory

Dynamics in the reduclble case

. Price equilibrium for linear exchange models
. An example of price equilibrium .
. Uniqueness of equilibrium prices .

Bibliographical notes
Ezercises

Chapter 9. Linear Models of Production

NG W

. The simple linear production model .

. A dynamic property of the simple model
. The Leontief model. e
. The general linear production model Efficient points

Von Neumann’s expanding model
Some examples .

. The expanding simple model

Bibliographical notes
Ezercises

Bibliography .

Indez . . . . . .

CONTENTS

. Relation between matrix games and linear programming .
. Solving games by the simplex method
. Optimal strategies . .

xxi

204
207

208
211
212

216

216
220
223
227
231
233
235
241
246
250
256
256

260

260
260
263
264
271
278
281
287
289
290
290

294

294
299
301
306
310
315
317
318
319

323
327






CHAPTER ONE

Linear Programming: Examples,
Definitions, and Statement of the
Principal Theorems

Maximum and minimum problems occur frequently in many branches
of pure and applied mathematics. In economic applications such
problems are especially natural. Firms try to maximize profits or
minimize costs. Social planners attempt to maximize the welfare of
the community. Consumers wish to spend their income in such a
way as to maximize their satisfaction.

Linear programming is concerned with special classes of maximum
and minimum problems which come up very frequently in economic
applications. It is our purpose in this chapter to describe and define
these problems in a precise manner. We shall then present the main
theoretical results concerning them. The proofs of the results will be
given in Chap. 3 after we have developed the necessary algebraic
machinery in the next chapter.

It will be our policy here and throughout the book to introduce
general concepts by means of concrete examples. Accordingly, the
next section will be devoted to discussion of some specific instances
of linear programs which will serve to guide us in formulating the
general definitions which follow. '

1. Examples

Example 1. The Diet Problem. This problem has become the

classical illustration in linear programming and is treated in virtually
1
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every exposition of the subject. It is concerned with the problem of
feeding, say, an army in the most economical way while at the same
time satisfying certain nutritional requirements. Let us be specific.
A dietitian is confronted with n different foods which will be labeled
Fi, Fy . . ., F,. From these he is to select a diet, that is, he must
determine the amount of each food which is to be consumed annually
by a person or group of persons. This yearly menu is required to
supply certain amounts of various nutritional elements such as pro-
teins, calories, minerals, vitamins, and the like. We shall refer to
these types of nutritive elements simply as nutrients of which there
will be m varieties denoted by N1, . . . , Ns,. We suppose that each
man is required to consume at least v units of Ny, y2unitsof No, . . . ,
¥m units of N, per year. In order to meet these requirements the
dietitian must know exactly how much of each nutrient is contained
in each of the foods. Let us denote by a;; the amount of the 7th
nutrient contained in one unit of the jth food. The information which
the dietitian needs is then conveniently presented in the following

table or matriz:
F, F,---F,

N, [23§1 aie 23T

N, g1 Qg2 2279
........ ..

Nm Am1 o %] ®mn

The entry in the 7th row and the jth column of the matrix is the
number o, giving the amount of N; in one unit of ;. We shall refer
to the table above as the nuirition matriz of the problem.

Suppose now that the dietitian has chosen a diet. This means that
he has determined that n; units of Fy, n2 units of Fs, etc., shall be con-
sumed per man per year. How does he now check that the nutritional
requirements are satisfied by this diet? Obviously, he simply calcu-
lates the amount of each nutrient in the diet and compares it with the
prescribed amount. Consider the nutrient N;. Each unit of F; con-
tains oy units of Ny, and since there are n; units of F; in the diet,
we get niey; units of Ny from Fi. Similarly we get sa12 units of N
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from F,, and in general n;a;; units of Ni from F;. The total amount of
N1 in this diet is then

mair + a1z + ¢ ¢ 4 Maaia

and this amount is required to be at least equal to y;. Thus the
requirement on N; simply states that the numbers 51, . . . , 7, must
satisfy the inequality

n
z nay = Y1
i=1

The requirements on the remaining nutrients take exactly the same
form, and the condition that the diet satisfy all requirements is that
the numbers 5; satisfy simultaneously the m inequalities

211,'04,-5_2_7,- fore=1,2...,m ((})
=1

A diet for which conditions (1) are satisfied will be termed a feasible
diet.

As yet no maximum or minimum problem has been described, but
we have already mentioned that the dietitian must choose the most
economical diet consistent with the requirement (1). We are assum-
ing then that a price is associated with each food. Let m; be the price
of one unit of the food F;. It follows that the cost of the diet described
by the numbers »; is given by the expression

n

mm + wme + ¢ ¢ A Tala = Z Tin; 2

i=1

We can now give a complete statement of the diet problem. Among
all diets satisfying conditions (1) find one such that expression (2) is a
minimum.

