MA 520: Boundary Value Problems of Differential Equations Spring 2024, Final Exam

Instructor: Yip

- This test booklet has SIX QUESTIONS, totaling 140 points for the whole test. You have 120 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book, closed note, with no electronic devices.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- As a rule of thumb, you should give explicit and useful answers. No points will be given for just writing down some generically true statements. In other words, your answers should try to make use of all the information given in the question.
- As a rule of thumb, you should only use those methods that have been covered in class. If you use some other methods "for the sake of convenience", at our discretion, we might not give you any credit. You have the right to contest. In that event, you will be asked to explain your answer using only what has been covered in class up to the point of time of this exam.

| $\frac{\text { Question }}{1 .(20 \mathrm{pts})}$ Score |
| :--- | :--- |
| $\frac{2 \cdot(20 \mathrm{pts})}{3 \cdot(20 \mathrm{pts})}$ |
| $4 .(20 \mathrm{pts})$ |
| $5 \cdot(20 \mathrm{pts})$ |
| $6 .(40 \mathrm{pts})$ |
| Total $(140 \mathrm{pts})$ |

Some useful formula

1. The solution of $x^{\prime}(t)=a x(t)+b(t), x(0)=x_{0}$, with a being a constant, is given by

$$
x(t)=e^{a t} x_{0}+\int_{0}^{t} e^{a(t-s)} b(s) d s
$$

2. The eigenfunctions and eigenvalues of $L=\partial_{x x}$ on $(0, l), L \varphi=\lambda \varphi$, are given by,
(a) for Dirichlet boundary condition, $\varphi(0)=\varphi(l)=0$:

$$
\varphi_{n}(x)=\sin \left(\frac{n \pi x}{l}\right), \quad \lambda_{n}=-\frac{n^{2} \pi^{2}}{l^{2}}, \quad n=1,2, \ldots
$$

(b) for Neumann boundary condition, $\varphi_{x}(0)=\varphi_{x}(l)=0$:

$$
\varphi_{n}(x)=\cos \left(\frac{n \pi x}{l}\right), \quad \lambda_{n}=-\frac{n^{2} \pi^{2}}{l^{2}}, \quad n=0,1,2, \ldots
$$

Note that,

$$
\int_{0}^{l} \sin ^{2}\left(\frac{n \pi x}{l}\right) d x=\int_{0}^{l} \cos ^{2}\left(\frac{n \pi x}{l}\right) d x=\frac{l}{2} \text { for } n \geq 1 \text { while for } n=0, \text { we have } \int_{0}^{l} 1^{2} d x=l \text {. }
$$

3. The Fourier transform and its inverse are given by:

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-i \xi x} d x, \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{i \xi x} d \xi .
$$

The following are some formula and properties of Fourier transform:

1.	$f(x)$	$\hat{f}(\xi)$
2.	$f(x-c)$	$e^{-i c \xi} \hat{f}(\xi)$
3.	$e^{i c x} f(x)$	$\hat{f}(\xi-c)$
4.	$f(a x)$	$a^{-1} \hat{f}\left(a^{-1} \xi\right)$
5.	$f^{\prime}(x)$	$i \xi \hat{f}(\xi)$
6.	$x f(x)$	$i(\hat{f})^{\prime}(\xi)$
7.	$(f * g)(x)$	$\hat{f}(\xi) \hat{g}(\xi)$
8.	$f(x) g(x)$	$(2 \pi)^{-1}(\hat{f} * \hat{g})(\xi)$
9.	$e^{-a x^{2} / 2}$	$\sqrt{2 \pi / a} e^{-\xi^{2} / 2 a}$
10.	$\left(x^{2}+a^{2}\right)^{-1}$	$(\pi / a) e^{-a\|\xi\|}$
11.	$e^{-a\|x\|}$	$2 a\left(\xi^{2}+a^{2}\right)^{-1}$
12.	$\chi_{a}(x)=\left\{\begin{array}{lll}1 & (\|x\|<a) \\ 0 & (\|x\|>a)\end{array}\right.$	$2 \xi^{-1} \sin a \xi$
13.	$x^{-1} \sin a x$	$\pi \chi_{a}(\xi)= \begin{cases}\pi & (\|\xi\|<a) \\ 0 & (\|\xi\|>a)\end{cases}$

