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18. Introduction to spherical trigonometry (Solution of triangles), 32 pages. Houghton Mif- 
Ain, Boston, Mass., 1943. 

19. What is a liberal education? Reed College Bulletin, 23 (Sept. 1944). 
20. Some liberal aspects of collegiate mathematical training (unpublished). 

J. B, FOURIER-ON THE OCCASION OF HIS  

TWO HUNDREDTH BIRTHDAY 


W. A. COPPEL, Institute of Advanced Studies, Australian National University 

Fourier's work on the conduction of heat has stimulated the most diverse 
developments in pure mathematics. The  object of the pages which follow is to  
trace these developments in outline. 

Fourier's other coiltributions to mathematics, such as  his work on the theory 
of equations and linear inequalities, will not be discussed. 

1. Convergence of Fourier series. The  most original aspect of Fourier's 
work on trigonometric series, and the one which caused the greatest misgivings 
among his contemporaries, was his insistence tha t  his expansion applied to  
arbitrary functions. In  his Thsorie analytique de la Chaleur, 1822, he says (Sec- 
tion 417): "In general the function f ( x )  represents a succession of values or 
ordinates each of which is arbitrary . . . We do not suppose these ordinates to 
be subject to a common law; they succeed each other in any manner whatever, 
and each of them is given as if it were a single quantity." This general concept 
of a function had appeared before Fourier, altl~ough more commonly "function" 
meant "function defined by an analytical expression." Fourier asserted that  the 
two were the same. After giving what we would call today a plausibility argu- 
ment rather than a proof he says (Section 418): "Thus there is no function f(x), 
or part of a function, which cannot be expressed by a trigonometric series." 

In  this generality his statement is certainly not true. The  first rigorous proof 
under wide conditions of the possibility of expanding a function in a Fourier 
series was given by Dirichlet (1829). In the extended form given i t  by C. Jordan 
(1881); his result reads: the Fourier series of a function f which is the difference 
of two increasing functions (i.e. a function of bounded variation) converges a t  
any  point x with sum 4 If(xf0) + f ( x - O ) ] .  

Hamilton (1843), in a discussion of the convergence of Fourier series, proved 
tha t  iff is continuous in an interval [a, b]  then 
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'f(z) sin nx d z  --r O as n + a. 

This was extended from continuous to integrable functions by Riemann and 
Lebesgue and the result is now known as the Riemann-Lebesgue Lemma. 
Hamilton's contribution is forgotten. I t  follows from this lemma that the con- 
vergence of the Fourier series of a function a t  a particular point depends only 
on the behaviour of the function in an arbitrarily small neighbourhood of this 
point. Another almost immediate consequence is the convergence criterion of 
Dini (1880): the Fourier series off  converges a t  the point x with sum s if the 
integral 

exists. 
Although the convergence tests of Dini and Dirichlet suffice for applications, 

a number of more refined tests have been given. Rather than describe them, I 
shall mention some results which show in what way a Fourier series may fail to 
converge. Du Bois Reymond (1876) gave an example of a continuous function 
whose Fourier series diverges on an everywhere dense set of points. Kolmogorov 
(1926) gave an example of a Lebesgue-integrable function whose Fourier series 
is everywhere divergent. Recently Carleson (1966) solved a long-standing prob- 
lem by showing that the Fourier series of a function f in the space L ~ [ O ,  2?r] 
(see Section 3) converges except on a null-set (i.e. a set which can be enclosed in a 
sequence of intervals whose total length is as small as one pleases). In particular, 
the Fourier series of a continuous function converges except possibly on a null- 
set. Finally, Kahane and Katznelson (1966) have shown that for any null set E 
there is a continuous function whose Fourier series diverges a t  each point of E. 

Fejer (1904) showed that the situation is greatly simplified if instead of con- 
sidering the convergence of the sequence of partial sums 

one considers the convergence of the sequence of arithmetic means 

Iff  is Lebesgue integrable, then SN(X)--?f(x) for all x except possibly those in a 
null set; and iff is continuous a t  the point x, then SN(X)+~(X). Moreover i f f  is 
everywhere continuous the convergence is uniform. FejCr obtained in this way 
a simple proof of the Theorem of Weierstrass (1885) that each continuous func- 
tion of period 2r can be uniformly approximated by trigonometric polynomials, 
i.e. by functions of the form 
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A far-reaching generalization of Weierstrass' Theorem, and its analogue for 
ordinary polynomials, has been given by Stone (1948). 

