
MA 520: Boundary Value Problems of Di↵erential Equations

Spring 2024, Midterm One

Instructor: Yip

• This test booklet has FOUR QUESTIONS, totaling 100 points for the whole test.

You have 75 minutes to do this test. Plan your time well. Read the questions

carefully.

• This test is closed book, closed note, with no electronic devices.

• In order to get full credits, you need to give correct and simplified answers and

explain in a comprehensible way how you arrive at them.

• As a rule of thumb, you should give explicit and useful answers. No points

will be given for just writing down some generically true statements. In other words,

your answers should try to make use of all the information given in the question.

• As a rule of thumb, you should only use those methods that have been

covered in class. If you use some other methods “for the sake of convenience”, at

our discretion, we might not give you any credit. You have the right to contest. In that

event, you will be asked to explain your answer using only what has been

covered in class up to the point of time of this exam.
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1. Consider the 2⇡-periodic function given by f(x) = x2 on �⇡ < x < ⇡.

(a) Find its Fourier series expansion.

(b) Using the above or otherwise, compute the following series:
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2. Let D be the unit disk {x2 + y2  1} in R2. Let

L2(D) =

⇢
f :

ZZ

D

|f(x, y)|2 dxdy < 1
�
, hf, gi =

ZZ

D

f(x, y)g(x, y) dxdy.

Introduce L =
�
fn(x, y) = (x+ yi)n

 1
n=0

.

(a) Show that L is an orthogonal list of functions. Find also kfnk.
(Hint: use polar coordinates x+ iy = rei✓ and the formula dxdy = rdrd✓.)

(b) Find the projections of the functions f(x, y) = x and g(x, y) = y onto the space

spanned by L, i.e., find ProjLx and ProjLy.

(Hint: write x and y using polar coordinates.)

(c) Is L complete in L2(D)?
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3. Consider the space of (real valued) functions defined on (0, 1) with the following inner

product:

hf, gi =
Z 1

0

f(x)g(x) dx.

You are given P1(x) = 1, P2(x) = x, and P3(x) = x2. Let Q1 = P1. (For simplicity, I

have omitted the x’s.)

(a) Find Q2 = P2 � Proj{Q1}P2.

(b) Find Q3 = P3 � Proj{Q1,Q2}P3.

(c) Show that {Q1, Q2, Q3} forms an orthogonal set.
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4. You are given the following information:
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(a) Solve the following system
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What can you say about the solution as t �! +1?

(b) Consider the following system

d2X

dt2
(t) +

dX

dt
(t) =

 
�5

2
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�8

!
X(t),

(with some unknown/unspecified initial conditions).

Find the general solution. You should write down the solution as precise as possi-

ble. (Of course not all constants can be identified/found as the initial conditions

are not given.)

What can you say about the solution as t �! +1?
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