1. You are given the following information:

$$
\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{2}{1}=-4\binom{2}{1} \quad \text { and } \quad\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{-1}{2}=-9\binom{-1}{2}
$$

(a) Solve the following system of differential equations,

$$
\frac{d X}{d t}(t)=\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right) X(t)+\binom{1}{1}, \quad X(0)=\binom{0}{0} .
$$

(b) What can you say about $X(t)$ as $t \longrightarrow+\infty$? If $\lim _{t \rightarrow+\infty} X(t)$ exists, give an interpretation of this limit and demonstrate quantitatively your statement.
(a)

$$
\text { Let } x_{(t)}=c_{1}(t)\binom{2}{1}+c_{2}(t)\binom{-1}{2}
$$

$$
\binom{1}{1}=a\binom{1}{2}+b\binom{-1}{2}
$$

Hence

$$
X(t)=\frac{3}{20}\left(1-e^{-4 t}\right)\binom{2}{1}+\frac{1}{45}\left(1-e^{-9 t}\right)\binom{-1}{2}
$$

(b)

$$
\begin{aligned}
\lim _{t \rightarrow \infty} X(t) & =\frac{3}{20}\binom{2}{1}+\frac{1}{45}\binom{-1}{2} \underbrace{}_{(\infty)} e^{-4 f}, e^{-97} \rightarrow 0) \\
& =\binom{\frac{3}{10}}{\frac{3}{20}}+\binom{-\frac{1}{45}}{\frac{2}{45}} \\
& =\binom{\frac{27}{90}-\frac{2}{90}}{\frac{27}{180}+\frac{8}{180}}=\binom{\frac{25}{90}}{\frac{35}{180}}=\binom{\frac{5}{18}}{\frac{7}{36}}
\end{aligned}
$$

steady state

$$
\binom{0}{0}=\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{5 / 18}{7 / 36}+\binom{1}{1}
$$

$$
\begin{aligned}
& -\frac{25}{18}+\frac{7}{18}+1=0 \\
& \frac{10}{18}-\frac{28}{18}+1=0
\end{aligned}
$$

Similar to $[7, p / 20, \# 5]$
2. Consider the annulus domain (expressed in polar coordinates): $\Omega=\{a \leq r \leq b ; 0 \leq \theta \leq 2 \pi\}$. The general form for a function u satisfying $\triangle u=0$ in Ω is given by

$$
\begin{equation*}
u(r, \theta)=A_{0}+B_{0} \log r+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-n}\right) \cos n \theta+\left(C_{n} r^{n}+D_{n} r^{-n}\right) \sin n \theta \tag{1}
\end{equation*}
$$

Suppose u is required to satisfy the following boundary conditions,

$$
\begin{align*}
& \frac{\partial u}{\partial r}(a, \theta)=P-\sin 2 \theta \tag{2}\\
& \frac{\partial u}{\partial r}(b, \theta)=Q+\cos 2 \theta \tag{3}
\end{align*}
$$

where P and Q are some (given) constants.
(a) Find all the constants in (1) so that the boundary conditions (2) and (3) are satisfied. Are there any conditions) for the constants P and Q such that u actually exists?
(b) When u exists, how many can you find?