The  possibilities of representing 'arbitrary' functions by Fourier series are 
illustrated by the first published example, due to Weierstrass (1875)' of a func- 
tion which is everywhere continuous and nowhere differentiable: 

m 

an cos (bmx),  
n=O 

where 0 <a <1, b is an  odd positive integer, and ab> 1+( 3 ~ / 2 ) .  

2. Trigonometric series. T o  establish the convergence of the Fourier series 

for as wide a class of functions f as  possible, one must be able to define the inte- 
gral of such a function. I t  was for this reason that  Riemann (1854) in his 
Habilitationsschrift "On the representation of a functioa by a trigonometric 
series7? introduced what we now call the Riemann integral, generalizing the 
definition given by Cauchy for the integral of a continuous function. We shall 
return to the Riemann integral shortly. The main part of Riemann's paper 
was concerned with the representation of functions by general trigonometric 
series xc,einz in which the coefficients c, are not necessarily given by the inte- 
gral formulae (1). By an  ingenious argument based on integrating twice term by 
term, he obtained necessary and sufficient conditions for the possibility of such 
a representation. 

Riemann's work on trigonometric series was followed by that of Cantor. 
Cantor was concerned with the question whether the sum of a trigonometric 
series uniquely determines its coefficients. He showed first that  if a trigonometric 
series converges to zero a t  every point of the interval [0, 2n], then its coefficients 
must all be zero. In trying to extend this result he was led to the concept of 
derived set. Let E be a set of real numbers. The  derived set E' of E consists of all 
real numbers x such that  any neighbourhood of x contains a point of E distinct 
from x .  One can then form the derived set E" of E', and so on. Cantor (1872)* 
proved that  any set E ,  whose nth derived set is empty for some positive integer 
n, is a set of uniqueness, i.e. a trigonometrical series which converges to zero a t  
all points outside E must have all its coefficients zero. From the concept of 
derived set he was led to the concept of closed set (a set which contains its derived 
set as  a subset) and thence to the general sttidy of point set topology. 

* Cantor's method of constructing the real numbers from the rationals by means of funda- 
mental sequences appears a t  the beginning of this paper. 
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A set with empty nth derived set is either finite or countable, i.e. i t  can be 
put into 1-1 correspondence with the set of positive integers. Cantor then 
showed tha t  the set of all algebraic numbers is countable, but  the set of all real 
numbers is not countable. This led him to the general notion of 1-1 correspon-
dence between two sets and the concept of cardinal number. Incidentally i t  was 
later shown by W. H. Young (1908) that  any countable set is a set of uniqueness. 
However, not all sets of uniqueness are finite or countable. 

3. Integration. We have seen that  the discussion of convergence of Fourier 
series provoked a widening of the concept of "integral." The  most satisfactory 
extension was found by Lebesgue (1902). I t  will be explained here in the alterna-
tive form due to Daniel1 (1917). 

We are all agreed about what value the integral of a (real-valued) step func-
tion should have. I f f  has the constant value ck of an  interval J k  of length l k  

(k =1, . . . , N) and is everywhere else zero then the integral is defined by 

The  set S of all step-functions has the property that  if j and g are in S then so 
are I f  1 ,f+g and cf for any real number c. Moreover, 

I(cf) = W ) ,  

I(f) 2 0 i f f  2 0, 
I ( f n ) - + O  i f f i 2 f z 2  and f n  +0. 

The problem of integration is to extend the set of integrable functions so 
that  these properties are preserved. Riemann solved this problem in the bollow-
ing way. Suppose there exists an  increasing sequence of step functions sl 
l s z l  . . and a decreasing sequence of step functions tl B t 2 2  . . such tha t  
s, 5f 5 tn for all n and 

( * >  lim I(sn) = lim I(tn). 
n-+ m n-+ m 

Then we say that  f is Riemarln integrable and we define I(f) to be the common 
value of the limits ( * ). 