The problem which we have just described in perhaps tedious detail
is a typical linear programming problem. The word “linear’’ is used
because both the inequalities (1) and the function to be minimized (2)
are linear.

A diet which satisfies both (1) and (2) is called an optimal diet.
Mathematically the diet problem can be broken into two parts: first,
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that of finding a feasible diet and, second, if a feasible diet exists,
of finding an optimal diet. It is easy to see that a feasible diet will
always exist provided each nutrient N; occurs in at least one food Fj,
for then by using a sufficient amount of the foods one can always
satisfy the requirements. It is quite clear in this case that an optimal
diet also exists. A rigorous proof of this fact will have to wait, how-
ever, until a later chapter.

Example 2. The Transportation Problem. Let a certain
commodity, say steel, be produced at each of m plants, Py, . . . , Pp,
and let o; (¢ = supply) be the yearly output of the 7th plant. Sup-
pose now that steel is required at each of n markets, My, . . . , M,
and let the annual demand at the jth market be §;. Finally, let v;; be
the cost of shipping one unit from P; to M;.

The problem is now to determine a shipping schedule such that
(1) the demand §; at the market M; will be satisfied, (2) the supply o,
at the plant P; will not be exceeded, and (3) the total shipping cost
will be a minimum. A shipping schedule consists simply of mn non-
negative numbers £;, where £; represents the amount to be shipped

from P; to M;. The total amount shipped into M; is thus E £, and
i=1

condition (1) becomes

m
RIEX, m
i=h
The total amount shipped out of P; is z ¢, and condition (2) is
=1
therefore
n
Y & <o )
=1
and, finally, we are required to minimize
2 Viikii 3)
1,7

It will be noted that this problem is of the same general form as the
diet problem. We are seeking certain nonnegative numbers £; which
satisfy the system of linear inequalities (1) and (2) and minimize the
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linear function (3). In analogy with terminology used in the diet
problem, we shall say that a shipping schedule is feasible if the num-
bers &; satisfy inequalities (1) and (2). It is immediately clear that
a necessary condition for the problem to be feasible is the requirement
that total supply be at least as large as the total demand, that is,

m n
o = E 5 (4)
=1 1=1

Conversely, we leave it to the reader to prove that if (4) is satisfied
then there exists a feasible shipping schedule (see Exercise 1).

The next two examples are of quite general importance and include
many others as special cases. These involve the important idea of a
linear production model, which we now describe. Consider a produc-
tion system, say a factory, in which n goods Gy, . . . , G, are involved
either as inputs to the productive process or as final goods. For
instance, these goods might include steel, labor, automobiles, ete.
Goods are produced by linear processes or activities which are to be
thought of as “recipes’ giving the proportions of the various goods
required in a given mode of production. An ordinary cookbook recipe
provides a typical example. Thus, if the goods are, say, eggs, butter,
salt, milk, cheese, the soufflé activity is completely described by stating
how many parts of butter, eggs, etc., are required to produce one unit
of souflé. The statement that this process is linear simply means
that multiplying all ingredients by any constant multiplies the amount
of soufflé by the same constant. Note that this assumption of linearity
is a rather severe restriction on the types of processes to be considered.
If in the culinary example above we had included labor among the
goods, the linearity feature would have been lost, for it is certainly
not true in general that preparing a double portion of soufflé requires
twice the cooking labor.

A formal definition of an activity is now easily given.

Definition. An activity P involving n goods corresponds to a set
of n numbers, a1, . . . , a,. The good G is called an input to the
activity if «; is negative, and an output of the activity if «; is positive.

A linear production model P involving n goods consists of a set of
such activities P1, . . . , Pn. Such a model is completely described
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by an array of mn numbers a;;, where a; is the amount of G; produced
(or consumed if «;; is negative) when P; is operated at unit level. This
array of numbers is called the production matriz of the model.

Gh G
Py oy -+ am
Pm Am1  ° ° ° Qma

Now, in order to describe completely how the production model
behaves it is necessary to specify the inputs and outputs of each
of the activities. We shall say the activity P; is being operated at the
level or intensity &; if its inputs and outputs are given by the numbers
&y, Eiouny . . ., Eitin. A production schedule for P is defined to be a
set of nonnegative intensities &, . . . , & for the activities P;. Given
these numbers £ we see that the total amount of G; produced is the sum
of the amounts produced by each of the activities and is given by the
expression

a1 + Esagj + ¢ ¢ 0+ EmQmg

where, of course, this quantity may be negative, which simply means
that the jth good is being consumed rather than produced.

We are now prepared to present the two examples.