$$
\begin{aligned}
& \text { (a) } \\
& \begin{array}{r}
u_{r}=\frac{B_{0}}{r}+\sum_{n=1}^{\infty}\left(n A_{n} \gamma^{n-1}-n B_{n} r^{n-1}\right) \cos n \theta \\
+\left(n C n \gamma^{n-1}-n D_{n} r^{n-1}\right) \sin n \theta
\end{array} \\
& r=a \Rightarrow \frac{B_{0}}{a}+\sum_{n=1}^{\infty}\left(n A_{1} a^{n-1}-n B_{n} a^{-n-1}\right) \cos n \theta \\
& +\left(n C_{n} a^{n-1}-n D_{n} a^{n-1}\right) \sin n \theta=P-\sin 2 \theta \\
& r=b \Rightarrow \frac{B_{0}}{b}+\sum_{n=1}^{\infty}\left(n A_{n} b^{n-1}-n B_{n} b^{-n-1}\right) \cos n \theta \\
& \frac{B_{0}}{a}=P \quad \text { and } \quad{ }_{2} C_{2} a-2 D_{2} a^{-3}=-1 \\
& \frac{B_{0}}{b}=Q \text { and } 2 A_{2} b-2 B_{2} b^{-3}=1
\end{aligned}
$$

and
and $\quad 2 C_{2} b-2 D_{2} b^{-3}=0$

$$
\begin{aligned}
& C_{2}, D_{2}: D_{2}=C_{2} b^{4}, \quad C_{2} a-C_{2} b^{4} a^{-3}=-\frac{1}{2} \\
& C_{2}=-\frac{1}{2} \frac{1}{a-b^{4} a^{-3}} \\
&=-\frac{1}{2} \frac{a^{3}}{a^{4}-b^{4}} \\
& C_{2}=\frac{1}{2} \frac{a^{3}}{b^{4}-a^{4}} \\
& D_{2}=\frac{1}{2} \frac{a^{3} b^{4}}{b^{4}-a^{4}} \\
& A_{2}, B_{2}: B_{2}=A_{2} a^{4}, \quad A_{2} b-A_{2} a^{4} b^{-3}=\frac{1}{2} \\
& A_{2}=\frac{1}{2} \frac{b^{3}}{b^{4}-a^{4}} \\
& B_{2}=\frac{1}{2} \frac{a^{4} b^{3}}{b^{4}-a^{4}}
\end{aligned}
$$

All other $A_{n}, B_{n}, C_{n}, D_{n}$'s are zen,

$$
\begin{aligned}
U(r, \theta) & =A_{0}+B_{0} \log r \\
& +\left(\frac{1}{2} \frac{b^{3}}{b^{4}-a^{4}} r^{2}+\frac{1}{2} \frac{a^{4} b^{3}}{b^{4}-a^{4}} r^{-2}\right) \cos 2 \theta \\
& +\left(\frac{1}{2} \frac{a^{3}}{b^{4}-a^{4}} r^{2}+\frac{1}{2} \frac{a^{3} b^{4}}{b^{4}-a^{4}} r^{-2}\right) \sin 2 \theta
\end{aligned}
$$

Ho can be anything, $B_{0}=a P$ ar $b Q$
Condition for $P, Q: \quad P a=Q b$
(b) when u exists (if $P_{a}=Q b$), there ore infinisdy many as A_{0} is free (com be anything)
3. Consider the following heat equation on $(0, l)$:

$$
\begin{aligned}
u_{t}= & u_{x x}+h(x), \quad x \in(0, l), t>0 \\
u_{x}(0, t)=0, & u_{x}(l, t)=0, \quad t>0 \\
u_{(x, 0)}= & 0
\end{aligned}
$$

where h is some given function defined on $(0, l)$.
(a) Solve for $u(x, t)$. Write down all the constants in your solution as explicitly as possible.
(b) Describe the behavior of $u(x, t)$ as $t \longrightarrow+\infty$.
(c) Under what condition (s) on h does $u(x, t)$ converge to a steady state as $t \longrightarrow+\infty$?

$$
\begin{gathered}
\text { (a) Let } \left.\left.u(x, t)=\sum_{n=0}^{\infty} c_{n}+1\right) \cos \frac{(n \pi x}{l}\right) \\
h(x)=\sum_{n=0}^{\infty} b_{n} \cos \left(\frac{n \pi x}{l}\right) \\
b_{n}=\frac{\int_{0}^{l} h(x) \cos \frac{n \pi x}{l} d x}{\int_{0}^{l} \cos \frac{n \pi x}{l} d x}=\left\{\begin{array}{l}
\frac{1}{l} \int_{0}^{l} h(x) d x \quad n=0 \\
\frac{2}{l} \int_{0}^{l} h(x) \cos \frac{n \pi x}{l} d x \\
n \geqslant 1
\end{array}\right. \\
u_{t}=u_{x x}+h(x) \\
\| \\
\dot{c_{n}}=-\frac{n^{2} \pi^{2}}{l^{2}} c_{n}+b_{n}, \quad c_{n}(0)=0
\end{gathered}
$$

