MA 520: Boundary Value Problems of Differential Equations Spring 2024, Midterm One

Instructor: Yip

- This test booklet has FOUR QUESTIONS, totaling 100 points for the whole test. You have 75 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book, closed note, with no electronic devices.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- As a rule of thumb, you should give explicit and useful answers. No points will be given for just writing down some generically true statements. In other words, your answers should try to make use of all the information given in the question.
- As a rule of thumb, you should only use those methods that have been covered in class. If you use some other methods "for the sake of convenience", at our discretion, we might not give you any credit. You have the right to contest. In that event, you will be asked to explain your answer using only what has been covered in class up to the point of time of this exam.

| $\frac{\text { Question }}{}$ Score |
| :--- | :--- |
| $\frac{1 .(25 \mathrm{pts})}{2 .(25 \mathrm{pts})}$ |
| $3 .(25 \mathrm{pts})$ |
| $4 .(25 \mathrm{pts})$ |
| Total $(100 \mathrm{pts})$ |

1. Consider the 2π-periodic function given by $f(x)=x^{2}$ on $-\pi<x<\pi$.
(a) Find its Fourier series expansion.
(b) Using the above or otherwise, compute the following series:

$$
\begin{aligned}
&(A)=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}} \cdots \\
&(B)=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}} \cdots \\
& x^{2}-\frac{\text { even function }}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}} \cdots \\
& x^{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \operatorname{con} x \\
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{3 \pi} \pi^{3}=\frac{2 \pi^{2}}{3} \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x \\
&=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d\left(\frac{\sin n x}{n}\right) \\
&=\frac{2}{\pi}\left[\left.\frac{x^{2} \sin n x}{n}\right|_{0} ^{\pi}-\frac{2}{n} \int_{0}^{\pi} x \sin n x d x\right] \\
&=\frac{2}{\pi} \frac{2}{n}\left[\int_{0}^{\pi} x d \frac{d \operatorname{con} x}{n}\right] \\
&=\frac{4}{\pi n}\left[\left.\frac{x \cos x x}{n_{2}}\right|_{0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \cos x d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4}{\pi n}\left[\frac{\pi \cos n \pi}{n}-\left.\frac{1}{n^{2}} \sin n x\right|_{0} ^{\pi}\right]^{0} \\
& =\frac{4}{n^{2}}(-1)^{n}
\end{aligned}
$$

Hence

$$
x^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \operatorname{dn} x x
$$

(b)

$$
\begin{aligned}
x \Rightarrow 0 & =\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \\
& =\frac{\pi^{2}}{3}+4\left[-\frac{1}{1^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\cdots\right]
\end{aligned}
$$

(A) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \cdots=\frac{\pi^{2}}{12}$

$$
\begin{aligned}
& x=0 \Rightarrow \pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}(-1)^{n}}{n^{2}} \quad\left(\operatorname{con} \pi=(-1)^{n}\right) \\
& \frac{2 \pi^{2}}{12}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

(B) ie. $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$
(C) (MD)
use this blank page
By Parseval Identity:

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2} d x=\frac{a_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} a_{n}^{2} \\
& \frac{1}{\pi} \int_{0}^{\pi} x^{4} d x=\frac{\pi^{4}}{9}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{16}{n^{4}} \\
& \frac{1}{\pi} \frac{\pi^{5}}{5}=\frac{\pi^{4}}{9}+\delta \sum_{n=1}^{\infty} \frac{1}{n^{4}}
\end{aligned}
$$

Hance $\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{1}{8}\left(\frac{1}{5}-\frac{1}{9}\right)^{\pi^{4}}=\frac{\pi^{4}}{90}$
(c) $\frac{1}{14}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\cdots=\frac{\pi^{4}}{90}$
(M2)

$$
\begin{aligned}
& \text { Frow: } x^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \ln n x \\
& \int d x \frac{x^{3}}{3}=\frac{\pi^{2} x}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{3}}(-1)^{n} \sin n x+C \\
& x=0 \Rightarrow C=0
\end{aligned}
$$