Lebesgue's more general solution proceeds in two stages. Suppose first that  
we have an  increasing sequence of step functions sl S s zS . . . whose integrals 
are bounded, I(sn)Sc for all n. Then f(x) =limn,, sn(x) exists for all x and 
limn,, I(sn) exists. We define I u )  =limn,, I(sn).The  function f has values in the 
extended real number system, i.e. i t  can assume infinite values, although the 
boundedness of the integrals of the approximating step functions does restrict 
the set of points a t  which their limit is infinite (it must be a null set). I t  is not 
difficult to show that  this definition does not depend on the approximating se-
quence of step functions, i.e. if tr5 t z S  . . . is another increasing sequence of 
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step functions such that I(t,) gd for all lz and if f(x) =limn,, tn(x) for all x then 
limn+=I($,) =limn+, I(tn). 

Let us call the functionsf for which the integral is now defined "over" func-
tions. Also let us call f an ('under" function if -f is an over function, and set 
I(f) = -I(-f). There is no inconsistency in this iff is both ('under" and "over." 
We now complete our definition by saying that a function f is Lebesgue inte-
grable if there exists an increasing sequence of under functions s l S s a 5  * 

and a decreasing sequence of over functions ti 2tz2 . . such that s, Sf 6 t, 
for all n and lim,,, I(s,) =limn,, I&). Moreover we define ICf) to be the com-
mon limit. 

The integral thus defined has the properties (21)-(24). Also it is easy to 
show that we get no further by repeating the process. If f i S f e $  . . is an 
increasing sequence of integrable functions such that ICf,) S c, then f =lim,,, f n  

is already integrable and I@ =limn,, I&). 
Con~plexvalued functions can be included by saying that f is integrable if its 

real and imaginary parts are integrable, and setting 

ICf) = I(%f> + iI(3f). 

I t  is customary to denote by LP(a, b),  where p 2 1, the set of all functions f 
such that If 1 P is Lebesgue integrable over the interval (a ,  b) and such that for 
any positive integer n there is a step function s, with I(/f -s,l p )  < l/n. 

4. Eigenfunction expansions. Fourier considered the conduction of heat in 
homogeneous bars. In seeking to extend his work to inhomogeneous bars, Sturm 
and Liouville (1836-37) were led to consider eigenfunction expansions defined 
by general second order linear differential equations. If we try to solve the 
inhomogeneous heat equation by the method of separation of variables, we ob-
tain an ordinary differential equation 

with boundary conditions 

Here k(x) and g(x)  are positive continuous functions representing the conduc-
tivity and specific heat, while the continuous nonnegative function 1(x) and the 
nonnegative constants h, H depend on the emissivity a t  the surface and ends of 
the bar respectively. 

The values of X for which there is a nontrivial solution y are called the eigen-
oalztes of the boundary value problem and the corresponding solutions the 
eigenfanctions. Sturm and Liouville showed that there is an infinite sequence of 
positive eigenvalues XI<X~< . with A,--+ to. Moreover each eigenvalue X, 
is simple, i,e, the corresponding eigenfunction y, is uniquely determined up to a 
constant factor, and eigenfunctions corresponding to different eigenvalues are 
orthogonal in the sense that 



They also obtained many results on the zeros of the eigenfunctions y,. 

With an "arbitrary" function f we associate the eigenfunction expansion 


where 

6 .  - Jbf(x)y . (r )g(r)dx  / J J  bY:(x)g(r;)dx. 

This generalises the ordinary Fourier series, to which it reduces f ~ r  k ( x )  *const., 
g(x) =csnst., 1(x)=0 and h9H* 0, Probably the simplest way of proving the 
convergence of the eigenfunction expansion is to introduce a Green's function. 
This replaces the boundary value pfoblem by an equivalent integral equation, 
to which Hilbert's (1904) theory of integral equations with symmetric kernel 
can be applied. Indeed this was the first application w h i ~ hHilbert made of his 
theory and it may be assumed that  this was one of his motives for its construction. 