You can use this blank page.

$$
\begin{aligned}
c_{0}(t) & =b_{0} t \\
C_{n}(t) & =\int_{0}^{t} e^{-\frac{n^{2} \pi^{2}}{l^{2}}(t-s)} b_{n} d s \\
n \geqslant 1 & =e^{-\frac{n^{2} \pi^{2}}{l^{2}} t} b_{n} \frac{l^{2}}{n^{2} \pi^{2}}\left(e^{\frac{n^{2} l^{2}}{l^{2}} t}-1\right) \\
& =\frac{b_{n} l^{2}}{n^{2} \pi^{2}}\left(1-e^{\left.-\frac{n^{2} \pi^{2}}{l^{2}} t\right) \quad(n \neq 0)}\right.
\end{aligned}
$$

Hence

$$
n(x, t)=\left(b_{0} t\right)+\sum_{n=1}^{\infty} \frac{b_{n} l^{2}}{n^{2} \pi^{2}}\left(1-e^{-\frac{n^{2} \pi^{2}}{l^{2}} x}\right) \cos n x
$$

(b) $a_{0} \longrightarrow+\infty$,

$$
u(x, t) \sim b_{0} t+\sum_{n=1}^{\infty} \frac{b_{n} l^{2}}{n^{2} \pi^{2}} \cos n x
$$

linear growth in t
(c) If $b_{0}=0$, ie. $\int_{0}^{l} h(x) d x=0$, then $u(x, t) \rightarrow \sum_{n=1}^{\infty} \frac{b_{n} l^{2}}{n^{2} \pi_{10}^{2}} \cos n y=q(x)$, steady s tate

$$
l 0=q(x+h(x))
$$

[7, p. 184, \#8]
4. Solve the initial value problem $u_{t}=k\left[\left(1-x^{2}\right) u_{x}\right]_{x}, u(x, 0)=f(x)$ on $-1<x<1$. Here k is a positive constant. Find also the behavior of $u(x, t)$ as $t \longrightarrow+\infty$. Try to express your answer as explicitly or illustratively as possible but no need to dwell too much on "tedious" integrations.)
(Note that the Legendre polynomials $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ satisfy

$$
\left[\left(1-x^{2}\right) P_{n}^{\prime}(x)\right]^{\prime}+n(n+1) P_{n}(x)=0 \quad \text { for } n \geq 0
$$

and they form a complete orthogonal basis for $L^{2}(-1,1)$. If you find it useful, you can use: $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$ and so forth.)
$P_{n}(x)$ are eigenvector of $\left.L=\partial_{x}\left(1-x^{2}\right) \partial_{x}\right)$ with eigenvalue $-n(n+1)$

$$
\begin{aligned}
& \text { Let } u(x, t)=\sum_{n=0}^{\infty}\left(n(t) P_{n}(x)\right. \\
& u_{t}=k\left[\left(1-x^{2}\right) u_{x}\right]_{x} \\
& \Longrightarrow \sum_{n=0}^{\infty} \dot{C}_{n}(t) P_{n}(x)=k \sum_{n=0}^{\infty} C_{n}(t)\left(\left(1-x^{2}\right) P_{n}^{\prime}(x)\right)^{\prime} \\
& =\sum_{n=0}^{\infty}-k n(n+1)\left(n(t) P_{n}(x)\right. \\
& \Longrightarrow \quad \dot{C}(t)=-k n(n+1)(n(t) \quad n \geqslant 0 \\
& \Rightarrow \quad C_{n}(t)=C_{n}(\theta) e^{-k(n)(n+1) t}
\end{aligned}
$$