$$
\begin{gathered}
\frac{x^{3}}{3}-\frac{\pi^{2} x}{3}=\sum_{n=1}^{\infty} \frac{4}{n^{3}}(-1)^{n} \sin n x \\
\int d x \\
\frac{x^{4}}{12}-\frac{\pi^{2} x^{2}}{6}=\sum_{n=1}^{\infty} \frac{4}{n^{4}}(-1)^{n+1} \cos n x+C \\
\int_{-\pi}^{\pi} d x \frac{1}{60} \pi^{5} \times 2-\frac{\pi^{2}}{18} \pi^{3} \times 2=C 2 \pi \\
\left(\frac{1}{30}-\frac{1}{9}\right) \frac{\pi^{5}}{2 \pi}=C \\
C=\frac{-21}{540} \pi^{4}=-\frac{7 \pi^{4}}{180}
\end{gathered}
$$

Heace $\frac{x^{4}}{12}-\frac{\pi^{2} x^{2}}{6}=-\frac{7 \pi^{4}}{180}+\sum_{n=1}^{\infty} \frac{4}{n^{4}}(-1)^{n+1} \cos n x$

$$
\begin{align*}
x=\pi \Rightarrow & \left(\frac{1}{12}-\frac{1}{6}+\frac{7}{180}\right) \pi^{4}
\end{align*}=4(-1) \sum_{n=1}^{\infty} \frac{1}{n^{4}}, ~\left(-\frac{15-30+7}{4(180)}\right) \pi^{4}=\sum_{n=1}^{\infty} \frac{1}{n^{4}}, \pi^{4}
$$

2. Let D be the unit disk $\left\{x^{2}+y^{2} \leq 1\right\}$ in \mathbb{R}^{2}. Let

$$
L^{2}(D)=\left\{f: \iint_{D}|f(x, y)|^{2} d x d y<\infty\right\}, \quad\langle f, g\rangle=\iint_{D} f(x, y) \overline{g(x, y)} d x d y
$$

Introduce $\mathcal{L}=\left\{f_{n}(x, y)=(x+y i)^{n}\right\}_{n=0}^{\infty}$.
(a) Show that \mathcal{L} is an orthogonal list of functions. Find also $\left\|f_{n}\right\|$.
(Hint: use polar coordinates $x+i y=r e^{i \theta}$ and the formula $d x d y=r d r d \theta$.)
(b) Find the projections of the functions $f(x, y)=x$ and $g(x, y)=y$ onto the space spanned by \mathcal{L}, i.e., find $\operatorname{Proj}_{\mathcal{L}} x$ and $\operatorname{Proj}_{\mathcal{L}} y$.
(Hint: write x and y using polar coordinates.)
(c) Is \mathcal{L} complete in $L^{2}(D)$?

(a)

-
(b) $\operatorname{Pin}_{2} x=\sum_{n=0}^{\infty} \frac{\left\langle x, f_{n}\right\rangle}{\left\|f_{n}\right\|^{2}} f_{n}$

$$
\begin{aligned}
& \left\langle x, f_{n}\right\rangle=\int_{D} x \overline{\left(x+y_{i}\right)^{n}} d x d y \\
& (x=r \cos \theta)=\int_{0}^{1} \int_{0}^{2 \pi}(r \cos \theta) r^{n} e^{i n \theta} r d \theta d r \\
& =\int_{0}^{1} r^{n+2} \int_{0}^{2 \pi} \cos \theta e^{-i n} d \theta d r \\
& \left(\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}\right)=\left(\int_{0}^{1} r^{n+2} d r\right)\left(\int_{0}^{2 \pi} \frac{e^{i \theta}+e^{-i \theta}}{2} e^{-i n \theta} d \theta\right) \\
& =\left(\frac{1}{n+3}\right) \frac{1}{2} \int_{0}^{2 \pi}\left(e^{(1-n) i \theta}+e^{-(1+n) i \theta}\right) d \theta \\
& =0 \text { for } n=0,1,2 \ldots \\
& =0 \text { for } n \neq 1,(n=0,2,3 \cdots)
\end{aligned}
$$

When $n=1, \quad\left\langle x_{1}, f_{1}\right\rangle=\left(\frac{1}{1+3}\right)\left(\frac{1}{2}\right) \int_{0}^{2 \pi} d \theta=\frac{\pi}{4}$

