MA 520 Spring 2024 (Aaron N. K. Yip)

Homework 9

Due: Sunday, Apr. 21st, 11:59pm, submit directly in Gradescope

Folland:
Section 6.2: \#6, 7;
Section 6.3: \#3 (describe also the "dominating behavior" of u as $r \longrightarrow \infty), 6,8$.
Section 6.4: \#4, 5;
Section 6.5: \#5, 6;

Additional Problem.

1. Show explicitly that the first three Hermite polynomials, H_{0}, H_{1}, H_{2}, are orthgonal in $L_{\omega}^{2}(\mathbf{R})$ with weight $\omega(x)=e^{-x^{2}}$.
(Of course, we know that they are orthogonal, by [F. Theorem 6.11].)
2. Show explicitly that the first three Laguerre polynomials, $L_{0}^{\alpha}(x), L_{1}^{\alpha}(x), L_{2}^{\alpha}(x)$ (for $\alpha>-1$) are orthogonal in the space $L_{\omega}^{2}(0, \infty)$ with weight $\omega(x)=x^{\alpha} e^{-x}$.
(Of course, we know that they are orthogonal, by [F. Theorem 6.15].)
3. (Related to wave function of the hydrogen atom.)

Consider a radially symmetric function $v(x)=v(r)$ that solves:

$$
v_{r r}+\frac{a}{r} v_{r}+\frac{b}{r} v=\lambda v
$$

where $\lambda>0$ and a and b are some constants.
(a) Define $w(r)=e^{\beta r} v(r)$ with $\beta=\sqrt{\lambda}$. Find the equation satisfied by w.
(b) Define $y(x)=w(r)$ where $x=c r$, i.e. $y(c r)=w(r)$. Find the equation satisfied by $y(x)$.
(c) Find the values of λ and c (in terms of a and b) such that y can be given by a Laguerre polynomial $L_{n}^{\alpha}(x)$.
(Hint: write down the equation of $y(x)$ and compare it with [F. p. 192, (6.47)].)
(d) Write down the final formula for the function v in terms of Laguerre polynomials L_{n}^{α}.