(Note: $\left.C_{0}(t)={ }^{12} C_{0}(0).\right)$

$$
\begin{aligned}
& C_{n}(0)=\frac{\left\langle f, P_{n}\right\rangle}{\left\langle P_{n}, P_{n}\right\rangle}=\frac{\int_{-1}^{1} f^{\prime}(x) P_{n}(x) d x}{\int_{-1}^{1} P_{n}^{2}(x) d x}, n \geqslant 0 \\
& n(x, t)=C_{0}(0) P_{0}(x)+\sum_{n=1}^{\infty} C_{n}(0) e^{-k n(n+1) t} P_{n}(x)
\end{aligned}
$$

as $t \rightarrow+\infty$

$$
u(x, t) \longrightarrow C_{0}(0) P_{0}(x)=\left(\frac{1}{2} \int_{-1}^{1} f(x) d x\right)(1)
$$

averoge of $f(x)$

Similento [F, p 235, \#2]
5. Solve the following initial value problems

$$
\begin{aligned}
u_{t}(x, t) & =D u_{x x}+c u_{x}(x, t)+k u(x, t)+h(x, t), \quad x \in(-\infty, \infty) \\
u(x, 0) & =f(x)
\end{aligned}
$$

y here h and f are some given functions, and $D>0, c, k$ are constants. Express your answer in "physical variables" x and t.
(Hint: use Fourier transform. You are given that the inverse Fourier transform of $e^{-D \xi^{2} t}$ is given by $g(x, t)=\frac{1}{\sqrt{4 \pi D t}} e^{-\frac{x^{2}}{4 D t}}$, or you can simply use g in your answer.)

$$
\left.\begin{array}{rl}
\hat{u}_{t}(\xi, t)= & -D \xi^{2} \hat{u}+C i \xi \hat{u}+k \hat{u}+\hat{h}(\xi, t) \\
= & \left(-D \xi^{2}+C i \xi+h\right) \hat{u}(\xi, t)+\hat{h}(\xi, t) \\
\hat{u}(\xi, t)= & e^{\left(-D \xi^{2}+C i \xi+k\right) t} \hat{u}(\xi, 0) \hat{f}(\xi) \\
& +\int_{0}^{t}\left(-D \xi^{2}+C i \xi+k\right)(t-s) \hat{h}(\xi, s) d s \\
= & e^{-D \xi^{2} t} e^{C i \xi t} e^{k t t} \hat{f}(\xi) \\
& \left.+\int_{0}^{t} e^{(-D)}(t-s)+C i \xi(t-s)+k(t-s)\right) \\
h \\
\xi
\end{array}, s\right) d s
$$

You can use this blank page.
$e^{-D \xi^{2} t} e^{C i \xi t} e^{k t} \hat{f}(\xi)$

$$
\begin{aligned}
& \xrightarrow[J^{-1}]{\int_{-\infty}^{\infty} f(y) g(x-y, t) d y} \\
& \int_{-\infty}^{\infty} f(y) g(x+c t-y, t) d y \\
& e^{k+t} \int_{-\infty}^{\infty} f(y) g(x+c t-y, t) d y
\end{aligned}
$$

$$
\int_{0}^{t} e^{\left.(-1) \xi^{2}(t-s)+C i \xi(t-s)+h(t-s)\right)} \hat{h}(\xi, s) d s
$$

You can use this blank page.
Hence

$$
\begin{aligned}
u(x, t)= & e^{k+} \int_{-\infty}^{\infty} f(y) g(x+c t-y, t) d y \\
& +\int_{0}^{t} e^{k(t-s)} \int h(y, s) g(x+c(t-s)-y, t-s) d y d s
\end{aligned}
$$

6. Consider the three dimensional cylindrical domain: $\Omega=\left\{0 \leq x^{2}+y^{2} \leq b, 0 \leq z \leq l\right\}$ which is conveniently expressed in cylindrical coordinates as:

$$
\Omega=\{0 \leq r \leq b, \quad 0 \leq \theta<2 \pi, \quad 0 \leq z \leq l\}
$$