Example 3. Production to Meet Given Demand at Minimum
Cost. Assume we have a linear production model and it is required
that we produce at least §; units of G; (§ = demand). Suppose further
that the cost of operating the process P; at unit level is v;; hence the
cost of operating P; at level £ is &v.:, where we are again making the
rather restrictive assumption that the cost of operating an activity
is proportional to the level at which it is operated. The problem is
then to choose a production schedule which will satisfy the demands
8; and minimize the total cost. Thus, we seek nonnegative numbers
£, . . ., &n which

minimize ) & (1)
i=1
subject to the requirements that
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b =8 forj=1,...,n ©

t=1

Some remarks are in order here. Recall that the numbers a;;
may be either positive or negative according as G; is produced or
consumed by the process P;. Similarly, the demands §; may be nega-
tive. A negative demand is economically a supply, for if §; is negative,
the inequality

Eioij = 05
i=1

means that we must not consume more than the amount —3;. Thus,
both supplies and demands are taken account of in this model.

The question of feasibility is no longer a simple one in this example.
It may easily happen that it is not technologically possible to satisfy
the given demands with the given resources, for (2) may be any
system of linear inequalities and such systems need not have solu-
tions. If, however, a feasible schedule does exist, it is intuitively
clear that there is an optimal schedule since the cost of a given schedule
is bounded below by zero. A proof of this fact will be given in Chap. 3.

Example 4. Production to Maximize Income from Given
Resources. This example is essentially the same as the previous
one except for a change of sign. Again we consider a linear production
model but instead of associating a cost with each activity we let
v:; = 0 be the rate of return or income associated with the activity P;,
obtained, say, from selling the outputs of the activity. Assume fur-
ther that there is a given fixed supply o; of the jth good. The problem
is now to find a production schedule %1, . . . , &, which will maximize
the total income without exceeding the given supplies. In symbols,
we wish to

m
maximize z Ev; (1)
i=1
subject to the conditions
m
- Z biij = 05 @

=1
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The reason for the negative sign in (2) is that we are here taking
supplies as positive and thus the amount of G; consumed in production
is not to exceed o;.

With the four examples before us it is not difficult to see what ele-
ments they have in common, and we can give our first basic definition.

Definition. A standard linear programming problem is that of
finding nonnegative numbers £1, . . . , &, which either maximize or
minimize a given linear function, that is,

m
2 £y 18 to be maximum or minimum 1)
i=1

where the numbers &; are also required to satisfy a set of linear inequalities.

m
Z Sy
i=1

We shall later define a more general kind of linear program. For the
present the reader should observe that all our examples fall under the
definition above. In accordance with previous terminology we shall
call numbers £; which satisfy (2) a feasible solution of the problem, and
we shall call a problem feastble if it has a feasible solution. A feasible
solution which maximizes or minimizes (1) will be called an optimal
solution. The number giving the maximum or minimum will then
be called the value of the linear program.

IIA

B; j=11'°'1n (2)

2. Duality and Prices

We begin this section by considering a specific maximum problem.
Example 5. Find nonnegative numbers £, &, &3, £4 such that

28 + 4%, + &5 + £4 18 a maximum 1)
subject to the conditions

&+ 3%, '+ & =4
26+ & =3 2
&2+ 48+ £ =3

We assert: An optimal solution of this problem is given by
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=1 £=1 =1 £=0

The reader will verify by direct substitution that these numbers
are feasible; i.e., they satisfy the inequalities (2) above. Substituting
the numbers in (1) we obtain

2:14+4-1+%+0==6}

and it is our claim that 614 is in fact the desired maximum. How
do we know this and how can we be sure that some other choice of
the numbers & will not give us a larger value of (1) and still satisfy
(2)? In the paragraphs that follow we are going to prove to the
reader that the feasible solution above is actually optimal. In order
to do this we turn for a moment to the general problem of finding

nonnegative numbers &1, . . . , &n which
m
maximaize E Ervi (3)
i=1
subject to the tnequalities
m
Yhay=6 j=1...,n @

i=1

The fundamental fact about linear programming is that to the
maximum problem above corresponds the following standard minimum
problem: find nonnegative numbers 91, . . . , 7, which

minimize E 0iBi 3)*
i=1
subject to the inequalities

n
_znja;jg'y; 1=1...,m @*
=1

Problem (3)*, (4)* is called the dual of problem (3), (4) and the
central results of linear programming theory concern the relationship
between a problem and its dual. We shall shortly give a precise
statement of this relationship. At this time we make the following
observation.
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Lemma 1.1. Let &, . . ., &x be a feasible solution of a standare
mazximum problem [thus, a nonnegative solution of inequalities (4)]
and let 91, . . . , 1. be a feasible solution of the dual problem [a nonnega-
tive solution of inequalities (4)*]. Then

i Evi = 2 Emjou; = Z 73B; 6)
1=1 %)

i=1

Proof. Multiplying the jth inequality of (4) by 5; and summing on

j gives
2 niB; = 2 n; 2 Sivyj = z’ém:au 6)
] =1

Multiplying the <th inequality of (4)* by & and summing on ¢

gives
2,0 s L b ) veu= ) ne @

and (6) and (7) together yield (5).
As a consequence of this lemma we have our first important result.
Theorem 1.1 (optimality criterion). If there exist feasible solutions
£, . .., Emand n1, . . . , na for the mazimum problem above and its
dual such that

2 Evi = z 7iBi (8)

then these feasible solutions are, in fact, optimal solutions of their respec-
tive problems.

