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 T'HE HERBERT ELLSWORTH SLAUGHT MEMORIAL PAPERS

 The editorial committee is happy to present this, the first of the Slaught
 Memorial Papers. In view of the very great interest which Professor R. E. Langer
 has had in these Papers from their very inception, it is particularly fitting that

 he should be the author of the first of the series.

 At this time it may be appropriate to give a brief account of the origin of
 these Papers, and an indication of their purpose. This can perhaps best be done

 by quoting from the reports of two different committees of the Association. In
 the MONTHLY for February, 1940, there appears the report of a "committee to
 review the activities of the Mathematical Association of America." Along with

 other recommendations, this report, which was prepared by Professor Langer

 as chairman, suggested that the Association establish a series of expository
 pamphlets which might well take the form of a memorial to Professor Slaught.
 Subsequently, another committee was appointed, with Professor C. V. Newsom
 as chairman, to make specific recommendations for the establishment of such
 a series. The report of this committee appeared in the MONTHLY for February,
 1941.

 From the report of the "Langer Committee" we may quote as follows:

 "The encouragement and sponsorship of expository and critical writing is
 one of the objectives of the Association which enjoys the unanimous support of
 the members. There is a ready welcome and a general demand for more readable
 scholarly papers on all kinds of mathematical subjects from the classical to the
 modern, from the elementary to the advanced, on theory, on applications, on

 history, or on philosophy. In the past there have, of course, been the Carus

 monographs, and from time to time excellent papers in the MONTHLY. There

 seems, however, to be at the present little or no means for the ready publication
 of writings which in length are intermediate betwen the relatively few pages of
 a journal paper, and the relatively many pages of a complete monograph. Such
 papers, say in length between twenty and a hundred pages, could be profitably
 written on subjects in many categories, including among others, elementary
 introductory expositions of theories and their applications, more advanced

 expositions and interpretations of modern viewpoints and theories, philosophical
 essays and criticisms, broad historical accounts of important schools, or bio-
 graphical accounts of individuals."

 The report of the "Newsom Committee" said in part:
 "The principal conclusion reached by this investigation is that there is a

 widespread interest in additional expository writing of the type discussed in the
 report of the 'Langer Committee,' and that those who are now sponsoring series
 of expository monographs would welcome the creation of additional opportuni-
 ties for the publication of studies pertaining to mathematical subjects. In truth,
 the members of the committee have been impressed with the enthusiasm which
 has been displayed by those who have given opinions relative to the possibility

 iii
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 iv FOURIER' S SERIES

 of a new publication program sponsored by the Association. Syntheses of mod-

 ern investigations in many fields of mathematics seem to be wanted by college
 men who do not have an opportunity to follow developments in the mathe-
 matical literature. Instructors in our junior colleges and secondary schools who
 may have a limited preparation in mathematics are seeking easily accessible

 accounts of some of the older theories. Some correspondents have expressed the
 belief that there is an amazing dearth of readable mathematical material for
 college students who have studied little beyond the calculus. And finally, some
 have emphasized that the interest of the American public in mathematical at-

 tainments and methods needs to be cultivated; this interest is attested to by
 the recent wide sale of a few popular books upon mathematics."

 In accordance with the recommendations of the 'Newsom Committee," the

 Board of Governors authorized a series of expository pamphlets to be known
 as the "Herbert Ellsworth Slaught Memorial Papers." The long delay in the
 actual appearance of the first of these Papers was largely caused by the demands
 of the war which left little or no time for the writing of mathematical exposi-
 tions.

 The Slaught Memorial Papers are to be published in the form of supple-
 ments to the MONTHLY and, at least for the present, are being sent free to all
 subscribers. The success of this project will depend on the interest of mathe-_
 maticians generally and, more particularly, upon the co-operation of com-
 petent scholars who will be willing to devote sufficient effort to the difficult but
 worth-while task of writing elementary expositions of their respective fields of
 interest.

 The editorial committee through the undersigned will welcome suggestions
 from any interested persons and, in particular, will be glad to hear from pro-

 spective authors of expository articles which might be suitable for publication in
 this series.

 N. H. McCoy
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 FOURIER'S SERIES

 THE GENESIS AND EVOLUTION OF A THEORY

 R. E. LANGER

 PREFACE

 In choosing to present in this exposition some chapters from the theory of
 the representation of arbitrary functions in infinite series, I have done so in the
 belief that this subject has an unusually broad appeal. For in singular measure
 it serves both theoretical and practical ends. The pure analyst finds in it a wealth

 of structure and subtle inter-relationship, while the applied mathematician and
 the related scientist find in it, no less, a tool of almost endless flexibility and use.

 The simpler formal elements of the theory of trigonometrical infinite series
 are, it may be assumed, in some measure familiar to all who aspire to a level of
 mathematical attainment above the elementary one. Presentations of them in
 text-book form are common, and many of them eminently readable. It is not
 my purpose to duplicate any such expositions of fact and procedure, but rather
 to present here other matters less usually considered. These I have, in the main,
 centered about two focal theses, namely first, a sort of case history of the incep-
 tion of the theory and its development to the stage attained by Fourier, and
 second, a generalization of the theory in which the trigonometrical form of it is
 subordinated to the status of a mere special case.

 In its modern form the theory of Fourier's series and its applications to prob-
 lems of physics admit of presentation in a direct and logical manner that is, on
 the whole, strikingly economical in design. The reasoning is straight-forward and
 to the point, and has at almost every turn an aspect of complete inevitability.
 The trigonometric formulas invariably appear to fit the needs at issue with such
 precision and neatness as could not have been more so had they been specifically

 tailored to the purpose. So completely is this true, that it seems no far cry to
 the suggestion that the whole structure might be the creation of some single
 master architect, who, in his genius, could draw to hand the exact and unerring
 means for an orderly and consummate unfolding of all the whole essential
 machinery of thought and analysis. Of erstwhile possible deficiencies, no trace
 is left revealed.

 Well developed mathematical tbeories are prone to seem like tbat, and in the
 deceptiveness of this there is weakness as well as strength. The craftsman, whose
 concern with the theory is motivated by the mere search for a tool, naturally has
 small interest in the cruder forms of it that are now obsolete. For the student
 whose concern is with ideas no less than with facts, on the other hand, the too
 finished result is often concealing as well as revealing. The confusion of germinal
 ideas, the labor and stumbling of the early advance, the frustrations in imprecise
 notions-all these are matters which for a speedy mastery of the facts are well

 1
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 2 FOURIER S SERIES

 left aside. But precisely in these as in none other are to be discerned the creative
 imagination, the initial inductions and the logical strategy by which the final re-
 sult was shaped. When, as in the present instance, the ingenuity and the tech-
 nical exploits which gave the impetus and direction were those of such' masters
 as the Bernoullis, Euler, d'Alembert, Lagrange and Fourier, it need hardly be
 feared that a review of the course of the developments will prove to be an unre-
 warding venture. In the growth of mathematics, much more than in its refined
 and polished results, is its living character evidenced.