De la Vall6e Poussin (1893) proved that  for each Riemann integrable func- 
tion f with Fourier series x,",,c,ein2, we have -

This is usually known as Parseval's equation. I t  could with equal historical 
justification be attributed to Pythagoras, since it is an  infinite-dimensional 
generalisation of the fact that  in any  right-angled triangle the square on the 
hypotenuse is equal to the sum of the squares on the other two sides. Parseval's 
equation was extended to functions f in Le[0,  2n] by Fatou (1906) and to Sturrn- 
Liouville eigenfunction expansions by Steklov (1901). F. Riesz (1907) and 
Fischer (1907) independently found a converse to Parseval's equation: for any 
sequence 1cn] of complex numbers for which the series 1 cn1 is convergent 
there exists a function f in L2with Fourier series Ecneh5 such that  (3) holds. 
Fischer showed that  this was a corollary of a much more general result. If f fn  

is a sequence of functions in L2such that  

then there exists a functionf in L2such that  

This is an  analogue of Cauchy'e general convergence principle in which the 



474 J. B. FOURIER-ON OCCASION OF HIS TWO HUNDREDTH BIRTHDAY [May 

norm of a function f in L2 is defined by 

I t  is just such closure properties which make the Lebesgue integral more con- 
venient than the Riemann integral. 

One method of proving Parseval's equation for Sturm-Liouville eigenfunc- 
tion expansions, due to G. D. Birkhoff (1917), may be mentioned here, not 
because it is simpler than the method of reduction to an integral equation, but  
because there has been a revival of interest in it recently. Liouville showed that  
the eigenvalues and eigenfunctions of his problem behave asymptotically for 
n-+ w like those of an ordinary Fourier series. On the other hand i t  can be shown 
that  if (y , ) ,  (z,) are two orthogonal sequences in L2with \ I Y n  = /lznlI= 1 for a11 
n, and if the sequences are close in the sense that  the series ~ l l y n - ~ n I 1 2  is con- 
vergent, then Parseval's equation holds for one sequence if i t  holds for the other. 
In this way the validity of Parseval's equation for general Sturm-Liouville 
expansions follows from its validity for the ordinary Fourier expansion. 

5. The Fourier integral. Fourier series had to some extent been anticipated 
in the work of Clairaut, Euler, and Lagrange. The  Fourier integral was Fourier's 
own. He obtained i t  from his series by a limiting process in the manner which is 
still given in textbooks. I t  is most simply stated as  an  inversion formula : 

and is valid under conditions analogous to those for the convergence of Fourier 
series. Only the analogue of the Parseval equation, due to Plancherel (1910), 
will be mentioned here. I t  states that  iff is in L 2 = L 2 ( -w , w),  the sequence 

converges in  L2 to a function 3 such that  

converges irt L2 to f and I I f ( I  = 11f 1 1 .  
The Fourier integral is associated with the differential equation yt'+Xy =0 

over the interval (- a ,  w). The  extension to general second order linear dif- 
ferential equations over an infinite interval was first made by H. Weyl (1910). 
The situation is complicated by the fact that  the spectrum, instead of being dis- 
crete (viz. the sequence of eigenvalues An) as  in the ordinary Sturm-Liouville 
case, or continuous (viz. the whole line -a < X <  a )  as  in the case of the 



Fourier integral, may be a combination of the two. The extension to differential 
equations of arbitrary order, which presents little difficulty for ordinary bound- 
ary value problems, was first achieved for singular boundary value problems by 
Kodaira (1950) and M. G. Krein (1950). The  most elementary way of obtaining 
their results is to follow Fourier and apply a limiting process to the results for 
a finite interval. 

We consider next the algebraic properties of the Fourier integral. Let 
L=L1(- w ,  w) denote the set of all complex-valued functions which are 
(Lebesgue) integrable over the interval (- w, w). For any function f in L the 
Fourier transform 3is defined and is a continuous function. The transformation 
f-ifis linear, i.e. the transform of f+g is f + g  and the transform of cf is cf, 
for any complex number c. Again, iff and g are in L their convolution product 
f * g defined by 

is also in L and the transform off * g is the ordinary product 3g. This important 
property seems to have been first observed by Cebysev (1890/1) in the context 
of probability theory. Finally the transform of f(x+a) is e i~ . j ' (~)  and, if the de- 
rivative fr(x) is in L, its transform is iyj\(y). I t  is the last property, which replaces 
differentiation by a simple algebraic process, that  makes Fourier transforms 
especially useful in the solution of differential equations. 

