MA 520: Boundary Value Problems of Differential Equations Spring 2024, Midterm Two

Instructor: Yip

- This test booklet has FOUR QUESTIONS, totaling 100 points for the whole test. You have 75 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book, closed note, with no electronic devices.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- As a rule of thumb, you should give explicit and useful answers. No points will be given for just writing down some generically true statements. In other words, your answers should try to make use of all the information given in the question.
- As a rule of thumb, you should only use those methods that have been covered in class. If you use some other methods "for the sake of convenience", at our discretion, we might not give you any credit. You have the right to contest. In that event, you will be asked to explain your answer using only what has been covered in class up to the point of time of this exam.

| $\frac{\text { Question }}{}$ Score |
| :--- | :--- |
| $\frac{1 .(25 \mathrm{pts})}{}$ |
| $\frac{2 .(25 \mathrm{pts})}{3 .(25 \mathrm{pts})}$ |
| $4 .(25 \mathrm{pts})$ |
| Total $(100 \mathrm{pts})$ |

(cf. $[F, p, 120 \# 5 b])$

1. Consider the annulus domain (expressed in polar coordinates): $D=\{a \leq r \leq b ; 0 \leq \theta \leq 2 \pi\}$. The general form for a function u satisfying $\triangle u=0$ in D is given by

$$
u(r, \theta)=A_{0}+B_{0} \log r+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+B_{n} r^{-n}\right) \cos n \theta+\left(C_{n} r^{n}+D_{n} r^{-n}\right) \sin n \theta
$$

Find all the constants if u satisfies the following boundary values:

$$
\left.\begin{array}{l}
\text { (土) } \begin{array}{l}
A_{0}+B_{0} \log a=2 \\
A_{0}+B_{0} \log b=0,
\end{array} \\
\Rightarrow B_{0}(\log a-\log b)=2
\end{array}\right] \quad B_{0}=\frac{2}{\log a-\log b, \quad A_{0}=-\frac{2 \log b}{\log a-\log b}}=
$$

$$
\text { (IT) }\left\{\begin{array}{l}
A_{1} a+B_{1} a^{-1}=1 \\
A_{1} b+B_{1} b^{-1}=0,
\end{array}\right.
$$

$$
B_{1}=\frac{1}{-\frac{a}{b^{2}}+\frac{1}{a}}=\frac{a b^{2}}{b^{2}-a^{2}}
$$

$$
\Rightarrow \quad B_{1}\left(-a b^{-2}+a^{\prime}\right)=1_{2} \Rightarrow \quad A_{1}=-\frac{a}{b^{2}-a^{2}}
$$

$$
\begin{aligned}
& r=a \Rightarrow \\
& u(a, \theta)=2+\cos \theta-\sin 2 \theta ; \\
& \begin{array}{l}
2+\cos \theta-\sin 2 \theta=A_{0}+B_{0} \log a+\sum_{n=1}^{\infty}\left(A_{n} a^{n}+B_{n} a^{-n}\right) \cos n \theta \\
+\left(C_{n} a^{n}+D_{n} a^{-n}\right) \sin n \theta
\end{array}
\end{aligned}
$$

(II) $\left\{\begin{array}{l}A_{2} a^{2}+B_{2} a^{-2}=0 \\ A_{2} b^{2}+B_{2} b^{-2}=1\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow B_{2}\left(-b^{2} a^{-4}+b^{-2}\right)=1 \\
& B_{2}=\frac{1}{-\frac{b^{2}}{a^{4}}+\frac{1}{b^{2}}}=\frac{a^{4} b^{2}}{a^{4}-b^{4}} \\
& A_{2}=-\frac{b^{2}}{a^{4}-b^{4}}
\end{aligned}
$$

(©) $\left\{\begin{array}{l}C_{2} a^{2}+D_{2} a^{-2}=-1 \\ C_{2} b^{2}+D_{2} b^{-2}=0,\end{array}\right.$

$$
\Rightarrow \begin{aligned}
& D_{2}\left(-a^{2} b^{-4}+a^{-2}\right)=-1 \\
& D_{2}=-\frac{1}{-\frac{a^{2}}{b^{4}}+\frac{1}{a^{2}}} \\
&=-\frac{a^{2} b^{4}}{b^{4}-a^{4}} \\
& C_{2}=\frac{a^{2}}{b^{4}-a^{4}}
\end{aligned}
$$

all other chef's are zero.
$[F, p .114, \# 5,6]$
2. The eigenfunction φ_{n} and eigenvalues λ_{n} for the operator $L=\partial_{x x}$ on the interval $[0, l]$ with Dirichlet boundary condition $\varphi_{n}(0)=\varphi_{n}(l)=0$ are given by

$$
\varphi_{n}(x)=\sin \left(\frac{n \pi x}{l}\right), \lambda_{n}=-\frac{n^{2} \pi^{2}}{l^{2}} .{ }_{n}=1,2,3, \ldots,\left(L \varphi_{n}=\lambda_{n} \varphi_{n}\right)
$$

Consider the following partial differential equations defined on the interval $[0, l]$ with the above mentioned Dirichlet boundary condition.
(a) $u_{t t}=c^{2} u_{x x}-k u$;
(b) $u_{t t}=c^{2} u_{x x}-\mu u_{t}$.