 Generalization is the medium through which the mathematician constantly
 seeks the enlargement of his conceptions and understanding. The vista revealed
 by an extant theory may be broad, but it is broadened further by generalization.
 And from the more expansive viewpoint the scene may be revealed not only
 more amply but also more distinctly. A greater simplicity in the intrinsic plan
 may be discernible, for many features originally judged to be quite essential may
 be shown, on the contrary, to be in fact merely incidental or fortuitous. This is
 quite the case with the Fourier theory. Its dependence upon the trigonometric
 formulas of combination is so conspicuous as to seem to be the very essence of
 it. And if in the related theories of representations in series of Bessel functions or
 Legendre polynomials etc. other combination formulas are basic, 'these in turn
 generally seem, if anything, even more specialized. A true generalization, from
 which the Fourier theory may be drawn forth as a special case, is the theory of
 ordinary differential boundary problems in which the fundamental interval of
 the variable is one upon which the differential equation is without singular
 points.

 The discussion which I have given here is intended to serve these two pur-
 poses. In the first part the theme is historical. It centers about the incipience
 and the classical development of the theory, and is in fact a digest of some works
 by different masters through which conspicuous advances were made. This
 comes to its terminus with the discussion of Fourier's deductions, and therewith
 the historical thread is definitively dropped. In the'second part, which is de-
 voted to the generalization, the purpose is purely expository. The material is
 there set forth in as elementary a manner as I found possible, not with the gen-
 erality in which it exists in the literature, but with such generality as seemed to
 be adequate to the display of its essential character. The fact that this larger
 theory embraces that of Fourier, and the manner in which it does so, is shown at
 appropriate points by drawing the trigonometric formulas forth as specializa-
 tions obtainable without any peculiar implementations from the more general
 relationships derived.

 I believe that in the main the paper will be readable for students who in
 mathematics have gone but little beyond a good course in the calculus. The
 simplest facts about infinite series and differential equations, the formulas for
 the trigonometric functions in terms of exponentials, and such, have been as-
 sumed. Beyond that all pertinent deductions have been included until the clos-
 ing chapters are reached. Incidental material has, in part, been relegated to
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 PREFACE 3

 appendices. In the final chapters the elementary theory of functions of a com-
 plex variable, and in particular the theory of residues is a requisite.

 In taking material from the literature, especially in the earlier parts of the
 paper, I have felt under no obligation to hold to the letter of the originals. The
 excerpts are, therefore, distinctly not to be regarded as facsimiles or verbatim

 reports. Although it was my intention to preserve the spirit, many formal
 changes were made, in part to bring the contributions from diverse sources under
 a consistent scheme of notation, but also in part to eliminate discursive material
 and to avail myself of such advantages as the presentation to modern readers
 might afford. The sources in the literature from which excerpts were made, or at

 which more extensive deductions may be found, have been indicated in the text,
 and are listed at the end of the paper. I have, however, made no attempt whatso-
 ever to be complete in this matter.
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 PART I

 CHAPTER 1

 Introduction. It is perhaps true that few mathematical doctrines are built
 around facts which on first acquaintance seem so surprising as those of the infi-
 nite trigonometric series. That some such series represent functions is obvious.

 Simple examples are easily constructible in any abundance. How broad or how

 deep the adaptability of these series for functional representation may be, is, on
 the other hand, far from easy to see. The terms of the series are but elementary
 functions of a very simple type-the sines and cosines of the multiples of an

 angle. The theory of power series does not promise much by analogy, since those
 series can represent only such functions as have all the regularity which unlim-
 ited differentiability assures. It might well be expected, therefore, that the prop-

 erty of trigonometric representability attaches only to the functions of a quite
 restricted class. Historically that was the opinion which originally held sway,
 and which was very generally maintained. It was, in fact, so long maintained
 and so tenaciously, even by the greatest of mathematical masters, and in the
 face of most insistent evidence to the contrary, that the final breach with it took
 on quite definitely the character of an emancipation.

 The concept of the function lies at the very heart of mathematical analysis.
 As it is now currently accepted it is a notion of very great breadth, covering very
 general interdependencies of variables upon each other. During the eighteenth

 century this concept was not only much more restricted, but precisely what its
 content and delimitations were had not yet been brought to any complete or
 clear formulation. Imprecise notions rarely fail to breed confusion, and in this
 respect the functional notion of that time was in no way an exception. It was
 differently conceived by different investigators. And these latter then disagreed
 among each other because unconsciously they talked at cross purposes. The
 written words flowing from different pens had different meanings. While, for
 instance, the function and the analytic formula were one to d'Alembert, the func-
 tion was thought of as a graph by Euler, and probably meant something else
 again to still another.

 The basis of the functional notion was originally drawn, of course, from ob-
 servations upon concrete examples-in the main from such functions as we
 now designate as of elementary type, such as present themselves in the simpler
 applications of mathematics to the problems of physics. Such functions are al-
 most invariably expressible by formulas. They generally have comparatively
 simple, orderly, and continuous graphs, and the identity of any two of them is
 restricted to isolated values of the variable. Inasmuch as this category includes
 no examples of distinct functions whose graphs have an entire arc in common,
 it was no more than natural then to consider tha't generally the course of a func-
 tion over any interval was determinative and completely identifying, so that the
 graph over its entire range of definition was to be thought of as unambiguously
 fixed. Functional relationships such as are now commonly dealt with, in which

 4
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 INTRODUCTION 5

 the variables are related by different laws in different parts of an interval, were
 not thought of then as subsumed in any single function at all, but were regarded
 rather as a composite of a plurality of functional fragments. The possibility of
 representing such a conglomerate by a single formula was not even conceived of.

 The eighteenth century stands out in mathematical history as an era of great
 genius. Through the work of an astonishing array of masters the science was ex-
 tended and broadened by the opening of many new fields. Technical skill at-
 tained to extraordinarily high levels and new ideas were crowded one upon the
 other. And yet through this period the facts of the trigonometric series withheld
 themselves. Euler, d'Alembert, Lagrange and others walked upon the very edge
 of them without falling upon them. A more conspicuous example of the confining
 effects of preconceptions is hardly to be found. The break with all this remained
 to become the accomplishment of the next century, the personal achievement

 of Fourier. Once the step to a broader conception of the function had been made,
 the results of computations upon trigonometric series could be given a much

 more inclusive interpretation. As is now generally familiar, such series may rep-
 resent functions which are not only discontinuous, but which may be quite
 arbitrary in the sense that over different portions of the interval they may ac-
 cord with laws that need have no logical relation with each other. Computations
 upon even a few of the initial terms of the series often reveal these facts quite
 clearly.