New applications of the Fourier integral were found by Wiener (1932), whose 
general 'Tauberian' theorem embraced a vast number of analytical results 
which previously had been obtained by different and quite special arguments. 
We state first the analogue of his theorem for series, which Wiener used as a 
stepping stone towards the corresponding result for integrals: Let j be a con- 
tinuous complex valued function of period 27r with an absolutely convergent 
Fourier expansion: 

If 3 never vanishes then its reciprocal 1/3 also has a n  absolutely convergent 
Fourier expansion. A much clearer proof of this result has been given by Gelfand 
(1941) by means of the theory of Banach algebras, then in its infancy. I t  is a 
fine example of the application of algebraic ideas to problems in analysis. 

Let L(Z) denote the set of all functions f defined on the integers for which 
the series x,",-,I f  (n) 1 is convergent. L(Z) becomes an algebra if we define 
the sum f+g and product f * g of two functions by 

The  function 1 which takes the values 1 for n=O and 0 for n#O is an identity 
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for multiplication. An ideal in this algebra is a subset I such that iff and g are 
in I and h is in L ( 2 )  then f-l-g and f * h are in I. For example, the set of all 
functions f * h. where h runs through LCZ),is an ideal, the ideal gensrated by f. 
An ideal is maximat if it is not the whole algebra L(Z)and is not a subset of any 
other ideal. Any ideal, apart from L(2)itself, is contained in a maximal ideal. 

For any function f in L(Z) ,le t3  denote the continuous function of period 27r 
defined by ( 5 ) .  I t  is readily seen that (f a g)^ =fg and hence that the set of all 
functions g in L(Z) whose transforms 2 vanish at: a particular point y is a maxi- 
mal ideal. Gelfand showed that, conversely, each maximal ideal in L(Z)is 
obtained in this way. Thus i f f  has the property that its transform never van- 
ishes, it is contained in no maximal ideal. Therefore the ideal generated by f is 
the whole of L(Z) .  Thus f has an inverse f-* in LQZ)and the transform of f-I 

is the reciprocal of 3. 
Wiener's Tauberian Theorem says that iff is a function in L =L f ( - m , m ), 

then each function in L can be approximated arbitrarily closely in L by finite 
linear combinations xf=,csf(x-xk) of translates off if and only if the Fourier 
transform j' never vanishes. Since the canvolution product f + g is a limit of 
linear combinatians of translates off ,  the set of limits of such linear combina- 
tions is the same as the closed ideal in L generated by f .  The argument is now 
similar to that in the series case, although there is no multiplicative identity. 

Wiener's Theorem on absolutely convergent Fourier series was extended by 
Levy (1933). The analogue sf this extension for integrals was stated by Paley 
and Wiener (1934) and may again be proved by the method of maximal ideals: 
If j (y)  is the Faurier transform of a function f ( x )  in L and if is analytic 
over the range of values of 3(y) far - 5y 2 a (i.e. 0 is included), then c#[](~)] 
is also the Fourier transform of a function in L. 

6. Almost periodic functions and positive definite functions. H. Bohr 
(1924-26) defined a continuous complex valued function 4 on (- er, , w ) to be 
almost periodic if for each E>0 there is a corresponding T= T ( E )3 0 such that 
every interval of length T contains a t  least one point a with the property 

\ f ( x + a ) - f ( x > I  < E  f o r - @  < x <  m. 

Boczbaer (1927) shawed that this was equivalent ta  requiring each sequence 
fa,) sf real numbers to ccastain a subsequence (a: ] for which the sequence af 
translates f(x-\-a,') canverges uniformly an (- ~3 , -1%Bohrf$ main object was 
the construction of a theary sf Fourier series for almost peri~dic functians, He 
shawed that the limit: 

c(X) = lim --J'/(de-.**dz
r+- 2X -1 


exists for each real number X and is different fram zero for at most countably 
many values of A. For the c~rresponding Fourier series 



the Parseval equation holds: 

Moreover any almost periodic function can be approximated uniformly on 
( - , a )  by generalised trigonometric polynomials dke$\kz, and con-xf-,
versely any function which can be uniformly approximated by generalised trigo- 
nometric polynomials is almost periodic. 