Proof. Let £, . . ., £, be any other feasible solution of the maxi-
mum problem. Then from the lemma

n

S < ) s ©

and combining this with (8) gives

3

S vz Y e

i=1 =1
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showing that £, . . ., &, is an optimal solution. A symmetrical
argument proves the optimality of 71, . . . , 7n.

Let us immediately apply this result to our numerical problem.
The dual of this problem is seen to be that of finding nonnegative
numbers 71, 72, 73 such that

491 + 312 + 3793 is 2 minimum subject to 1)*
7+ 21, Z 2
3 =4
m+ e+ 732 @)*
49, 2 1
1+ 732 1

Now, one verifies by direct substitution that
m=120 m=% m=X

provides a nonnegative solution of (2)* hence a feasible solution of
the dual problem. Furthermore, evaluating (1)* gives

4-130 +3-%0 +3-34 = 1395, = 615

which is the same as the value obtained from the feasible solution
of the original maximum problem. It follows from Theorem 1.1 that
we have found optimal solutions for both the original problem and its
dual.

We have now fulfilled our promise of proving to the reader that the
feasible solution which we exhibited at the beginning of this section
is optimal. This was possible because we were able to find a feasible
solution of the dual problem which together with the original solution
satisfied the optimality criterion. A natural question which has now
perhaps occurred to the reader is this: Was it just a fortunate accident
that we were able to find a suitable solution of the dual problem in
this case, or can we expect such solutions to exist in general? The
central fact in the theory of linear programming is that the phenome-
non noted in this example holds for all linear programming problems.
In precise terms the converse of Theorem 1.1 is also true; if we have
optimal solutions of a problem and its dual then the values of the twa
problems are equal. This result is known as the fundamental duality
theorem of linear programming, which we state as follows:
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Fundamental Duality Theorem. If a standard mazimum or
mintmum problem and its dual are both feasible then they both have
optimal solutions and both have the same value. If either problem is not
feasible then neither has an optimal solution.

This rather remarkable result, which seems to have been noted
first by von Neumann, is basic not only in the theory of linear pro-
gramming but also in two-person game theory and a number of other
branches of linear economic theory. The proof is not simple and will
have to be put off until the necessary algebraic machinery has been
developed in the next chapter. We shall devote the rest of this chap-
ter to interpreting the result in economic terms and to deducing some
of its consequences.

In order to gain further understanding of the significance of the
duality theory let us return to the numerical problem of Example 5
and interpret this example as a production problem of the type
described in Example 4. We assume we have 4 activities Py, P,, P,
and P,. The income from operating P; at unit level is 2, that for
P, is 4, etc. There are 3 goods G, G2, and G; and the activity P,
requires as inputs 1 unit of G; and 2 units of (3, while P, requires
3 units of (4, 1 unit of G, and 1 unit of G35, etc. There are available
4 units of G4, 3 units of G5, and 3 units of G5. At what levels shall the
processes be operated so as to maximize the total income?

We have given a typical interpretation of the problem (1), (2),
but how are we to interpret the dual problem (1)*, (2)*? First note
that the right-hand side of the inequalities (2)* is income and is there-
fore measured in monetary units, say in dollars. The coefficients
on the left-hand side of (2)* are in units of goods. It follows that the
numbers 7; have the units of dollars per unit of goods, that is, the ;
are unit prices of the goods G1, G2, and G5. With this interpretation
of the unknowns 7; what is the meaning of the inequalities (2)*?
Let us consider the first inequality

1m+2:-9222
The coefficients 1 and 2 on the left are the amounts of G; and @,

required to operate activity P; at unit level. Since 7; and 7. are the
corresponding prices the left-hand side above is the cost of operating
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P, at unit level, and the inequality states that this cost must be at
least as great as the income received from the activity. The same
analysis applies to the other inequalities (2)*, whose meaning can now
be summarized by the simple economic statement:

The prices n; must be such that no activity P; makes a positive profit.

Finally (1)* is seen to be the requirement that the total value
of the resources be minimized. It is now possible to give a verbal
argument justifying Theorem 1.1. It runs like this: We have found
prices n; with the property that the return from each activity will be
no greater than the cost of the activity. Therefore, the total return
from operating the model is at most equal to the total cost of the
available resources. But we have found a way of operating the model
in which the return is equal to this total cost, and therefore this mode
of operation must be optimal.