The k and μ are positive constants with $\mu<\frac{2 c \pi}{l}$.
Write the solution $u(x, t)$ as:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) \varphi_{n}(x)
$$

For each case, find the general solution form for the $a_{n}(t)$'s. You do not need to match the $a_{n}(0)$'s and $\dot{a}_{n}(0)$'s with the initial data of u as they are not anyway specified.
(a)

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) \varphi_{n}(t)
$$

$$
\begin{aligned}
& d y \\
& u_{f t}=c^{2} u_{x x}-k u \\
& \Rightarrow \sum_{n=1}^{\infty} \ddot{a_{n}} \ddot{\varphi}_{n}=\sum_{n=1}^{\infty}\left(c^{2} a_{n} \lambda_{n} \varphi_{n}-k a_{n} \varphi_{n}\right) \\
&\left(\left(\varphi_{n}\right)_{x x}\right.\left.=\lambda_{n} \varphi_{n}\right) \\
& \Rightarrow \quad \ddot{a}_{n}=c^{2} \lambda_{n} a_{n}-k a_{n}=\left(c^{2} \lambda_{n}-k\right) a_{n} \\
&=-\left(\frac{c^{2} \pi^{2} n^{2}}{l^{2}}+k\right) a_{n}
\end{aligned}
$$

$\begin{gathered}\text { Characteristic eq n: } \\ \text { You can nee this bump page. }\end{gathered} r^{2}+c^{2} \frac{\pi^{2} \pi^{2}}{l^{2}}+k=0 \Rightarrow r= \pm \sqrt{\frac{c^{2} \pi^{2}}{l^{2}+k}} i$

$$
a_{n}(t)=A_{n} \cos \left(\sqrt{\frac{c^{2} \pi^{2} n^{2}}{l^{2}}+k} t\right)+B_{n} \sin \left(\sqrt{\sqrt{2^{2} \pi^{2} \pi^{2}} l^{2}+k} t\right)
$$

(b)

$$
\text { b) } \begin{aligned}
& u_{t t}=c^{2} u_{x x}-k u_{t} \\
& \sum_{n} \ddot{a}_{n} \ddot{\varphi}_{n}=\sum_{n} c^{2} \lambda_{n} a_{n} \varphi_{n}-\sum_{k} k \dot{a}_{n} \varphi_{n} \\
& \Rightarrow \quad \ddot{a}_{n}+k \dot{a}_{n}-c^{2} \lambda_{n} a_{n}=0
\end{aligned}
$$

Characteristic equation:

$$
\begin{aligned}
& r^{2}+\mu r+0^{2} \frac{\pi^{2} n^{2}}{l^{2}}=0 \Rightarrow r= \\
& \left.\quad \frac{-\mu \pm \sqrt{\mu^{2}-\frac{4 c^{2} \pi^{2} n^{2}}{l^{2}}}}{2}\right) \\
& \Rightarrow \\
& a_{n}(t)=e^{-\frac{\mu t}{2}}\left[A_{n} \cos \left(\frac{1}{2} \sqrt{\frac{4 c^{2} n^{2} \pi^{2}}{l^{2}}-\mu^{2}} t\right)+B_{n} \sin \left(\frac{1}{2} \sqrt{\frac{4 n^{2} \pi^{2} \pi^{2}}{l^{2}}-\mu^{2}} t\right)\right]
\end{aligned}
$$

$$
[F, p .108 \# 8]
$$

3. Consider the following initial boundary value problem:

$$
\begin{aligned}
u_{t}= & k u_{x x}, \quad 0<x<l ; \\
u_{x}(0, t)=0, & u_{x}(l, t)+b u(l, t)=0, \quad(b>0) \\
u(x, 0)= & u_{0}(x)
\end{aligned}
$$