 As Fourier announced his famous theorem it was to the following effect:
 Any single-valued function f(x) defined over an interval -l <x <l, is repre-

 sentable over this interval by a series of sines and cosines in the manner

 ao co k7rx k7rx1
 (1.1l) f(x) =- + E ak cos -+ bsin s ]. 2 k=1L11

 In this representaion the coefficients are those which are computable from the func-
 tion f(x) by the formulas

 1 ('' kirs
 ak =-J f(s) cos ds,

 (1.2) 1 -I s
 1 J 1k7rs

 bk= f(s) sin ds.

 If the interval over which the representation is to maintain is only 0 <x <1, then
 either sines or cosines alone suffice, the series being in the one case

 00 kirx
 (1.3) f(x) = Zbk sin

 k=1 1

 with the coefficients

 2 C' krs
 (1.4) bk J f(s) sin ds,
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 6 FOURIER S SERIES

 and in the other case

 ao c kirx
 (1 . 5) f(x) =- + E ak COS

 2 k=1

 with the coefficients

 2 r' kirs
 (1.6) ak-- f(s) cosds.

 This theorem, in this utter generality, is now known, of course, to be not
 strictly true, even with the modern notion of the term function. The restrictions
 which must be applied are, however, in no way gross. They are, on the contrary,
 so subtle that in the pursuit of them much further clarification of analytic
 notions was achieved. The r6le which the trigonometric series have played in the
 development of precise conceptions is, on these many accounts, one of unusual
 interest to the student of the evolution of mathematical ideas. [1]

 CHAPTER 2

 Of mathematical applications to physics. By the time of the year 1725, a
 decade after the death of Leibniz and near the close of Newton's life, familiarity
 with the formal processes of the calculus had become widely disseminated, and
 facility in the use of these new techniques had been developed to a very sub-
 stantial degree. In particular their effectiveness as instruments for the treatment
 of problems in mechanics had been generally recognized. This science was,
 therefore, under assiduous study. The more immediate of its problems-in the
 main those centering themselves around the motions of single mass particles-
 had already been pretty effectively brought to their solutions. The forefront of
 interest had, therefore, already been pushed beyond them to matters of greater
 complexity, such as presented themselves in connection with the motions of
 bodies with several or many degrees of freedom, or even with the reactions of
 flexible continuous mass distributions. Problems in the vibrations of elastic
 bodies in particular had begun to receive attention, and in the ensuing period
 these were to preoccupy an increasing number of investigators. The scientific
 literature of the following half century is, therefore, heavily interspersed with
 memoirs bearing upon this field. One may readily conjecture that the prob-
 lems to be found there must have seemed almost endless in their abundance
 and variety. They must, moreover, have exerted a very strong fascination,
 if for no other reason, then because of the evident suggestion that in them lay
 an important key to an analytic mastery over the manifestations of nature.

 Any review of the activities of the time show this to have been so. Important
 and difficult works were produced in great variety-among them, to name a few,
 investigations upon the oscillations of plates in vacuum or immersed in fluids,
 upon rods suspended from fixed or flexible mountings, upon jointed pendulums,
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 MATHEMATICAL APPLICATIONS TO PHYSICS 7

 upon heavy dangling chains etc. etc. But among all these the researches upon the
 motions of tautly stretched elastic strings or wires were to be especially sig-

 nificant. Though these were perhaps of no greater mechanical importance than

 the discussion of many another problem, they did contemporaneously assume a

 quite disproportionate prominence, and they still do so in retrospect. They be-

 came, namely, a conspicuous point of impact for many divergent conceptions

 and opinions, and in the r6le thereby thrust upon them they became crucial
 to the development not only of mechanics but of mathematics over a much

 wider range. Inasmuch as the ideas at issue are in large measure our essential
 concern in this discussion, we shall have to give a considerable modicum of our

 attention to this problem of the string in subsequent pages.
 From the very start of investigations upon them it seems to have been as-

 sumed that continuous material bodies could, for the purposes of analysis, be

 approximated by systems of discrete mass particles. The conception of an ex-
 tensive body as composed of particles is a very natural one. Quite apart from
 whether this viewpoint was intended in the end to be philosophically maintained
 or not, it was apparently seen to suggest more strongly than any other a prac-
 ticable mode of procedure. It requires no vivid imagination to picture the dis-

 crete system as merging into the continuous one as the size of the individual
 particles is diminished indefinitely while their number and density is correspond-
 ingly increased. If in the analysis of a finite approximating system the formulas

 can be so framed and dealt with that results are deducible from them without
 any actual specification of the number of the particles that are involved, then
 this number, retaining its generality, may be assumed to figure in the results in
 the way of a free parameter. This parameter may then logically be made the
 crux of limiting considerations, and through this means the physical transition
 from the discrete to the continuous configuration may be thought of as imple-
 mented mathematically by a passage from the finite to the infinite.

 It may well be recognized that success in the execution of any such subtle

 program as this would be contingent both upon superior insight and a high
 level of technical skill on the part of the investigator. Such is the case, no less,

 with almost any application of mathematics to a phenomenon of nature. The
 actual responses of physical bodies to ponderable influences are invariably of a
 discouraging degree of complexity, and this is generally due much less to the
 influences that are primarily under scrutiny than to the many others that are
 inevitable and yet really incidental and effectively irrelevant. Were complete
 recognition to be given to all these latter, the formulation of a natural problem
 would, almost without exception, be quite submerged in intricacies of detail. On
 the physical side the fortuitous distracting features might well obscure the
 salient ones, and mathematically they might well throw the problem far beyond
 the range of possible solution.

 At the very outset, therefore, it is usual and necessary to regard the physical
 configuration not as it actually is, but as it might be were it to be disencumbered
 of all but its primarily intrinsic features. The result of this is at once a simplifi-
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 8 FOURIER S SERIES

 cation and an idealization. It is this which is made the subject of analysis. The
 idealization is, of course, a departure from the physical reality, and this fact is

 certainly of no secondary importance. The original problem having been re-
 placed by another, no immediate guarantee exists, of course, that results de-

 rived for the latter have a sufficient relevancy or applicability to the former. It
 is evident that with too great a divergence from the original all practical purpose

 would thus be defeated.
 This is the consideration which checks the extent to which idealizing ab-

 stractions may be made. In determining upon these a fine sense of values and a
 depth of understanding are the indispensable guides. Whether in any case the
 permissible bounds were exceeded or not, must in the end ordinarily be decided
 after the fact by experiment. The applicability of the mathematically deduced
 theory stands or falls according as at strategic points its results agree or disagree
 with the data of observations. The decision, either way, implies no reflection

 whatever upon the theory's logical soundness. Its implications bear only upon
 the legitimacy of the simplifications which were made in the determination of
 its basis, namely upon the insight with which suitability and adequacy in the
 initial idealizing approximations were sensed.