3. Further Interpretation of Duality

We have now stated the fundamental duality theorem and shown
how it can be used to prove that a given feasible solution of a program
is optimal. In this section we shall look again at the examples of
linear programs given in Sec. 1 and interpret the duality theorem in
each case.

1. The Diet Problem. We shall not rewrite the problem formally
but simply remind the reader that it concerned selecting a diet satisfy-
ing certain requirements on nutrients and minimizing total cost. The
dual problem can be described as follows: to assign values or “prices”’
to each nutrient N; in such a way that the sum of the values of the
nutrients in one unit of the jth food F; does not exceed its unit cost =;,
and such that the total value of the amounts of nutrients required
by the diet is a maximum. It is recommended that the reader verify
formally the above verbal statement.

An important nonmathematical question now arises. Is there any
way of looking at this dual problem so that it makes sense econom-
ically? It is quite clear why a dietitian would want to minimize
the cost of an adequate diet, but why would anyone want to maximize
the value of the nutrients in such a diet? We are about to describe
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a simple situation in which such a maximization has an economic
meaning. The description may seem artificial at first, but it will
appear less so as we go on to consider other examples. The situation
requires that we introduce a new character into our gastronomic
drama, a seller of pills—vitamin pills, iron capsules, and so forth.
This salesman is, in fact, able to provide the dietitian with all the
nutrients the latter needs in some concentrated form. The dietitian,
whose sole aim is to minimize costs, will willingly substitute pills
and capsules for steak and potatoes provided this will save money
(a certain lack of realism in the original problem is becoming increas-
ingly apparent, but this is, of course, beside the point for present
purposes). Suppose then that the pill salesman sets the prices of a
unit of N; (the ¢th nutrient) at some value &;, making sure that

m
tioj for all j, where w;; is the amount of N;in F; (2)*

i=1

This means that the total value of the nutrients in a unit of F; is no
greater than the unit cost of F;. It is now clear that, no matter what
diet he chooses, it will always be at least as economical for the dietitian
to buy pills since the cost of each food is at least as great as the cost
of the nutrients it contains. The pill man will, however, now charge
the dietitian as much as possible subject to the constraints (2)*.
Since the adequate diet calls for v; units of N;, he sets prices &; so as to
maximize

§ivi >

1

A3

and this is precisely the dual problem.

We can be somewhat less concrete in our description of the dual
problem by saying that the nutrient prices £ are those which enable
the pill man to realize the maximum return and still compete favorably
with the grocer. It is this idea of competitive prices which is charac-
teristic of the interpretation of the duality theorem.

2. The Transportation Problem. In order to determine the dual
here it is convenient to write out the relations without the summation
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symbols. Recall that we wish to choose numbers £; which minimize
the shipping cost

Sy + Eeviz + 0 0 0+ EnYia
+ Earyer + Esavee + 0 0 0+ E2avon

1
TR T BT ®
+ EMI’le + £m27m2 + st + Emn‘/mn

subject to the inequalities (see Sec. 1, Example 2)
—tn— - —¢n Z\—Ul
— &9 — — &on = —o2
- £m1 - - Emn ; —O0m
tn + $a1 4+ + Em = 6
Eln + £2n + * + £mn = 6»

where ¢; is the supply at plant P; and §; is the demand at market M;.
The dual problem now becomes: to determine nonnegative numbers

mi=1...,mandn;,j=1, ..., n, suchthatw; — m < v,;for
m

all 7 and j, and such that E w8 — Z mo; is a maximum. The reader
i=1 i=1
should verify that this is the correct statement of the dual problem.
How shall we interpret this dual problem? First, notice that since
we have the relations 1r; — m; < v;; we are forced once again to meas-
ure the variables =; and =; in units of money. Let us consider now
that the numbers v;; represent the established transportation costs
which confront, say, a steel manufacturer who is in the act of trying
to decide on a shipping schedule. He is interrupted by a visit from a
representative of the new Fly-By-Nite Transportation Company, who
makes him the following proposition: ‘I will buy all your steel, paying
m; for each unit of steel at plant P;. I will guarantee to deliver the
steel to the markets M; in the quantities §; and I will then sell it back
to you, charging =, for each unit at M;. Please notice that

m —m < v;  foralliandj )*
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so you will pay no more than you would if you paid the normal trans-
portation costs.” The manufacturer is forced to agree on this point
and the deal is therefore closed to the satisfaction of the Fly-By-Nite
man as well, for he has shrewdly set the prices so as to maximize his
profit Zx}8; — Zm0; subject only to (2)* above.

Because of the duality theorem, it will turn out that the manufac-
turer doesn’t actually save any money by this maneuver (though he is
saved the trouble of calculating the minimal shipping schedule).