Consider the following boundary value problems:
[F, p. $160,(5.49)]$

$$
\begin{align*}
\Delta u & =0, \quad \text { in } \Omega \tag{I}\\
u(r, \theta, 0) & =0, \quad 0 \leq r<b, \quad 0 \leq \theta<2 \pi \\
u(r, \theta, l) & =0, \quad 0 \leq r<b, \quad 0 \leq \theta<2 \pi \\
u(b, \theta, z) & =h(\theta, z), \quad 0 \leq \theta<2 \pi, \quad 0 \leq z \leq l
\end{align*}
$$

$[7, p .155,(5.46)$

$$
\begin{equation*}
\Delta u=0, \quad \text { in } \Omega \tag{II}
\end{equation*}
$$

$$
u(r, \theta, 0)=f(r, \theta), \quad 0 \leq r<b, \quad 0 \leq \theta<2 \pi
$$

$$
u(r, \theta, l)=g(r, \theta), \quad 0 \leq r<b, \quad 0 \leq \theta<2 \pi
$$

$$
u(b, \theta, z)=0, \quad 0 \leq \theta<2 \pi, \quad 0 \leq z \leq l
$$

In each of the above problems, express the solution u using the form of separation of variables, $R(r) \Phi(\theta) Z(z)$. You need to write down all the possible R, Φ, and Z functions. In addition, identify/specify all the constants as explicitly or illustratively as possible. However, there is no need to dwell too much on "tedious" integrations.

Note the following.
(a) The Laplacian in cylindrical coordinates is given by

$$
\triangle u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}+u_{z z}
$$

so that

$$
\begin{aligned}
& \triangle[R(r) \Phi(\theta) Z(z)] \\
& \quad=R^{\prime \prime}(r) \Phi(\theta) Z(z)+\frac{R^{\prime}(r)}{r} \Phi(\theta) Z(z)+\frac{R(r)}{r^{2}} \Phi^{\prime \prime}(\theta) Z(z)+R(r) \Phi(\theta) Z^{\prime \prime}(z)
\end{aligned}
$$

Hence $\triangle[R(r) \Phi(\theta) Z(z)]=0$ leads to

$$
\frac{R^{\prime \prime}(r)}{R(r)}+\frac{1}{r} \frac{R^{\prime}(r)}{R(r)}+\frac{1}{r^{2}} \frac{\Phi^{\prime \prime}(\theta)}{\Phi(\theta)}+\frac{Z^{\prime \prime}(z)}{Z(z)}=0
$$

(b) The eigenvalues of Laplace operator with Dirichlet boundary condition in any dimension is negative. In particular, if $\triangle[R(r) \Phi(\theta)]=\lambda[R(r) \Phi(\theta)]$ on the two dimensional disk $D=\{0<r<b, 0<\theta<2 \pi\}$ such that $R(b)=0$ with $R\left(0^{+}\right)$ bounded, and Φ being 2π-periodic, then λ must be negative.
(c) The general solutions of

$$
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+\left(\mu^{2} r^{2}-\nu^{2}\right) R(r)=0
$$

and

$$
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\left(\mu^{2} r^{2}+\nu^{2}\right) R(r)=0
$$

for $r>0$ with $R\left(0^{+}\right)$bounded are given by $R(r)=A J_{\nu}(\mu r)$ and $R(r)=A I_{\nu}(\mu r)$ respectively, where $J_{\nu}(\cdot)$ is the Bessel function (of the first kind), $I_{\nu}(\cdot)$ is the modified Bessel function (of the first kind), and A is an arbitray constant.
Even though we have not talked about I_{ν} in class, for the purpose of this exam, you can imagine that I_{ν} is similar to J_{ν}, just a different type of function. One thing to note though, while J_{ν} can oscillate leading to infinitely many zeros, I_{ν} is always a positive function. To be specific, we have
$J_{\nu}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2 k+\nu} \quad$ and $\quad I_{\nu}(x)=\sum_{k=0}^{\infty} \frac{1}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}\right)^{2 k+\nu}$.