 CHAPTER 3

 The loaded string. A natural phenomenon that is universally familiar and
 frequently observable in our surroundings, and to which, despite this, the atten-
 tion is often sharply drawn, is that of the behavior of a stretched elastic string or
 wire in its response to a displacement from its state of equilibrium. In many cases
 this response is acoustically conspicuous, ranging from the hum of the heavy
 structural wire in the wind to the eloquent notes of the strings of a musical in-
 strument. And then again, not rarely, the response is visually noticeable, being
 sometimes marked by so curious a feature as the presence of nodal points that
 maintain the state of rest while the string between them is in violent agitation.

 The elastic string thus almost obtrudes itself upon the notice of the experi-
 menter, and, having drawn his attention, recommends itself in many ways. Its
 geometrical configuration is of the simplest sort, permitting the identification of
 any of its points by a single dimension. Its motions are, under many circum-
 stances, markedly regular, and respond promptly and prominently to adjust
 themselves to any quantitative modifications in the length, the tension, the
 weight or the initial state. It can hardly be looked upon as surprising, in virtue
 of all this, that the string should have been drawn under analysis at as early a
 time in the development of mechanics as that science became capable of dealing
 with continuous flexible bodies.

 The finite discrete system of particles that most naturally approximates the
 continuous material string is suggested by the string of beads. More precisely,
 it is to be conceived of as comprised of any number n of equal concentrated mass
 particles, that are mounted respectively at equally spaced points along a string
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 THE LOADED STRING 9

 which is itself weightless, though strong, perfectly flexible, and elastic. Such

 "loaded strings" were used as the conceptual bases of a variety of significant
 investigations. Euler and Daniel Bernoulli based upon them, in 1732 or 1733,

 studies of the motions of heavy dangling chains, and Euler, among other things,
 regarding the particles as oscillating longitudinally, built upon them in 1746

 a theory of sound. [2 ] Mechanically simpler and chronologically even earlier than
 these researches, were certain investigations of John Bernoulli upon the trans-
 verse vibrations of a string with its end points fixed. We find in a consideration
 of this problem a convenient point of departure for our present discussion.

 Consider, therefore, a loaded string such as has been described, with loading
 particles having a total mass M. Let this string be thought of as held taut under
 a tension T, the magnitude of this being so large that the ratio M/T is negligible.
 This last stipulation amounts, of course, to an idealization. Substantially its

 purpose is to discount the effects of gravity, and thus to concentrate the con-
 siderations upon those forces which spring from the tension alone. The diver-

 gence from physical actuality which this simplifying hypothesis sanctions is in
 many important instances of a very small amount. In the case of musical
 strings, for example, the ratio M/T which is to be ignored is quite commonly of
 a magnitude no greater than one one-thousandth.

 The initial state of the string in question is to be one of displacement from its
 equilibrium position, the forces which hold it in this state being coplanar and
 directed perpendicularly to the line through the string's fixed end points. The
 particles of the string thus lie along some plane curve. We shall choose the plane
 of this curve as the (x, y) plane, and shall take the x-axis through the string's end
 points with the origin at one of them. Under the hypotheses made, and in this
 system of reference, the x-axis then marks the string's equilibrium position.

 With I designating the length of the string, with xo =0 its initial end, and with
 x1, x2, * * *, x. the equilibrium abscissas of the particles, the formulas for these
 are to be

 Xk=k-k k=0,1,2, ,n.
 n

 It will be noted that in this assignment one of the particles is allocated to be
 mounted at the point xn = I which is the terminal end of the string. The motiva-
 tion for adopting this arrangement, which may well seem a bit curious, is not
 by any means profound. It is merely one having some formal advantages, since,
 as can be shown, it leads to somewhat simpler formulas. The r6le of the nth
 particle under these circumstances is, of course, an entirely passive one since the
 particle is constrained from all motion.

 In the accompanying figure three adjacent particles and the tensions operat-
 ing between them are schematically indicated. The position shown is one of
 displacement from the equilibrium, and the particle which in the latter state is
 located at the point (Xk, 0) is here shown to ha-ve the coqrdinates (xt, Yk). Simple
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 10 FOURIER 'S SERIES

 mechanical considerations based upon this figure readily lead to usable results,
 as we now propose to show.

 Tk+I

 xXI I
 IYk..,I

 Xk- Xk Xk+ I

 The segment of the string which joins the (k - 1)th and the kth particles is,
 as is clear from the figure, of the length (x' -Xkf') sec ak. In the state of equi-
 librium this segment would be of the length i/n, and since, by the laws of elas-
 ticity, the respective lengths are to each other as the tensions, it must be con-
 cluded that

 (xk - xk_) sec ak: = Tk: T,
 n

 or

 (3. 1) (xk - xk1)Tn = ITk cos ak.

 Now the forces by which the particles are initially held displaced are by
 hypothesis in the direction of the y-axis. The tensions in the string segments
 which balance them must, therefore, have x-components which annul each
 other in pairs, namely they must be such that

 (3.2) Tk cos ak = Tk+l cos ak+1, k = 1, 2, ., (n- 1)-

 Since the right-hand members of the equations (3.1) are thus all equal, this
 equality must extend to the left-hand members as well. The differences
 (xk' -xk-') therefore have a common value, and since their sum is the length
 of the string this value is evidently i/n. It follows that for each k the relation
 Xk= Xk maintains, namely that each particle has when displaced the same
 abscissa as in equilibrium. The measures of the displacements are thus simply
 the ordinates yk, and the relations (3.1) reduce to the forms

 (3.3) Tk cos ak = T, k = 1, 2, ... , (n-1).

 From the initial position which has been described the string is now to be
 thought of as released, while in the state of rest, at an instant which is to be taken
 as the origin of time, t = 0. The motion into which the kth particle springs is,
 of course, then governed by Newton's law
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 THE LOADED STRING 11

 M dY = Fk,
 n dt2

 the force Fk acting upon it being shown by the figure to have the value

 Fk = Tk+1 sin ak+ - Tk sin ak.

 By virtue of the relations (3.3) this formula is alternatively expressible as

 Fk = T(tan ak+1 - tan ak),

 and in terms of the coordinates this is

 Fk T(Yk+l -Yk) - (yk - yk-1)
 Ek = T[(L - '(I/n)

 Hence if the constant a2 is defined by the relation

 IT
 (3.4) a2= M

 the equations of motion are

 (5) ~~d2yk _ na\2
 (3.5) dt2 Y) [yk+1 - 2yk + ykl1], k =1, 2,* *, (n-1).

 In many respects the simplest modes of vibration which the string is capable
 of are those in which the ordinates yk maintain constant ratios to each other.
 In these so-called -normal vibrations all particles of the string traverse their
 positions of equilibrium in synchronism, and their displacements are expressible
 as functions of the time by formulas of the type

 (3.6) yk(t) = Uk4(t), k = 0, 1, 2, n,

 in which the coefficients uk are constants, with uo = 0, u1, = 0, and + (t) is common
 to them all. The fact that the motion originates from the state of rest is then ex-
 pressed by the relation 4/(0) = 0.