Fourier integrals are an invaluable tool in the theory of probability. A ran-
dom variable is described by its distribution function, a bounded nondecreasing 
function p(y) with p(y +O) =p(y) such that  p( - a )  =O and p( ) = 1. Its charac-
teristic function is the Fourier-Stieltjes transform 

(Note: In the definition of the integral of a step function in Section 3 11,no longer 
represents the length of the interval JI,= (ah, bk) but  the quantity p(bk) -p(ak).) 
The convolution theorem states that  to the sum of two independent random 
variables corresponds the product of their characteristic functions, In this way 
the Fourier-Stieltjes transform becomes the most powerful method for estab- 
lishing the convergence of a sequence of random variables. 

Bochner (1932) found an  interesting intrinsic characterization of charac- 
teristic functions. A complex valued functio~l f defined on (- m,  a)is said to be 
positive definite if for any finite set of real numbers x i ,  . . , X ,  and any finite a 

set of complex numbers CI, - . . , c,, 

Bochner showed that a function f could be represented in the form (6) for some 
bounded nondecreasing function p ,  if and only if i t  was continuous and positive 
definite. 

7. Fourier analysis on groups. Let G be a locally compact topological group, i.e. 
a group on which a topology is defined such that  the group operations (multipli- 
cation and inversion) are continuous and such that  each point has a compact 
neighbourhood. Haar (1933) showed how to define for all real-valued continuous 
functions on G which vanish outside compact sets, an integral I,not identically 
zero, with the properties (21)-(24) and with the additional left invariance 
property 

Moreover this integral is uniquely determined apart from a positive constant 
factor. The  domain of definition of the integral can then be extended by the 
process used in Section 3.  We denote by L =L(G) the set of all complex-valued 
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functions which are integrable on G. 
For any two functions f ,  g in L the functions f +g and f * g defined by 

are again in L. With these definitions of addition and multiplication L forms an 
algebra, the group algebra of G. If we define a norm by setting 

then L is actually a Banach algebra. 
Suppose now that  G ,  and hence also L, is commutative. Then a character of 

G is defined to be a continuous mapping y of G into the complex numbers of 
absolute value 1 such that  

y (xy )  = y ( x )  y ( y )  for all x,  y in G. 

If we define the product of two characters yl, yz by 

then the set I' of all characters becomes a commutative group, the dual group 
of G. We give r a topology by defining the basic open sets to be the sets 
H(C,  e, 70)of all y in F such that  

for some compact set C in G, some e>0, and some yo in I'. With this topology I' 
is also a locally compact topological group. 

The  Fourier transform of a function f in L ( G )  is the continuous function f 
on I' defined by 

f(r>= IoTf ( x ) r n l .  

Then the Fourier transform off * g isj'g. A function f on G is said to be positive 
definite if for any finite set XI, . . . , x, of elements of G and any finite set 
GI, - . , cn of complex numbers 

The Fourier Inversion Theorem holds in the following form : iff is a continuous 
positive definite function in L ( G )  then 3 is a continuous function in L(r)and 

provided the invariant integral on I' is suitably normalised. 
A. Weil (1938) showed that  Plancherel's Theorem and Bochner's Theorem 

on positive definite functions can be extended to this general situation, as  can 
Wiener's Tauberian Theorem. The duality Theorem of Pontryagin (1939) says 
that  conversely G is the dual of I'. 

Ordinary Fourier series and integrals both appear as  special cases. In the 



first case G is the additive group of all integers and its dual I? is the multiplicative 
group of complex numbers of absolute value 1. In the second case G is the addi- 
tive group of all real numbers and is its own dual. Seeing the two as special cases 
of the same phenomenon adds to our understanding of them. 

The  theory of almost periodic functions has been extended by von Neumann 
(1934) to  arbitrary groups. 

8. Singular integral equations. Numerous problems in mathematical physics 
lead to integral equations of the form 

wheref is the unknown function and k and g are given. The first explicit solutions 
of the corresponding homogeneous equation (g=O) were obtained by Wiener 
and Hopf (1931) for kernels k which are exponentially small a t  infinity. Their 
method depended on taking Fourier transforms and representing a function 
analytic in the strip I I Z I  < c  as the product of two functions, one analytic in the 
half-plane Iz> - c  and the other analytic in the half-plane Iz <c. Rapoport 
(1948) made less stringent restrictions on the kernel k by reducing the integral 
equation (7) to  Hilbert's problem on the boundary values of analytic functions. 
Then M. G. Krein (1958) treated the equation (7) under the sole conditions that  
k is in L =L1(-co , m) and that  its Fourier transform 

(Note: The sign of the exponent in the integrand has been chosen to agree with 
Krein.) The basis of his method is the Theorem of Wiener and Levy mentioned 
a t  the end of Section 5. 

