MA 520 Spring 2024 (Aaron N. K. Yip)

Homework 4

Due: Thursday, Feb. 1st, in class

Folland: Fourier Analysis and Its Applications
Section 2.4 (p.47): \#1, 2, 3, 4; (For each of the problems, plot also the versions of the function $f(\theta)$ on $(-\pi, \pi)$ which you use to compute the sin and cos series.)
Section 3.1 (p.67): \#1, 2, 3, 4, 5.

Additional Problem

In class, we have computed the N-th partial Fourier series $\left(S_{N} f\right)$ of a 2π-periodic function f and express it as a convolution with the Dirichlet kernel, $D_{N}(\cdot)$:

$$
\left(S_{N} f\right)(x):=\sum_{n=-N}^{N} c_{n} e^{i n x}=\int_{-\pi}^{\pi} f(y) D_{N}(x-y) d y
$$

where D_{N} is defined by and computed as ([F, p.33-34, (2.12), (2.14)),

$$
D_{N}(\theta):=\frac{1}{2 \pi} \sum_{n=-N}^{N} e^{i n \theta}=\frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{2 \pi \sin \left(\frac{1}{2} \theta\right)} .
$$

Recall the following properties of D_{N} :

1. $D_{N}(\cdot)$ is 2π-periodic;
2. $D_{N}(\cdot)$ is an even function;
3. $\int_{-\pi}^{\pi} D_{N}(\theta) d \theta=1$;
4. $D_{N}(0)\left(=\lim _{\theta \rightarrow 0} D_{N}(\theta)\right)=\frac{2 N+1}{2 \pi}$;
5. $D_{N}(\theta) \sim \frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{2 \pi}$ for $\theta \sim \pm \pi$. Note that the magnitude of the oscillations of D_{N} for θ near π remains $\frac{1}{2 \pi}$ which does not diminish for $N \gg 1$.

The graph of D_{N} is given in [F, p.34, Fig. 2.4].
Now consider the "average" of the partial sums:

$$
\left(A_{N} f\right)(x):=\frac{1}{N+1} \sum_{m=0}^{N}\left(S_{m} f\right)(x)=\frac{\left(S_{0} f\right)(x)+\left(S_{1} f\right)(x)+\cdots+\left(S_{N} f\right)(x)}{N+1}
$$

(In the above, we define $\left(S_{0} f\right)=\frac{a_{0}}{2}$, the first term of the Fourier series of f, i.e. $\left(S_{0} f\right)(x)=$ $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) d y$.) Folland has some discussion of this notion - also called the Cesàro mean in p. 60 .

1. Show that $A_{N} f$ can also be given by a convolution of f but with a new kernel F_{N}, called the Fejér kernel:

$$
\left(A_{N} f\right)(x)=\int_{-\pi}^{\pi} f(y) F_{N}(x-y) d y
$$

Find the explicit formula for $F_{N}(\theta)$.
Hint: Note that $F_{N}(\theta)=\frac{1}{N+1}\left(D_{0}(\theta)+D_{1}(\theta)+\cdots+D_{N}(\theta)\right)$. One way to compute this sum is to replace $\sin \theta$ by $\frac{e^{i \theta}-e^{-i \theta}}{2 i}$ and use the formula for the summation of geometric series.
2. For F_{N}, discuss the five previously stated properties of D_{N}, i.e. are they true for F_{N} ? If not, give the corresponding correct statements for F_{N}. Pay extra attention to Property 5.
3. Show that for any $\epsilon>0$ and $\delta>0$, there exists an $N_{*}(\epsilon, \delta)>0$ such that for any $|\theta|>\delta$ and $N \geq N_{*}(\epsilon, \delta)$, it holds that

$$
\left|F_{N}(\theta)\right| \leq \epsilon, \quad \text { for any } \quad|\theta| \geq \delta
$$

In words, "as long as θ stays away from 0 , the Fejèr Kernel F_{N} can be made as small as possible if N is large enough".

Find $N_{*}(\epsilon, \delta)$ for $\epsilon=10^{-6}$ and $\delta=10^{-5}$.
4. Use (any of your favorite computer software to) draw $D_{25}(\theta)$ and $F_{25}(\theta)$ for $-\pi<\theta \pi$ (similar to that for D_{N} (see [F, p.34, Fig. 2.4]).

Extra information.
Note that convergence of $A_{N} f$ to f is much better behaved than that of $S_{N} f$. In particular, there is no Gibbs phenomena for $A_{N} f$. See the following figures for the actual comparison between $S_{N} f$ and $A_{N} f$ for the square function.