 Now the substitution of the forms (3.6) into the equations (3.5) gives to
 these latter the aspect

 (72
 uk4" (t) = - [uk+l - 2Uk + Ukl1]+(t)*

 From this it is clear that the second derivative +"(t) stands in a constant ratio
 to the function ?(t) itself, namely that

 (3.7) d2(t) -C20(t), &'(0) = 0,

 the constant c being one for which the relations
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 12 FOURIER S SERIES

 ,cl\2
 lAk+1 -2uk + "ok-1 =-(- k = 1, 2,*(,

 na

 together with uo = 0, u. = 0 maintain. In terms of the coefficient q given by the
 formula

 /cl2
 (3.8) q = (-)-2,

 \na

 the values uk must thus be solutions of the algebraic system of equations

 UO = 0,

 (3.9) Uk+1 + qUk + Uk-1 = 0, k = 1, 2,***,(n-1),

 Vn = 0.

 This system is neatly solvable (c.f. appendix I) having a non-trivial solution
 when and only when the coefficient q has one of the set of characteristic values

 ql, q2, * * , q.-i, given by the formulas (I.5). The values of c which respectively
 correspond to these under the relation (3.8) are those of the set

 2nta P7r
 (3.10) c= sin2 V v =1,2, i t(n-1),

 1 2nt

 and the solution U^, of the system (3.9) which exists for the value c, is obtain-
 able from the formulas (I.6). It is

 kv7r
 u;k=A,sin- k ==0;1,2,* ,n,

 n

 with A,, designating any constant. Since when c = c, the equations (3.7) are solved
 by the function

 +t = cos (cut),

 or by a constant multiple of this, it may be drawn from the relations (3.6) that
 the ordinates in any normal vibration of the loaded string must accord with the
 formulas

 kvPr /2ant v7r\
 (3.11) yc(t) = A, sin- cos sin , k = 0,1,2,*,n.

 n 1 2n/

 A loaded string carrying n particles is thus seen to be capable of sustaining
 (n-1) distinct motions of the normal type, these being given by the formulas
 (3.11) in correspondence with the indices v = 1, 2, * * * , (n-1).

 Under assumptions that were somewhat more restrictive than those which
 we have here imposed, these normal vibrations were considered by John Ber-
 noulli as early as the year 1728 in the cases of loaded strings in which particles
 up to eight in number were involved. [3]
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 EQUATIONS OF MOTION FOR THE CONTINUOUS STRING 13

 CHAPTER 4

 The equations of motion for the continuous string. When the differential

 equations (3.5) for the motions of the loaded string of n particles have once been
 deduced, two alternative modes of procedure for utilizing them toward the

 ultimate purpose of an analysis of the vibrations of a continuous string sug-

 gest themselves. On the one hand the equations may be integrated, as has

 already been done in the preceding chapter, and the resulting finite equations
 (3.11) may then be subjected to the limiting process in which the number
 n is indefinitely increased. On the other hand this limiting process may be ap-
 plied directly to the system of equations (3.5) itself, and the integration of the

 result may then subsequently be undertaken. Both of these procedures were

 carried out in the first half of the eighteenth century. As we shall see, their
 results are of quite dissimilar aspects. Indeed they seemed to the men of the
 time to be no less than contradictory, to the extent that the proponents of

 either method saw no alternative but to reject the other. That no real dilemma
 was actually involved therein at all, came to its realization only half a century
 or more later. The clarifications of ideas by which the way out of the quandary
 was ultimately found are of especial interest to us here. We propose, therefore,

 to pursue the analysis of the two mentioned procedures to such points, at least,
 as afford some surveys of their conclusions.

 Returning then, to begin with, to the equations (3.11), let any positive
 integer v be chosen. Once chosen, v is to be regarded as fixed. A loaded string
 with particles in number greater than v, (n>v), may then be thought of, and
 for the normal motions of such a string the equations (3.11) are derivable. Let
 the attention then be fixed upon any one of the particles of this string, and let

 its abscissa and ordinate be designated by x and y(t, x). If this particle, in the

 enumeration that was adopted, is the kth one, the equalities

 1
 (4.1) x = k-) y(t, x) = yk(t),

 n

 evidently maintain. The respective kth equation of the set (3.11) may then be
 written in the manner

 v7rx F v7ratt
 (4.2) y(t, x) = A, sin cos an-,

 with the significance of OVn given by the formula

 sin (iJ

 (2s) (4. 3) oYn =
 VI7r
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 14 FOURIER S SERIES

 Suppose now that the parameters n and k are increased, and indefinitely so,
 in any way such that the ratio k/n remains fixed. The point x then clearly re-
 mains invariant, and inasmuch as the formula (4.3) familiarly shows that the
 value An approaches the limit 1 it follows that the relation (4.2) passes, as
 n-+> oo, into the limiting form

 v7rx wrat
 (4.4) y(t, x) = A, sin - cos

 This result is now evidently to be accepted as a formula applicable to the con-
 tinuous string and representing a normal vibration of it. Inasmuch as the integer
 v was initially open to an arbitrary choice, the inference that infinitely many
 such normal motions are possible and that they are given by the formulas (4.4)
 in conjunction with the indices v= 1, 2, 3, - - - is inevitable.

 The simplest of the normal vibrations, namely that described by the formula
 (4.4) with v= 1 was deduced by Brook Taylor at as early a date as 1713. [4] In
 this motion the string vibrates without nodes and emits its fundamental tone.
 The existence of other normal motions, namely those associated by the formula
 (4.4) with other values of v and in which the string emits its various over-tones,
 were known later to Daniel Bernoulli. We shall have occasion to return to this
 matter again.

 The alternative procedure, to which we now turn, is associated most prom-
 inently with the names of d'Alembert and Euler. With the notational changes
 (4.1) and with the definition of Ax by the formula Ax = l/n, the kth one of the
 equations (3.5) may evidently be written in the form

 (25y (t, x) y(t, X + Ax) - 2y(t, x) + y(t, x - Ax)]

 (4. 5) a2L ~~3t2 ~~~~(AX)2

 Now whenever the function y(t, x) is one which is twice differentiable as to x,
 its second partial derivative with respect to x is obtainable as the limit of the
 difference quotient within brackets on the right of the equality (4.5) as Ax-?0,
 namely as n-? o. Basing himself upon this observation d'Alembert deduced in
 1747 the partial differential equation

 __2______ ) 092 y(t, x)
 (4.6) y(, x) _a2

 dt2 9x2

 for the motion of the continuous string. This result is of course still a standard.

 A solution of it, if it is to represent the ordinates of a string that is fastened
 at its end points upon the x-axis and that springs into motion at the time t = 0
 from the state of rest and from the position of a curve y =f(x), must, of course,
 also fulfill the conditions
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 EQUATIONS OF MOTION FOR THE CONTINUOUS STRING 15

 y(t, O) = 0,

 y(t, I) = O,

 (47) dy(t, x)] =0
 at t=O

 y(O, x) = f(x).