$$
\begin{aligned}
& \text { (I) } \underbrace{\frac{R^{\prime \prime}}{R}+\frac{1 R^{\prime}}{r R}+\frac{1}{r^{2}} \frac{\Phi^{\prime \prime}}{\Phi}}_{\text {faritain of } r, \theta}=-\underbrace{Z^{\prime \prime}}_{\text {funtain of } z}=\alpha \\
& Z^{\prime \prime}=-\alpha Z, \quad Z(0)=Z(l)=0 \\
& \text { (1) } Z=Z_{n}(z)=\sin \frac{n \pi z}{l} \quad \alpha=\alpha_{n}=\frac{n^{2} \pi^{2}}{l^{2}}
\end{aligned}
$$

(2)

$$
\begin{gathered}
\frac{\Phi^{\prime \prime}}{\Phi}=-m^{2}, \quad \Phi-2 \pi \text {-per in } \theta \\
\Phi=\Phi_{m}(\theta)=\sin m \theta, \quad m \geqslant 1 \\
\cos m \theta, \quad m \geqslant 0
\end{gathered}
$$

$$
\begin{gathered}
\text { (3) } \frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}-\frac{1}{r^{2}} m^{2}=\frac{n^{2} \pi^{2}}{l^{2}} \\
\Rightarrow r^{2} R^{\prime \prime}+r R^{\prime}-\left(\frac{n^{2} \pi^{2}}{l^{2}} r^{2}+m^{2}\right) R=0 \\
\mu^{2} \quad \nu^{2}
\end{gathered}
$$

Hence $\mathbb{R}=\mathbb{R}_{n, m}(r)=I_{m}\left(\frac{n \pi}{l} r\right)$

$$
U(r, \theta, z)=\sum_{n, m} A_{n, m} I_{m}\left(\frac{n \pi}{l}\right) \Phi_{m}(\theta) \sin \frac{n \pi z}{l}
$$

let $r=b \Rightarrow$

$$
\begin{aligned}
& h(\theta, z)=\sum_{n, m} A_{n, m} I_{m}\left(\frac{n \pi b}{l}\right) \Phi_{m}(\theta) \operatorname{si}\left(\frac{n \pi z}{l}\right) \\
& A_{n, m} I_{m}\left(\frac{n \pi b}{l}\right)=\frac{\left\langle h, \Phi_{m}(\theta) \sin \left(\frac{n \pi z}{l}\right)\right\rangle}{\left\langle\Phi_{m}(\theta) \sin \frac{n \pi z}{l}, \Phi_{m}(\theta) \sin \frac{n(\pi)}{l}\right\rangle} \\
& =\frac{\int_{0}^{l} \int_{0}^{2 \pi} h(\theta, z) \Phi_{m}(\theta) \sin \frac{n \pi z}{l} d \theta d z}{\int_{0}^{l} \int_{d}^{2 \pi} \frac{2}{\Phi_{m}(\theta) \sin ^{2} \frac{n \pi z}{l} d \theta d z}} \\
& A_{n, m}=\frac{1}{I_{m}\left(\frac{n \pi b}{l}\right)} \frac{\int_{0}^{l} \int_{0}^{2 \pi} h(\theta, z) \Phi_{m}(\theta) \sin \frac{n \pi z}{l} d \theta d z}{\int_{20}^{l} \int_{d}^{2 \pi}: I_{m}>0, \neq 0}
\end{aligned}
$$

II

$$
\frac{R^{\prime \prime}}{R}+\frac{1 R^{\prime}}{r R}+\frac{1}{r^{2}} \frac{\Phi^{\prime \prime}}{\Phi}=-\frac{z^{\prime r}}{z}=\alpha
$$

fantion of r, θ function of z

$$
\begin{aligned}
& \Longleftrightarrow \frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{\Phi^{\prime \prime}}{\bar{\Phi}}=\alpha \\
& \Leftrightarrow \quad R^{\prime \prime} \Phi+\frac{1}{r} R^{\prime} \Phi+\frac{1}{r^{2}} R \Phi^{\prime \prime}=\alpha R \Phi
\end{aligned}
$$