Let us illustrate the duality theory for the transportation problem
by a numerical example.

Example 6. The diagram in Fig. 1.1 gives a schematic representa-
tion of a transportation problem with two plants and three markets.

1 M]_ 61"2
a=4 P 2
2
Mz 62=3
4
62=7 P, 3
6 M3 33"5

Fia. 1.1

This graphical representation is almost self-explanatory. The vertices
of the graph represent the plants and markets, and the corresponding
supplies o; and demands §; are indicated. The lines connecting plants
and markets represent the various routes and the number above each
line gives the cost of the corresponding route. The cost matriz is seen
to be

M, M, M,
P, 1 2 3
P,| 2 4 6

where the ¢jth entry above is the unit shipping cost from P; to M;.
We now claim that a solution to the above problem is given by

Eu=0 512=0 Els=4
o= 2 £90 = 3 £z =1

and the minimum cost is given by
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0:14+0-24+4-3+2-2+3-44+1-6=124+4+4+1246=34

In order to prove that this is a minimum, we exhibit the following
feasible prices for the dual problem:

1rl=3 1l"2=0
’

T =2 =4 w3 = 6
To verify feasibility, we must check that x; — =; is not greater than
the 4jth entry in the cost matrix. The following figure will facilitate
this verification:
T =2my,=4 71 =26
m =3 1 2 3
72 =0 2 4 6

One easily checks that each entry in the cost matrix is not less than the
difference between the numbers at the head of its column and row.

Finally we see that our solutions of the dual problems are optimal
for we compute

Snjs; — Zmo; =2-2+4-3+5:6—-3-4—0-7=34

and since this is the same as the shipping cost computed above we have
solved the problem.

The solution can also be written down in tabular form as a shipping
matrix

0 0 4
2 31

where the #jth entry is the amount shipped from P; to M;. Com-
paring the shipping matrix with the cost matrix we note that in our
solution the cheapest route, that from P; to M}, is not used, while the
most expensive route, that from P, to M3, is used. This fact is per-
haps somewhat surprising and shows that it is not easy to guess the
solution of a transportation problem in advance.

3. Production to Meet Given Demand at Minimum Cost.
The interpretation of the dual here is very similar to that of the diet
problem. The details are left to the reader.
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4. Production to Maximize Return from Given Resources.
This is the problem treated in the previous section. The dual con-
sists in assigning prices =; to the various goods G; in such a way that

m;o; is minimized 1)*

inge

subject to

v

) 2)*

- T
i=1
Interpretation. A competitor believes he has a more efficient way
of utilizing the given resources and wants to buy out the producer.
He therefore offers to pay the producer the amount ; for each unit of
@, where the numbers =; satisfy (2)* above. The competitor quickly
convinces the producer that the amount of money offered is at least
as much as he could obtain from any production schedule, “for,” says
the competitor, “if you operate P; at level & your return will be

m

2 &vs 3)

i=1

where, of course, because of your limited supplies,

- i §ioij = 0j )

i=1

But if you sell to me, your return will be

n
2 w05

j
and zﬂ‘ja'j = —z j Z &
+ i

J - z & 2 iy = E Evi [from (2)*]

=1
atij [from (4)] ®)

I

so you will be at least as well off.”” Conclusion: The producer accepts
the offer and the competitor buys him out at the lowest possible figure
[i.e., condition (1)* subject to (2)*].
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4. Price Equilibrium

In this section we shall present a result which is a rather simple
consequence of the duality theorem. It is, however, of considerable
economic importance, providing our first example of an “equilibrium
theorem,” a terminology which will be explained shortly.

We return to consideration of the standard maximum problem of
finding nonnegative numbers &1, . . . , & which

maximize Z Eyi (1)
i=1
subject to
YEash j=1...,n @)
i=1 X
and the dual problem of finding nonnegativenumbersn;, . . . , 7, which
n
minimize Z i85 (H*
=1
subject to
ana,-j;'y,- z'=l,...,m (2)*

i=1

Assuming the duality theorem to be true we shall now prove the
following result.
Theorem 1.2 (equilibrium theorem). The feasible solutions &,
e, Enand n1, . . ., 1 of (2) and (2)*, respectively, are optimal
solutions if and only <f

7 =0 whenever z Liouj < Bj 3)
is1

and £ =0 whenever Z nio; > vi (3)*
=1

Proof. First, suppose conditions (3) and (3)* hold. Multiplying
the jth inequality of (2) by »; and summing on j and making use of
(3) gives
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z 7i8; = i i by = Zimjaﬁ 4)

=1 =1

Similarly, from (2)* and (3)* we get

m

z bivs = i & i njo; = z Emjous; 6)
i=1 i=1 )

=1 %]

and (4) and (5) show that

Evi = mﬂ:

i

DN
IIM:

1

whence from Theorem 1.1 the & and 5; are optimal solutions.
Conversely, if the & and »; provide optimal solutions then from
the duality theorem we know that

z fiys = zfzﬂﬂu = Z 7i8;

1=1

From the first equation we have

(o § ) =0

but since the numbers 7; are feasible it follows that the terms (y; —

uMa
£M=

'f]jaij) are nonpositive and hence for each ¢

& ("/i - i'ﬂjaij) =0
j=1

from which (3)* follows at once. A symmetrical argument proves
condition (3).
We shall now interpret the above result economically and justify

inge

the use of the word ‘““equilibrium.” For this purpose let us think of
(1), (2) above as the production problem of Example 4. We have
already seen that it is natural to interpret the dual variables »; as
prices, and we have also seen that the feasibility conditions (2)* cor-
respond to the requirement that no activity makes a positive profit.
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Condition (3)* has a very obvious interpretation. It says that if the
cost of an activity exceeds the income derived from it then it will not
be used; i.e., it will be operated at level zero. Conditions (2)* and
(3)* together may be thought of as stability conditions in the following
sense. If the model is operating at activity levels £, . . . , & and
these conditions are satisfied then there will be no incentive to change
the activity levels since there is no way of increasing income. Looked
at the other way, if conditions (2)* or (3)* failed to hold then activity
levels would be unstable, for the producer could increase his income
by changing the production levels.

As to conditions (2) and (3), the first is simply the technological
requirement that the available supply must not be exceeded. Condi-
tion (3) states that, if there are goods of which there is a surplus, that
is, whose supply is not exhausted, then the price of these goods must be
zero. This is also a stability condition, this time on prices rather
than on activity levels. Recall that according to the classical “law
of supply and demand ” if the supply of a good exceeds the demand for
it then its price will drop. On the other hand, prices cannot drop
below zero and therefore a good which is oversupplied even when
income is being maximized must become a free good.

As a second illustration of the equilibrium theorem, let us see what
it says for the case of the transportation problem. Recall that a
feasible shipping schedule is one which satisfies the given demands
without exceeding the given supplies, and a feasible set of dual vari-
ables are prices at each plant and market with the property that the
difference between market price and plant price does not exceed the
shipping cost from plant to market. The equilibrium conditions now
become:

@3)* If the difference between the price at a particular market
and a particular plant is less than the corresponding shipping cost,
then no goods will be shipped from that plant to that market.

Interpretation. ““The company’’ will lose money if it costs more to
ship from plant to market than what can be realized by sales at the
market. Such unprofitable routes will not be used.

(3) If the amount shipped out of some plant is less than the supply
at that plant then the price at that plant must be zero.
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Interpretation. As in the previous discussion, if there is a surplus
at some plant, the price there must drop to zero.

One of the most important uses of the equilibrium theorem is in
connection with numerical computation. We have already seen that
if feasible solutions of the primal and dual problems are given they
can easily be checked for optimality. Now, using the equilibrium
theorem we can often find the solution to the dual problem when the
solution to the primal is given. Let us return to the numerical
Example 5 in which the inequalities were

&1+ 3&, + & =4
26+ & =3 2)
£+ 48+ £, =3

and the proposed optimal solution was
f1=1 £2=1 t=1% £8.=10

According to the equilibrium theorem the dual inequalities must in
fact be equations for the cases ¢ = 1, 2, 3; so we must solve

m + 272 =2
37]1+ 772+ 7]3=4
4:7]3=1

and this is a simple system of 3 equations in 3 unknowns whose unique
solution is easily seen to be the one given in Sec. 2. Thus, knowing
only the solution of the original problem we are able to find the solution
of the dual.

Let us apply the equilibrium theorem to solving the transportation
problem of Example 6. The proposed solution was given by the
shipping matrix

0 0 4
2 31

We wish to find the prices 71, 75 and 7}, 73, and 5. Note first that the
supply o at P2 is 7, but only 6 units are shipped out of P;. According
to the equilibrium theorem, therefore, the price =3 = 0. Next,
corresponding to the nonzero entries in the shipping matrix above
we must have equations in the dual problem. These are
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! ’

T —we=m = 2
/ /

Ty — W = mwy = 4
’

w3 — w1 =3

Ty — W = w5 = 6
sowy = 2,7y = 4,73 = 6, and =1 = 3, which is the answer given in the

previous section.
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Exercises

1. Prove that a transportation problem is feasible if and only if the
total supply is at least equal to the total demand, that is,

2. Find a feasible shipping schedule for the transportation problem
with 5 plants and 5 markets where the supplies and demands are given

by

"Ms
uv

o1 = 120 g = 75 o3 = 205 g. = 145 a5 = 90
and &; = 235 82 = 50 6; = 115 84 = 80 o5 = 150

3. Show that the following standard maximum problem is not
feasible: Find nonnegative numbers £; and £, which

maximize 3¢ — 2§ ®
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subject to
26+ 58, =3 2)
-3 + 8, =< -5

4. Show that the following linear program is feasible but has no
optimal solution: Find £, £2 = 0 such that

£ + £ 1is a maximum 1)
subject to
=3t + 28, = —1 @)
EL— & =2

5. Write the dual problem of the problem given in Exercise 4. In
view of the result of Exercise 4 and the duality theorem what must be
true of this dual problem? Verify this directly.