You can use this blank page
Hence

$$
\begin{aligned}
\operatorname{Pro}_{2} x & =\frac{\left\langle x_{1} f_{1}\right\rangle}{\left\|f_{1}\right\|^{2}} f_{1}=\frac{\frac{\pi}{4}}{\frac{\pi}{2}} f_{1} \\
& =\frac{1}{2} f_{1}(x, y)=\frac{x+y_{i}}{2}
\end{aligned}
$$

Similarly, $p_{n o j}^{-} y=\sum_{n=0}^{\infty} \frac{\left\langle y_{1} f_{n}\right\rangle}{\left\|f_{n}\right\|^{2}} f_{n}$

$$
\begin{aligned}
&\left\langle y, f_{n}\right\rangle=\iint_{D} y \overline{f_{n}} d x d y \\
&=\int_{0}^{1} \int_{0}^{2 \pi}(r \sin \theta) r^{n} e^{-i n \theta} r d \theta d r \\
&=\left(\int_{0}^{1} r^{n+2} d r\right) \int_{0}^{2 \pi}(\sin \theta) e^{-i n \theta} d \theta \\
&, \quad\left(\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{n+3}\right) \frac{1}{2 i} \int_{0}^{2 \pi}\left(e^{i \theta}-e^{-i \theta}\right) e^{-i n \theta} d \theta \\
& =\frac{1}{(n+3)\left(\frac{1}{2 i}\right) \int_{0}^{2 \pi}\left(e^{(1-n) i \theta}-e^{-(i+n) i \theta}\right) d \theta} \\
& =0 \text { for } n=0,1, \cdots \\
& =0 \text { for } n \neq 1
\end{aligned}
$$

For $n=1, \quad\left\langle y, f_{1}\right\rangle=\frac{1}{4}\left(\frac{1}{2 i}\right) \int_{0}^{2 \pi} d \theta=\frac{\pi}{4 i}$
Hence

$$
\begin{aligned}
\operatorname{Priog}_{f} y & =\frac{\left\langle y_{1} f_{1}\right\rangle}{\left\|f_{1}\right\|^{2}} f_{1} \quad \frac{1}{2 i} f_{1}(x, y) \\
& =\frac{\pi_{i}}{\frac{\pi}{2}}\left(x+y_{i}\right)=\frac{1}{2 i}\left(x+y_{i}\right)
\end{aligned}
$$

Note:

$$
\begin{aligned}
\operatorname{Proj}_{f}\left(x+y_{i}\right) & =\operatorname{Proj}_{\mathcal{L}} x+i \operatorname{Pro}_{\dot{f}} y \\
& \left.=\frac{1}{2}\left(x+y_{i}\right)+i \frac{1}{2 i}\left(x+y_{i}\right)=x+y_{i}\right)
\end{aligned}
$$

(c) \mathcal{L} is not complete on $L^{2}(D)$. For otherwise, we would have $P_{r o j}{ }_{2} x=x$ and Projqy$=y$
3. Consider the space of (real valued) functions defined on $(0,1)$ with the following inner product:

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

You are given $P_{1}(x)=1, P_{2}(x)=x$, and $P_{3}(x)=x^{2}$. Let $Q_{1}=P_{1}$. (For simplicity, I have omitted the x 's.)
(a) Find $Q_{2}=P_{2}-\operatorname{Proj}_{\left\{Q_{1}\right\}} P_{2}$.
(b) Find $Q_{3}=P_{3}-\operatorname{Proj}_{\left\{Q_{1}, Q_{2}\right\}} P_{3}$.
(c) Show that $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ forms an orthogonal set.
(a)