(a) Determine all the eigenvalues and eigenfunction for the operator $L=\partial_{x x}$ with corresponding boundary conditions, i.e. find all λ and $\varphi \not \equiv 0$ such that $L \varphi=\lambda \varphi$.
i. You can assume that all the λ are negative.
ii. You might not be able to find the λ 's analytically, but you should be able to describe how to find them and determine how many λ 's there are. It might be best to give a grahical illustration.
(b) Solve for $u(x, t)$ using the eigenvalues and eigenfunction you have just found.
(c) Find all the constants explicitly (in terms of the λ 's) in the expression for $u(x, t)$ when $u_{0}(x)=100$.
(a)

$$
\begin{aligned}
& \varphi_{x x}=\lambda \varphi, \quad \varphi_{x}(0)=0, \quad \varphi_{x}(l)+b \varphi(l)=0 \\
& \begin{array}{l}
\lambda<0 \Rightarrow \lambda=-\mu^{2}(\neq 0) \\
\varphi_{x x}=-\mu^{2} \varphi \Rightarrow \varphi=A \cos \mu x+B \sin \mu x \\
\varphi_{x}(x)=-\mu A \sin \mu x+\mu B \operatorname{cog} \mu x \\
\varphi_{x}(0)=0 \Rightarrow B=0, \text { ie. } \varphi_{x}(x)=-\mu A \sin \mu \\
\varphi(x)=A \cos \mu x, \varphi_{x}(x)=-\mu A \sin \mu x \\
\varphi_{x}(l)+b \varphi(l) \Rightarrow
\end{array} \underbrace{(-\mu \sin \mu l+b \cos \mu l}_{=0})=0
\end{aligned}
$$

$$
\cot (\mu l)=\frac{\mu}{b}
$$

μ_{n}^{\prime} 's are solutions of $\cot (\mu l)=\frac{\mu}{b}$

$$
\lambda_{n}=-\mu_{n}^{2} \leftarrow \text { eigenvalues }
$$

$$
\varphi_{n}(x)=\cos \left(\mu_{n} x\right)
$$

(b) $\quad u_{t}=k u_{x x}$

$$
\begin{aligned}
& \text { Let } u\left(x_{1} t\right)=\sum_{n=1}^{\infty} a_{n}(t) \varphi_{n}(x) \\
& \Rightarrow \quad \sum_{n=1}^{\infty} \dot{a}_{n}(t) \varphi_{n}(x)=\sum_{n=1}^{\infty}-12 \mu_{n}^{2} a_{n}(t) \varphi_{n}(x)
\end{aligned}
$$

$$
\dot{a}_{n}(t)=-k \mu_{n}^{2} a_{n}(t) \Longrightarrow a_{n}(t)=a_{n}(0) e^{-k \mu_{n}^{2} t}
$$

$$
\left.\begin{array}{l}
u(x, t)=\sum_{n=1}^{\infty} a_{n}(0) e^{-k \mu_{n}^{2} t} \cos \left(\mu_{n} x\right) \\
u_{0}(x)=\sum_{n=1}^{\infty} a_{n}(0) \cos \left(\mu_{n} x\right) \\
\lambda_{n}=-\mu_{n}^{2} \\
\mu_{n}=\sqrt{-\lambda_{n}}
\end{array}\right)
$$

$$
\begin{aligned}
& \text { (c) } \begin{aligned}
& a_{n}(x) \equiv 100 \\
&=\frac{100 \int_{0}^{l} \cos \mu_{n} x d x}{\int_{0}^{l} \cos ^{2}\left(\mu_{n} x\right) d x}=\frac{\left.100 \frac{1}{\mu_{n}} \sin \mu_{n} x\right|_{0} ^{l}}{1 \int_{0}^{l}\left(\cos \left(2 \mu_{n} x\right)+1\right)} d x \\
&=\frac{\left(\frac{200}{\mu_{n}}\right) \sin \mu_{n} l}{\frac{1}{2 \mu_{n}} \sin \left(2 \mu_{n} l\right)+l_{9}}=\frac{400 \sin \left(\mu_{n} l\right)}{\sin \left(2 \mu_{n} l\right)+2 \mu_{n} l}
\end{aligned}
\end{aligned}
$$

(cf. Past Exam B \#5, [F (3.5) \#1, \#2\#12])
4. Consider the following Sturm-Liouville operator L on $r>0$ and its (weighted) eigenvalue problem

$$
L R=\left(r R^{\prime}(r)\right)^{\prime}-\frac{\nu^{2}}{r} R(r), \quad L R(r)=\lambda r R(r)
$$

(Note that the above is equivalent to the Bessel equation of type ν upon identifying $\lambda=-\mu^{2}: r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)+\left(\mu^{2} r^{2}-\nu^{2}\right) R(r)=0$.)