 The problem as thus formulated was solved by d'Alembert through the following
 ingenious use of familiar formulas from the calculus. [5]

 In terms of the abbreviations

 dy d y
 (4.8) ayt P' d

 the differential equation (4.6) is expressible in the form

 dq 1 dp

 ox a2 dt

 whereas it is familiar that generally

 Oq dp

 at Ox

 By the use of these relations the standard formula

 dq dq
 dq = - dt + - dx,

 Ot Ox

 may, however, be written thus

 Op I Op
 dq = -dt+- dx.

 dx a2 at

 From this together with the companion formula

 dp op
 dp= - dt + - dx,

 at Ox

 it may be seen at once that

 \a L a Ox a2 Ot(
 (4.9) - -I a-iI Op

 \a / a Ox a2 atJ

 Consider the first one of these equations. The quantity (p/a+q) is a function
 of t and x. These variables are in turn determinable from the combinations
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 16 FOURIER S SERIES

 (at+x) and (at-x). It follows from this that it is permissible to regard the
 quantity as a function of the variables (at +x) and (at -x), and that accordingly
 its differential is given by the formula

 a(-L+q) ) d-+tq)

 d a )q d(at + x) (t + x) + a (at - ) d)(at-x).
 But by the evaluation (4.9) this differential includes no term in d(at-x). The
 coefficient of this term must, therefore, be zero, namely

 /p \q
 a )

 = 0.
 d(at - x)

 T'his, however, is in effect the assertion that the quantity (p/a+q) does not de-
 pend upon the variable (at-x) but is a function of the remaining variable
 (at+x) alone. A similar chain of reasoning shows that the quantity (p/a-q) is
 a function of the variable (at -x) alone, namely that with appropriate functions

 designated by 4 and V/,
 p
 -+q= p(at+x),
 a

 p_
 _ q = VI (at - x).
 a

 If these relations are now multiplied respectively by the factors (adt+dx)/2
 and (adt-dx)/2 and are then added, the result on the left of the equality is
 pdt+q dx, which is identified as dy. Thus

 dy = .10(at + x)d(at + x) + !&(at - x)d(at - x).
 In this formula each term is an exact differential. An integration is, therefore,
 possible and shows that

 (4.10) y(t, x) = 14(at + x) + -'J(at -x),
 the functions b and T being indefinite integrals of 4 and Vt respectively. With
 the attainment of the result (4.10) d'Alembert had deduced the fact that every
 solution of the partial differential equation (4.6) is of necessity expressible as the
 sum of a function of the variable (at+x) and a function of the variable (at-x).
 It is a simple matter to show conversely, by direct substitution, that if 4 and T
 are any suitably differentiable functions, the formula (4.10) does in fact give a
 solution of the differential equation.

 To apply to the particular case of the vibrating string the solution (4.10)
 must furthermore conform to the conditions (4.7). Of these the first one, which
 when applied to the relation (4.10) assumes the form
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 THE D 'ALEMBERT-EULER-BERNOULLI CONTROVERSY 17

 24(at) + j(at) = 0,

 shows that the function 1 must be identical with - (. That being so the second
 condition takes the form

 (4. 11) b~~~Lf~(at + 1) (D 2(at -1),

 and since this is to be an identity in t it shows that the function 4 must be pe-
 riodic with the span 21 as a period. The third condition (4.7) reduces to the re-
 lation

 4/(x) = 4/(- x).

 Upon an integration this becomes

 (4.12) =(x) - -x),

 and thus characterizes ( to be an odd function. The last condition, which must
 maintain over the string's length, reduces then to the relation

 (4.13) D(x) =f(x), 0 < x <.

 In total it is to be concluded, therefore, that for the vibrating string

 (4. 14) y(t, x) = 4(at + x) - ((at -x),

 every motion of the string being so representable with an appropriate function
 4'. In the instance of any particular motion, in which the curve from which the
 string is released is y =f(x), the function 4' that is concerned is determined over
 the interval (0,1) by the relation (4.13) and is defined for all other arguments by
 its character of being odd and periodic.

 CHAPTER 5

 The d'Alembert-Euler-Bernoulli controversy. [6] The method of d'Alembert
 in his analysis-of the problem of the vibrating string was also the method chosen
 by Euler. Superficially, therefore, the initial memoirs of these masters, written,
 as they were at short intervals of each other, differed mainly in their details. In
 their over-all aspect they resembled each other markedly, at least insofar as their
 formal features were concerned. Only below the surface did the lines of thought
 show themselves to be divergent, as sharply so, at points, as were the two men
 in the characters of their genius. Euler's temperament was an imaginative one.
 He looked for guidance in large measure to practical considerations and physical
 intuition, and combined with a phenomenal ingenuity an almost naive faith in
 the infallibility of mathematical formulas and the results of manipulations upon
 them. D'Alembert was a more critical mind, much less susceptible to conviction
 by formalisms. A personality of impeccable scientific integrity, he was never
 inclined to minimize short-comings that he recognized, be they in his own work
 or in that of others.
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 18 FOURIER S SERIES

 To Euler the solution of the problem of the string seemed definitive. Since
 any and every motion originating from the state of rest would necessarily stem
 from some initial shape of the string, and since he was willing to accept as the
 function f(x) any distribution of values consistent with such a shape physically
 realizable, he maintained the solution of d'Alembert and himself to be the com-
 pletely general one. The valuesf(x) involved in the formula (4.13) he regarded as
 appropriately subject, if necessary, to graphical definition. To such interpreta-
 tions d'Alembert took exception. He regarded the functional symbol as standing
 for an expression which could be constructed by the ordinary processes of alge-
 bra and the calculus from the independent variables. In having taken the ordi-
 nates of the string to be denotable in the form y(t, x), he believed that the results
 could apply only to such motions as might be characterized by the fact that in
 them the string shapes at any two instants ti and t2 are obtainable from one and
 the same formal expression y(t, x) by giving to t the respective values. He saw no
 reason to suppose that all possible motions conform to this. Furthermore, inas-
 much as the differential equation from which the solution emerges involves
 the derivative d2y/Ox2, he was unwilling to admit the applicability of the
 analysis to cases in which the function f(x) is not twice differentiable. Finally,
 because of the relation (4.13) he insisted upon restricting the solution to in-
 stances in which the function f(x) is periodic. That there might conceivably
 exist expressions 4(x) and f(x) yielding the same values over some specific
 interval but not persisting in this relationship for other values of the varia-
 ble, was believed by neither d'Alembert nor Euler nor by any of their contem-
 poraries.