ie. $\Delta(R \Phi)=\alpha(R \Phi)$

$$
\Rightarrow \quad \alpha=-\mu^{2}<0
$$

(1) $\frac{\Phi^{\prime \prime}}{\Phi^{\prime}}=-m^{2}, \quad \Phi=\Phi_{m}(\theta)=\sin m \theta, \cos m \theta$
(3)

$$
\begin{aligned}
& \frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{\Phi^{\prime \prime}}{\Phi}=\alpha \\
\Rightarrow & \frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}-\frac{1}{r^{2}} m^{2}=-\mu^{2} \\
\Rightarrow & r^{2} R^{\prime \prime}+r R^{\prime}-\left(\mu^{2} r^{2}+m^{2}\right) R=0 \\
\Rightarrow & R=R_{m, k}(r)=J_{m}\left(\mu_{k} r\right) \\
& R(b)=0 \Rightarrow J_{m}\left(\mu_{k} b\right)=0
\end{aligned}
$$

Let $Z_{m, k}$ be the k^{+a} zeno of \sqrt{m}
ie. $\quad J_{m}\left(Z_{m, k}\right)=0$
Then $\mu_{k} b=Z_{m, k}, \mu_{k}=\frac{Z_{m, k}}{b}$
Hence $R_{m, k}(r)=J_{m}\left(\frac{Z_{m, k}}{b} r\right)$

$$
\begin{aligned}
& \text { (3) } \quad x=-\mu^{2}, \quad \alpha_{m_{1} k}=-\left(\frac{z_{m, k}}{b}\right)^{\text {Yon an we this bank page. }} \\
& \frac{z^{\prime \prime}}{z}=\alpha \Rightarrow Z^{\prime \prime}=-\left(\frac{z_{m, k}}{b}\right)^{2} Z \\
& \Rightarrow z(z)=A_{m, k} e^{\frac{z_{m, k}}{b} z}+\mathscr{B}_{m, k} e^{-\frac{z_{m, k}}{b} z}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& u(r, \theta, z)=\sum_{m, k}\left(A_{m, k} e^{\frac{z_{m, k}}{b} z}+B_{m, k} e^{-\frac{z_{m, k}}{b} z}\right) \times \\
& \times J_{m}\left(\frac{z_{m, k}}{b}\right) \Phi_{m}(\theta) \\
& z=0 \Rightarrow \\
& f(r, \theta)=\sum_{m, k}\left(A_{m, k}+B_{m, k}\right) J_{m}\left(\frac{z_{m, k}}{b} r\right) \Phi_{m}(\theta) \\
& z=l \Rightarrow \\
& g(r, \theta)=\sum_{m, k}\left(A_{m, k} e^{\frac{z_{m}, k}{b} \ell}+B_{m, k} e^{-\frac{z_{m, k}}{b} \ell}\right) \mathcal{J}_{m}\left(\frac{z_{m, k}}{b} r\right) \Phi_{m}(\theta)
\end{aligned}
$$

$$
\begin{aligned}
&\left(A_{m, k}+B_{m, k}\right)=\frac{\int_{0}^{\text {You can we this bank pag}} \int_{0}^{2 \pi} \int_{0}^{b} f(r, \theta) J_{m}\left(\frac{z_{m}, k}{b} r\right) \Phi_{m}(\theta) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{b} J_{m}^{2}\left(\frac{z_{k, m}}{b} r\right) \Phi_{m}^{2}(\theta) r d r d \theta} \\
& \frac{A_{m, k} e^{\frac{z_{m, k}}{b} l}+B_{m, k} e^{-\frac{z_{m}, k}{b} l}}{2 \pi} \\
&=\frac{\int_{0}^{b} \int_{0}^{b} g(r, \theta) J_{m}\left(\frac{\left.z_{m, k} r\right) \Phi_{m}(\theta) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{b} J_{m}^{2}\left(\frac{z_{k, m}}{b} r\right) \Phi_{m}^{2}(\theta) r d r d \theta}\right.}{}
\end{aligned}
$$

Solve for Amin, Brick.