$$
\begin{aligned}
& Q_{2}=P_{2}-\operatorname{PiO}_{Q_{1}} P_{2}=x- \\
& \frac{\left\langle P_{2}, Q_{1}\right\rangle}{\left\langle Q_{1}, Q_{1}\right\rangle} Q_{1} \\
& =x-\frac{\int_{0}^{1} x \cdot 1 d x}{\int_{0}^{1} 1-1 d x} 1=x-\frac{\frac{1}{2}}{1}(1)=x-\frac{1}{2} \\
& \text { (b) } Q_{3}=P_{3}-\operatorname{lo}_{0} \alpha_{\left.\alpha, Q_{1} R_{2}\right\}} P_{3} \\
& =x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{\langle 1,1\rangle} 1-\frac{\left\langle x^{2}, x-\frac{1}{2}\right\rangle}{\left\langle x-\frac{1}{2}, x-\frac{1}{2}\right\rangle}\left(x-\frac{1}{2}\right) \\
& =x^{2}-\frac{\int_{0}^{1} x^{2} d x}{\int_{0}^{1} 1 d x} 1- \\
& \frac{\int_{0}^{1} x^{2}\left(x-\frac{1}{2}\right) d x}{\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x}\left(x-\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}-1 / 3-\frac{\int_{0}^{1}\left(x^{3}-\frac{x^{2}}{2}\right) d x}{\int_{0}^{1}\left(x^{2}-x+\frac{1}{4}\right) d x}\left(x-\frac{1}{2}\right) \\
& =x^{2}-\frac{1}{3}-\left(\frac{\frac{1}{4}-\frac{1}{6}}{\frac{1}{3}-\frac{1}{2}+\frac{1}{4}}\right)\left(x-\frac{1}{2}\right) \\
& =x^{2}-\frac{1}{3}-\frac{\frac{1}{12}}{\frac{4-6+3}{12}}\left(x-\frac{1}{2}\right) \\
& =x^{2}-\frac{1}{3}-x+\frac{1}{2}=x^{2}-x+\frac{1}{6}
\end{aligned}
$$

(IM)

$$
\begin{aligned}
Q_{2}=P_{2}-\operatorname{Pioj}_{Q_{1}} P_{2} \perp Q_{1} & \Longrightarrow \underline{Q_{1} \perp Q_{2}} \\
Q_{3}=P_{3}-P_{0 \theta_{\left.\left\{Q_{1}, Q\right\}\right\}} P_{3}} & \perp\left\{Q_{1}, Q_{2}\right\} \\
& \Longrightarrow \frac{Q_{3} \perp Q_{1},}{Q_{3} \perp Q_{2}}
\end{aligned}
$$

Hence $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ is arthagonal

You can use this blank page.
(MI)

$$
\begin{aligned}
\left\langle Q_{1} Q_{2}\right\rangle & =\int_{0}^{1} 1\left(x-\frac{1}{2}\right) d x=\frac{1}{2}-\frac{1}{2}=0 \\
\left\langle Q_{1}, Q_{3}\right\rangle & =\int_{0}^{1} 1\left(x^{2}-x+\frac{1}{6}\right) d x=\frac{1}{3}-\frac{1}{2}+\frac{1}{6}=0 \\
\left\langle Q_{2}, Q_{3}\right\rangle & =\int_{0}^{1}\left(x-\frac{1}{2}\right)\left(x^{2}-x+\frac{1}{6}\right) d x \\
& =\int_{0}^{1}\left(x^{3}-x^{2}+\frac{x}{6}-\frac{x^{2}}{2}+\frac{x}{2}-\frac{1}{12}\right) d x \\
& =\frac{1}{4}-\frac{1}{3}+\frac{1}{1 / 2}-\frac{1}{6}+\frac{1}{4}-\frac{1}{1 / 2} \\
& =\frac{1}{2}-\frac{1}{3}-\frac{1}{6}=0
\end{aligned}
$$

4. You are given the following information:

$$
\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{2}{1}=-4\binom{2}{1} \quad \text { and } \quad\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{-1}{2}=-9\binom{-1}{2}
$$

(a) Solve the following system

$$
\frac{d^{2} X}{d t^{2}}(t)=\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right) X(t), \quad X(0)=\binom{1}{4}, \quad \frac{d X}{d t}(0)=\binom{2}{-1}
$$

What can you say about the solution as $t \longrightarrow+\infty$?
(b) Consider the following system

$$
\frac{d^{2} X}{d t^{2}}(t)+\frac{d X}{d t}(t)=\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right) X(t)
$$