 A difference between d'Alembert and Euler lay in the fact that whereas the
 former was inclined to look upon the concepts of the function and the analytic
 expression as synonymous, the latter would not hold to this. Euler saw no reason,
 for instance, to rule out the possibility of releasing a string from the position of
 a curve made up of circular arcs of different radii, provided these arcs joined
 with each other continuously and with a continuously turning tangent line. It is
 evident that Euler had advanced measurably to the conception of an arbitrary
 curve. It is understandable, however, that d'Alembert should have declined to
 acknowledge the legitimacy of admitting such curves into consideration where
 the operations of the calculus were to be employed.

 In 1755 a memoir of Daniel Bernoulli's upon the motions of the string
 turned the entire disagreement into new channels. Bernoulli, who had inter-
 ested himself in acoustics, had recognized the relation between the several
 normal vibrations and the respective overtones which the string could be made
 to emit. It was a generally recognized fact at the time that a musical string
 ordinarily responds with a combination of its fundamental and overtones. Ber-
 noulli had discovered that the motions involved in this do, in a very definite
 sense, retain their individuality-that in the entire motion the several normal
 vibrations are simply superposed upon each other. It was a relatively moderate
 step from this to the conception that all possible motions of a string are but
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 linear combinations of the normal vibrations, variations in the relative intensi-

 ties of the overtone components producing the observable differences in the
 timbre of the tone. In terms of symbols, and with the use of the formulas (4.4),
 this comes to its formulation in the assertion that every motion of the string is
 expressible in the form

 00 vrx v7rat
 (5.1) y(t, x) = A,sin cos

 v=1 I 1

 with appropriate constant coefficients A,.
 Neither Euler nor d'Alembert was inclined to accept this, and each made

 his rejoinder. Euler quickly recognized the fact that a motion representable in
 the form (5.1) would be one for which the initial ordinates have the values

 X0 vrx

 (5.2) EA.sin-
 P=1 I

 To assume that all motions are here involved would, he pointed out, come to the
 assertion that an arbitrary function f(x) could be represented by a series of the
 type (5.2). Since among other things any expression (5.2) is odd and periodic,
 it seemed to Euler that he had reduced Bernoulli's claim to a manifest absurdity.
 That Bernoulli's result gave solutions-special ones-he did not deny. He
 had, in fact, made that discovery on his own account some years earlier.

 D'Alembert, on his part, not only endorsed all of Euler's objections but went
 in fact well beyond them. He was unwilling to concede even that any and every

 odd and suitably periodic function could be represented by an expression (5.2),
 maintaining, in particular, that the function would need to be twice differentia-
 ble since that is so of all terms of the series. Bernoulli's analysis, and especially
 his passage from the finite case of the loaded string to the continuous one, had

 been at best sketchy and fragmentary. His opponents found much that could
 properly be rejected in that.

 On the whole the objections left Bernoulli unshaken. In replying to Euler's
 claim of absurdity he referred to the fact that any finite sum of m terms from

 the expression (5.2) could, by an appropriate determination of the coefficients,
 be made to coincide in value with any given function f(x) at any chosen set of
 points m in number. He saw no reason, therefore, for rejecting the possibility
 that the series (5.2), involving infinitely many coefficients as it does, might not
 coincide with an arbitrary function at an infinity of points. This viewpoint was
 indeed a worthy one. A development of it will concern us in the following chap-
 ter.

 The three cornered polemic spreads itself through the mathematical litera-
 ture over a period of more than a decade. Since no one of the contenders suc-
 ceeded in convincing another, the upshot of the matter at the time was negligible.
 Each of the disputants was in part right and in part wrong. Time has given the
 lion's share of its endorsements to Bernoulli.
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 20 FOURIER S SERIES

 CHAPTER 6

 Lagrange's solution of Bernoulli's problem in curve fitting. [7] The fact
 invoked by Bernoulli, that an arbitrarily given curve is representable at any
 finite set of abscissas by a suitable segment of a series (5.2), is one of considera-

 ble importance both from the theoretical and practical standpoints. It devolves,
 of course, upon the possibility of determining the coefficients ck in a formula

 n-1 k7rx

 k=l 1

 so that the curve here represented may pass through a prescribed set of points

 (xp, F.), v = 1, 2, , (n-1), the abscissas of which lie upon the interval (0, 1).
 Alternatively stated it comes to the fact that with an arbitrary assignment of

 constants F. the system of equations

 -i kirx,
 (6.1) sin F, v = 1, 2, * , (n - 1),

 k=l 1

 is solvable for the values Ck.

 The solution of any linear algebraic system of equations, and hence in par-
 ticular of this system, is, of course, possible by elementary procedures. Such a
 frontal attack upon it by the familiar method of determinants leads, however,

 through much tedious and protracted computation whenever the number of
 equations is large. The solution, moreover, is not likely to emerge from such
 manipulations in any neat or elegant form. At the very beginning of his career,
 while he was still in his early twenties, Lagrange concerned himself with this
 problem and gave solutions of it for both the cases in which the abscissas are
 equally and unequally spaced. It is the former of these which is of peculiar
 pertinence to our discussion, and although it appears in Lagrange's work inci-
 dentally to the wider investigation with which we shall be concerned in the
 next chapter, a self-contained exposition of it is possible and is to be given
 here. It is a prime merit of this solution that it shows clearly how it depends

 upon the number n of points involved, and that it is therefore excellently
 adapted to an investigation in which this number is ultimately to be variqd
 and to be allowed to become infinite.

 Let the abscissas x, be identified again thus

 vI
 (6.2) x;= V =0,1,2,.,n,

 n

 and let any one of the integers 1, 2, , (n-1) be chosen and designated j.
 If the equations (6.1) are multiplied by the respective constant of an unde-

 termined set Di,, and are then added, the result is the relation
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 n-1 n-1 krx, n-i
 Z Dj,,,Ck sin Di,Xv

 v=i k=i 1

 Since kxp = VXk this can be given the alternative form

 (6.3) Z cj(xk)ck = EDjvF
 k=1 v=1

 the function (D herein being defined by the formula

 n-1 virx

 (6.4) b(x) E Di, sin
 v=1 I

 Now each function sin (virx/l) in this relation is expressible as the product of
 sin (7rx/l) by a,polynomial of the degree (v-1) in cos (7rx/l) (cf. appendix II).
 The complete function bj may therefore be similarly expressed, namely thus

 7rx 7rx\

 (6.5) 4b(x) = sin Pn-2 cos2 ),

 with Pn_2 designating a polynomial of the degree (n -2). The coefficients of this

 polynomial depend, of course, upon the multipliers Dj,,, and these have not thus
 far been specified. It is proposed now to specify them so that the function

 4j(x) may be zero at each of the points Xk with the specific exception of xi,
 namely so that

 (6.6) bi(Xk) = O, k j.

 Assuming this to be possible, it is clear from the equation (6.5) that each one of
 the (n -2) values cos (7rx,/l), v oj must then be a root of P-n2, and that each
 corresponding difference (cos rx/l - cos rx,/l), must therefore be a factor.
 The factors are thus all accounted for, and with an appropriate constant oc the
 formula (6.5) may accordingly be written

 x nt-1 r x rxv\
 (6.7) Di(x) = asin T --c os COS ).