Let 

where A arg $(A) denotes the net increase in arg +(X) as X increases from - co 

to  co. v is an integer, since K(X)-+O as X - - 1 5  co by the Riemann-Lebesgue 
Lemma. 

Krein shows that  the integral equation (7) has a unique solution f in L for 
every g in L if and only if v =0.If v >0 then (7) is always soluble but  the solution 
is not unique, since the corresponding homogeneous equation 

has exactly v linearly independent solutions. 

If v<O then (7) either has no solution in L or a unique solution. The  latter 
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case occurs if and only if 

where hl, . . , hlYI is a basis for the solutions of the adjoint homogeneous 
equation 

Thus if vZO,  the homogeneous equation and its adjoint do not have the 
same number of linearly independent solutions, contrary to what occurs in the 
ordinary Fredholm theory of integral equations. These results have analogues 
for systems of linear equations of the form 

and extensions to the case where f and g in (7) are vector functions and k is a 
matrix function. 

9. Generalized functions. The theory of distributions of L. Schwartz (1950-
51) and the various "generalized functions" of Gelfand and Silov (1958) are 
closely connected with the Fourier transform. Indeed this is the main feature 
which distinguishes Schwartz's theory from its precursors. We describe here the 
elementary approach used by Temple (1955). 

An infinitely differentiable function on (- cc,, w )  is said to be rapidly de-
creasing if it, and its derivatives of all orders, tend to zero faster than any nega- 
tive power of ] xl as x-, lt: m .For example, ems' is rapidly decreasing. We denote 
the set of all rapidly decreasing functions by S. I t  is a linear space which contains 
f(ax+b) for real a#O and b if i t  contains f (x ) .  

A sequence {fn of functions in S is said to be convergent if for any function 
g in S the numerical sequence 

converges. We call two convergent sequences equivalent if the corresponding 
limits are the same for every g in S. We then define a generalized function F to 
be an equivalence class of convergent sequences and we set 

We can regard any rapidly decreasing function f as a generalized function by 
identifying it with the equivalence class containing the sequence {fn} in which 
f n  =f for all n.  The sequence { ( n / ~ ) ~ / ~ r * s ' )is easily seen to be convergent. The 
corresponding generalized function will be denoted by 6. I t  has the property 
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(6, g )  = g ( O ) .  Dirac's popular delta-function thus acquires a precise meaning. 
The  sum of two generalized functions, linear transformations of the inde- 

pendent variable, and the product of a generalized function by a constant or, 
more generally, a slowly increasing function are naturally defined. Here an  
infinitely differentiable function is said to be slowly increasing if i t  and all its 
derivatives are bounded by some power of I x l  as x-t-t a.For example, eix"is 
slowly increasing for any real X. 

For any two functions f ,  g in S we have 

This enables us to define the derivative D F  of a generalized function F: if the 
equivalence class F contains the convergent sequence i f n )  then D F  is the 
equivalence class containing the convergent sequence ( f d  1. Also the Fourier 
transform maps S onto itself. ( I t  is this property and closure under differentia- 
tion that  determine the choice of S.) Finally, for any two functions f', g in S 
we have 

This enables us to define the Fourier transform fi of a generalized function F: 
if the equivalence class F contains the convergent sequence then fi is the 
equivalence class containing the convergent sequence 1. These definitions 
are easily shown to be consistent, i.e. they do not depend on the choice of se- 
quence (f,1 within an  equivalence class. By the inversion theorem the Fourier 
transform of $(x )  is F( -x ) .  Moreover the transform of 6 is the constant 
(2n)-'I2and the transform of D F  is the product of fi by the slowly increasi~lg 
function ix.  

Finally, a sequence ( F , )  of generalized functions is said to converge to the 
generalized function F if 

for any function g in S. If F,+F then also DF,-+DF and $,--+$. 
The  theory of trigonometric series is particularly simple within the domain 

of generalized functions. A trigonometric series x,",-,cneinxconverges to a 
generalized function F if and only if its coefficients cn increase no faster than 
some power of 1 n[ as  n-t + oo . Moreover F is invariant under translation by 2n, 
and any generalized function which is invariant under translation by 2~ can be 
uniquely represented as the sum of a convergent trigonometric series. 