6. Construct a standard maximum problem involving two inequali-
ties and two unknowns which has more than one optimal solution
although not every feasible solution is optimal.

7. Consider the standard minimum problem of finding nonnegative
numbers &1, . . . , £, which

Evi (1)

minimize

N3

7

subject to

s

Eioqj = ﬂj fOI'j= 1, RS (2 (2)
i=1

If a;; = 0 for all 7, j show that the problem is feasible if and only if

Bi=0 whenever a1 = 0gj = * 0 = Qi =

Interpret this result for the case of the diet problem.

8. Write out the dual of the problem of Exercise 7. Assuming that
the conditions of Exercise 7 hold, show from the duality theorem that
both the original problem and its dual have optimal solutions if
v: 2 0 for all 4.

9. Verify that the dual of the diet problem is correctly described
by the statement of Sec. 3, Subsec. 1.

10. Verify that the dual of the transportation problem is correctly
given by the relations in Sec. 3, Subsec. 2.

11. Give an economic interpretation of the dual of the problem of
“production to meet a given demand at minimum cost.”
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12. Consider the following standard maximum problem:

maximize & + & + £ + £ ¢))
subject to
b+ & =3
&+ &1
&£+ & =1 2
& + & =1
&+ 853

Show that this problem has the optimal solution
tbr=1 £=1 £=0 £,=1

by finding a solution of the dual problem making use of the equilibrium
theorem.
13. By the methods of Exercise 12 show that

El=4 €2=1

is an optimal solution of the problem

maximize § — & 1)
subject to
-2+ £ =2 \
£1— 252 @)
£+ &£=5

14. The cost matrix for a transportation problem with 3 plants and
4 markets is

M M, M;M,
Pl 4 4 9 3
P,| 3 5 8 8
P, 2 6 5 7

The supplies and demands are
O'1=3 0’2=5 g3 = 61=2 52=5 63=4: 65=4

We claim that the following shipping matrix gives an optimal solution:

N OO
S oo
B OO
- o W
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Verify this by finding the prices in the dual solution, given the fact
that the prices at P, and P; are zero.

15. Let Po, Py, . . . , P, be a set of geographical points. A certain
good is produced at Py and desired at P,. For each pair of points
P; and P; there is a nonnegative number c¢;; called a capacity, which
measures the maximum amount that can be shipped from P; to P; in
one year. Formulate algebraically a linear program for maximizing
the amount which can be received at P, in a year. Show that the
program is always feasible. (This is called the mazimum-flow problem.)
(Hint: Since goods are produced only at P, the flow out of P; must not
exceed the flow into P; for ¢ > 0.)

16. Write out the dual of the maximum-flow problem above. How
many inequalities and unknowns does it contain? Show that this
dual is always feasible if Py is distinct from P,. In view of the duality
theorem what does this imply for the original problem?

17. In a certain plant there are n different job openings Jy, . . . ,
J.and mindividuals Iy, . . . , I, are available for working the various
jobs. An efficiency expert has tested each individual at each job and
has found that the rating of I; for the job J; is given by the nonnegative
number o;;. The problem is to determine what fraction of time
I; should work at job J; assuming only one person can work at a given
job at a time, in order to maximize the sum of the ratings. Formulate
this problem algebraically as a linear program and show that it is
always feasible. (This is called the optimal-assignment problem.)

18. Write out the dual of the optimal-assignment problem. Show
that it has m + n unknowns and mn inequalities. Using the duality
theorem, prove that the optimal-assignment problem always has an
optimal solution.

19. The following is the rating matriz for an optimal-assignment
problem:

J1 Jo Iz Ju T

I;]12 9 10 3 8
I, 6 6 2 2 9
I;| 6 8 10 11 9
I, 6 3 4 1 1
Is |11 1 10 9 12

We maintain that a solution to this problem is given by

I, works full time on J;
I, works full time on Js
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I3 works full time on J4
I, works full time on J,
Is works full time on J3;

Also, the 5 dual unknowns #3, . . . , 5 corresponding to Jy, . .
in an optimal solution are

=3 m=0 a3=1 =0 mg=3

Verify optimality by first finding the dual unknowns =y, . .
corresponding to Iy, . . ., Is.

27

R

., Ts