Restrict L to the interval $r \in[a, b]$ (with $a, b>0$) and consider the following boundary conditions:

$$
R^{\prime}(a)=\alpha R(a), \quad R^{\prime}(b)=\beta R(b)
$$

which are to be imposed for all the functions appearing in the following.
(a) Show that L is self-adjoint, i.e. $\int_{a}^{b}(L P)(r) Q(r) d r=\int_{a}^{b} P(r)(L Q)(r) d r$.
(b) Suppose P and Q satisfy $L P=\lambda_{1} r P, L Q=\lambda_{2} r Q$ with $\lambda_{1} \neq \lambda_{2}$. Show that P is orthogonal to Q in the weighted- L^{2} space $L_{r}^{2}(a, b)$, i.e. $\int_{a}^{b} P(r) Q(r) r d r=0$..
(c) Suppose $\beta<0<\alpha$. Then any eigenvalue λ must be negative.

$$
\text { (a) } \begin{aligned}
& \int_{a}^{b}(L P) Q d r=\int_{a}^{b}\left(\left(r P^{\prime}\right)^{\prime}-\frac{\nu^{2}}{r} P\right) Q d r \\
= & \left.r P^{\prime} Q\right|_{a} ^{b}-\int_{a}^{b} r P^{\prime} Q^{\prime} d r-\int_{a}^{b} \frac{\nu^{2}}{r} P Q d r \\
= & b P^{\prime}(b) Q(b)-a P^{\prime}(a) Q(a)-\left.P r Q^{\prime}\right|_{a} ^{b} \\
B . C . & \quad \int_{a}^{b}\left(P\left(r Q^{\prime}\right)^{\prime}-\frac{\nu^{2}}{r} P Q\right) d r \quad=\int_{a}^{b} P(L Q) d r \\
= & b P^{\prime}(b) Q(b)-a P^{\prime}(a) Q(a)-b P(b) Q^{\prime}(b)+a P(a) Q(a) \\
= & b P(b) Q(b)-a \alpha P(a) Q(a)-b \beta P(b) Q(b)+a \alpha P)(a) Q a)
\end{aligned}
$$

(b) Irom (a),

$$
\begin{gathered}
\int_{a}^{l}(L P) Q d r=\int_{a}^{b} P(L Q) d r \\
\angle P=\lambda_{1} r P \\
\Rightarrow \lambda_{1} \int_{a}^{b} P Q r d r=\lambda_{2} \int_{a}^{b} P Q r \lambda_{2} r Q \\
\left(\lambda_{1} x_{2}\right) \int_{a}^{b} P Q r d r=0 \\
\neq 0 \Rightarrow \int_{a}^{b} P Q r d r=0
\end{gathered}
$$

(c) Let $L P=\lambda r P$

$$
\begin{gathered}
(L P) P=\lambda r P^{2} \\
\int_{a}^{b}(L P) P=\lambda \int_{a}^{b} r P^{2} d r \\
\int_{a}^{b}\left(\left(r P^{\prime}\right)^{\prime}-\frac{\nu^{2}}{r} P\right) P d r=\int_{a}^{b}\left(\left(r P^{\prime}\right)^{\prime} P-\frac{\nu^{2} P^{2}}{r}\right) d r
\end{gathered}
$$

$$
\begin{aligned}
& =\left.r P^{\prime} p\right|_{a} ^{b}-\int_{\text {You can use this blank page. }}^{b}\left(r\left(P^{\prime}\right)^{2}+\frac{\nu^{2} P^{2}}{r}\right) d r \\
& =b P^{\prime}(b) P(b)-a P^{\prime}(a) P(a)-\int_{a}^{b}\left(r\left(p^{\prime}\right)^{2}+\frac{\nu^{2} P^{2}}{r}\right) d r \\
& =\beta b P^{2}(b)-a \alpha P^{2}(a)-\int_{a}^{b}\left(r\left(P^{\prime}\right)^{2}+\frac{\nu^{2} P^{2}}{r}\right) d r
\end{aligned}
$$

Hence

$$
\begin{gathered}
\underbrace{\text { Hence }}_{-v e} \\
\beta b_{- \text {we }}{ }^{2}(b)-a \alpha p^{2}(a)
\end{gathered} \underbrace{\int_{-}^{b}\left(r\left(p^{\prime}\right)^{2}+\frac{\nu^{2} p^{2}}{r}\right)}_{\text {-re }} d r=\lambda \underbrace{\int_{a}^{b} r p^{2} d r}_{\text {+re }}
$$

If $\lambda=0$, then $P(a)=0, P(b)=0, \int_{a}^{b} r(P)^{2}+\frac{\nu^{2} P^{2}}{r} d r=0$

$$
\Longrightarrow P(r) \equiv 0 \quad \text { (Contradictory to } P \neq 0)
$$

$$
\Rightarrow \quad \lambda<0
$$