(with some unknown/unspecified initial conditions).
Find the general solution. You should write down the solution as precise as possible. (Of course not all constants can be identified/found as the initial conditions are not given.)
What can you say about the solution as $t \longrightarrow+\infty$?
(a)
\qquad $\ddot{a}_{1} V_{1}+\ddot{a}_{2} V_{2}=A\left(a_{1} V_{1}+a_{2} V_{2}\right)=a_{1} \lambda_{1} V_{1}+a_{2} \lambda_{2} V_{2}$
$\ddot{a}_{1}=-4 a_{1}$ and $\ddot{a}_{2}=-9 a_{2}$

$$
\begin{aligned}
& X(t)=(a \cos 2 t+b \sin 2 t) V_{1}+(\cos 3 t+d \sin 3 t) V_{2} \\
& =(a \cos 2 t+b \sin 2 t)\binom{2}{1}+(c \cos 3 t+d \sin 3 t)\binom{-1}{2} \\
& X(0)=a\binom{2}{1}+c\binom{-1}{2}=\binom{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}(t)=(-2 \sin 2 t+2 b \cos t)\binom{2}{1}+(-3 c \sin 3 t+3 d \cos 3 t)\binom{-1}{2} \\
& \dot{X}(0)=(2 b)\binom{2}{1}+(3 d)\binom{-1}{2}=\binom{2}{-1} \\
& 2 b=\frac{\left\langle\binom{ 2}{-1},\binom{2}{1}\right\rangle}{\left\langle\binom{ 2}{1},\binom{2}{1}\right\rangle}=\frac{3}{5} \Rightarrow b=\frac{3}{10} \\
& 3 d=\frac{\left\langle\binom{ 2}{-1},\binom{-1}{2}\right\rangle}{\left\langle\binom{-1}{2},\binom{-1}{2}\right\rangle}=-\frac{4}{5} \Rightarrow d=-\frac{4}{15}
\end{aligned}
$$

$$
X(t)=\left(\frac{6}{5} \cos 2 t+\frac{3}{10} \sin 2 t\right)\binom{2}{1}+\left(\frac{7}{5} \cos 3 t-\frac{4}{15} \sin 3 t\right)\binom{-1}{2}
$$

as $t \rightarrow f \infty, \quad X(t)$ keeps oscillation.
(b)

$$
\ddot{x}+\ddot{x}=A X
$$

Let $x(t)=a_{1}(t) V_{1}+a_{2}(t) V_{2}$
Then $\left(\ddot{a}_{1} V_{1}+\ddot{a}_{2} V_{2}\right)+\left(\dot{a}_{1} V_{1}+\dot{a}_{2} V_{2}\right)=a_{1} \lambda_{1} V_{1}+\underline{a}_{2} \lambda_{2} V_{2}$

$$
\ddot{a}_{1}+\dot{a}_{1}=-4 a_{1} \text { and } \ddot{a}_{2}+\dot{a}_{2}=-9 a_{2}
$$

$r^{2}+r+4=0$

$$
r^{2}+r+9=0
$$

$$
r=\frac{-1 \pm \sqrt{1-16}}{2}
$$

$$
r=\frac{-1 \pm \sqrt{1-3 b}}{2}
$$

$$
=-\frac{1}{2} \pm \frac{\sqrt{15}}{2} i
$$

$$
=-\frac{1}{2} \pm \frac{\sqrt{35}}{2} i
$$

You can use this blank page
Hence $a_{1}(t)=e^{-\frac{1}{2} t}\left(a \cos \frac{\sqrt{5}}{2} t+b \sin \frac{\sqrt{15} t}{2} t\right)$

$$
\begin{aligned}
a_{2}(t)= & e^{-\frac{1}{2} t}\left(c \cos \frac{\sqrt{35}}{2} t+d \sin \frac{\sqrt{35}}{2} t\right) \\
X(t)= & e^{-\frac{1}{2} t}\left(a \cos \frac{\sqrt{15}}{2} t+b \sin \frac{\sqrt{15}}{2} t\right)\binom{2}{1} \\
& e^{-\frac{1}{2} t}\left(c \cos \frac{\sqrt{35}}{2} t+d \sin \frac{\sqrt{35}}{2} t\right)\binom{-1}{2}
\end{aligned}
$$

(a, b, c, d cannot be determined as initial conditions are not specified.)
Note that as $t \rightarrow+\infty, X(t) \rightarrow 0$