Generalized functions have found applications in several branches of mathe- 
matics, notably in the study of linear partial differential equations with con- 
s tant  coefficients, where they are now indispensable. 

10. Miscellany. The summation formula of Poisson (1823) connects the 
values of a function f on a subgroup of the real line with the values of its Fourier 
transform 3 on another subgroup: 
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I t  holds for functions f in L which are of bounded variation and are normalised 
so thatf (x) = If(xf0) +f (x -0) ]/2. Consequences of this formula include Jacobi's 
imaginary transformation of the theta functions, the reciprocity law for Gaus- 
sian sums, and Riemann's functional equation for the zeta-function. 

FejCr and F. Riesz (1916) showed that  any  trigonometric polynomial 

such that  f (x) Z 0 for all real x can be expressed in the form f (x) = Ig(eiz) I 2, where 

Moreover g is uniquely determined if we require further tha t  g(O)>O and 
g(w) # 0 for 1 wI <1. This was extended by SzegG (1921) :Let f ZO be a nonnega- 
tive function in L[o, 2n]. Then there exists a function g in L2[0, 2n] such that  
f = l g I 2  and 

g(x)einzdx= 0 for lz = 1, 2, . . 

i f  and only if logf is in L[O,2a]. Moreover there exists a unique g for which also 

'So2" 
2~ g(x)dx = exp [i 2* 

log (X)~Z] .  

Szego's result has found applications to the prediction theory of stationary 
stochastic processes. 

Paley and Wiener (1934) considered Fourier transforms in the complex 
domain. Only two of their results will be mentioned here: 

A function F(z) can be represented in the form 

where f is in L2(0, a),if and only if it is analytic in the half-plane Rz> 0 and 

r aI F (x+ iy )  lzdy < constant for O <. < a. 

A function F(z) can be represented in the form 
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where f is in L2(-a, a ) ,  if and only if it is an entire function (i.e. the sum of an  
everywhere convergent power series), it is in L 2  on the real axis and 

for some positive constant C. I t  can be shown tha t  any such function is uniquely 
determined by its values a t  a suitable sequence of equally spaced points on the 
real line, in fact 

11. Conclusion. Enough has been said to show how profoundly Fourier's 
work has influenced the development of mathematics, directly and indirectly. 

An expanded version of a lecture given a t  the Australian National Uiliversity, Canberra, 
on April 1, 1968. In addition Professor J. C. Jaeger spoke on the significance of Fourier's work for 
applied mathematics. Some of the material here also formed part of the third Behrend Memorial 
Lecture, given a t  the University of Melbourne on August 2, 1968. 

I am grateful to Professor S. Izumi for the reference to Kahane and Katznelson, and to Drs. 
R. E. Edwards and P. Mandl for pointing out an error in the original treatment of the Lebesgue 
integral. 

FUNCTIONAL ANALYSIS PROOFS OF SOME THEOREMS 

IN FUNCTION THEORY 


L. A. RUBEL, University of Illinois and Institute for Advanced Study 
and B. A. TAYLOR, University of Michigan 

Vie present here functional analysis proofs of three theorems in function 
theory; the first two theorems are classical and the third is well known. The  
first theorem is Runge's Theorem on approximation by rational functions, which 
readily implies the Cauchy Integral Theorem. The  second is the familiar theo- 
rem that  there exists an analytic function that  interpolates arbitrary values 
on any discrete subset of a given open set in the complex plane. This result 
readily implies the &?ittag-Leffler Theorem, which in turn easily implies the 
Weierstrass Theorem about the existence of analytic functions with arbitrarily 
prescribed discretk zero set. The  third result is that  every closed ideal in the 
ring of functions analytic on a region is principal. The  proofs are new, although 
their substance seems to be known to some workers in the field. For example, a 
closely related proof of Runge's Theorem appears in [z,pp. 47-48], which is 
relatively inaccessible. 

Our proofs are based on the duality between the space H(G) of all functions 
holomorphic on the region G in the complex plane, in the topology of uniform 
convergence on compact subsets of G, and the space Ho(Gf)of germs of functions 