 I v=lwii I I

 As is shown by the formula (II.1), however, a relation

 n7rx 7rx 7rx\
 sin sin Pn- -si(pn-)

 also maintains, and since the left-hand member of this is zero at each point x,
 without exception, the function p-,1(cos irx/l) must admit as a factor each of
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 22 FOURIER S SERIES

 the differences (cos 7rx/l - cos irx,/l). The factors being thus again all accounted
 for, it follows that

 n7rx 7rx n1 / r XX xXw
 sn = sin os -Cos

 with / standing for some constant that is not zero. From this together with the
 evaluation (6.7) it appears that

 rx 7rxi ~ a wnrx
 (6.8) (cos g cos ( ) b(x) = sin-

 namely, because of the formula (6.4), that

 -n- 1 '7rX / X XX rxi\ a nrx
 E Di, sin -cos--cos - -sin 0.

 This equation may be reduced by the use of the familiar relation

 V7rx 7rx (v + l)rx 1 (v- )7rx
 sin cos = sin - +- sin
 I 1 2 1 2 1

 and by a rearrangement of its terms, to appear in the form

 (6.9) E [Dj,k+1 + qqDj,k + D,k-1] sin-+ [Di, -,-j sin = 0,

 the coefficient qj being specifically

 (6.10) q= -2 cos-,

 and Dj,o and Dj,n being zero.
 The equation (6.9) is identically fulfilled if the multipliers Dj,k satisfy the

 system

 Dj,o= 0,

 Dj,k+1 + qiDj,k + Dj,k-1_= 0, k = 1, 2, , (n - 1),

 Di, = 0,

 and furthermore
 2'

 Dj,,n_l

 This system is precisely that which is discussed in the appendix I, the coefficient
 (6.10) being that one of the values (I. 5) for which the system admits the solu-
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 LAGRANGE'S SOLUTION OF BERNOULLI S PROBLEM 23

 (I. 6) with v =j. The free coefficient Aj in this may be determined, more-
 over, to yield the value prescribed above for Dj1,1, and is thus found to have the
 value 2a// sin (n - 1)j7r/l, or because of the relations (6.2)

 2ae
 Ai= (-1) i+.

 sn7rxi

 The evaluation of the multipliers which thus results is

 .kirx1
 2a sin k-

 (6.11) Dj,k = (-l)i+l - ,
 O.7rxi

 1B sin

 and with these the equation (6.3) reduces by virtue of the values (6.6) to the
 form

 n-i

 (6. 12) c1j(xj)cj = ED ij
 '=1

 It only remains, therefore, to determine the value of 1j(x1), and this may be
 done as follows. The formula for 4j(x), as it is given by the equation (6.8), is
 indeterminate at x =x;. By an application of l'Hospital's rule, however, its
 limiting value is found to be

 n7rx1
 na os

 7rxi
 - sin-

 namely because of the definitions (6.2),

 nfo

 = (-) 1) j+1
 Srxi 13 sin

 This result, together with the evaluations (6.11), causes a final reduction of the
 relation (6.12) to the form

 2 n-1 virx;
 (6.13) c;--ZF,sin

 n ,==i I

 and therewith the coefficients in the equations (6.1) have been determined.
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 CHAPTER 7

 Lagrange and the vibrating string. [8] In the controversy over the problem
 of the vibrating string Lagrange was inclined on the whole to enlist himself
 upon the side of Euler. To support himself in this position he undertook to re-
 examine afresh the behavior of the weightless loaded string with an unspecified
 number of particles, his explicit purpose being to elicit from this a proof that in

 the case of the continuous string no restrictions upon the shape of the curve
 marking the initial position are requisite. His method in this has become a
 standard one. As do the deductions of the preceding chapter, it hinges primarily
 upon an introduction of undetermined multipliers. By this means he carried
 through, as we shall see, a general integration of the differential equations for
 the string's motion, and thus displayed in terms of explicit formulas the de-
 pendence of the string's position at any instant upon its initial shape.

 The differential equations for the particles of the loaded string of the length I
 under the tension T, with n particles of total mass M located respectively at the
 points

 kl
 (7.1) Xk = - (k = 1, 2,* *,(n-1)

 n

 were deduced in chapter 3 and are given under (3.5). If the initial ordinates of
 the particles are denoted by fk, and if the particles spring at t = 0 from the state
 of rest in these positions, the boundary relations to which the differential equa-
 tions are to be subjected are

 yk(O) = fk,

 (7.2) dYk(t)] k=1,2,* ,(n-1).

 dt t=0

 Let the equations (3.5) be multiplied respectively by unspecified constants Mk.
 The addition of them then results in the single equation

 n-1 d2y ( na\ 2 k1

 Ic=1 dt2 = _Vkyk+i - 2yk + yk-1],

 and this, under a re-grouping of its terms, together with the evaluations

 Mo=0, M, =0, takes on alternatively the form

 d2n-I Ina2 n-I
 (7.3) d >E My = (llk ) [Mk+1 - 2Mk + Mk-l]yk.

 Consider now the possibility of so choosing the multipliers Mk as to make the
 corresponding terms of the two sums in the equation maintain a fixed ratio to
 each other. With a constant of proportionality Py, the condition upon the multi-
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 LAGRANGE AND THE VIBRATING STRING 25

 pliers is then this, that they may-comprise a solution of the linear algebraic
 system

 MO = 0,

 (7.4) Mk+l - 2Mk + Mk-l = YMk, k = 1, 2, ... , (n -1),

 Mn = 0.

 This, however, is precisely the system (I. 1) of the appendix I, with (- y-2)
 in the role of the coefficient q. The values of y for which the system is non-
 trivially solvable are thus found from the relations (I. 5) to be (n-1) in num-
 ber, namely 'y='Y,, v=1, 2, , (n-1), with

 J'r

 (7.5) y,- 4 sin2-

 Upon designating by the symbols M,,k those multipliers Mk which satisfy the
 system when y has the value (7.5), we find from the formulas (I. 6) the respec-
 tive evaluations

 kv7r
 (7.6) Mv,,k =A, sin , k = 0, l, 2, * n,

 n

 the coefficient A, being arbitrary.
 Let o-,(t) be used now as an abbreviation in the sense

 n-i

 (7. 7) 0-'(t - E: Af,kyk(t)-
 k-1

 The differential equation (7.3) with its boundary relations (7.2) may then be
 written in the form

 d2ur, (na)2

 dt2 = V I JV

 n-1

 V(0) = E Mv, kfk,
 k=l

 = 0.
 dt _t=o

 This is a differential system which is easily solvable by elementary means. Its
 solution is

 (t)= (EfkMv,) k ( Cat )

 namely, in terms of the evaluations (7.5), (7.6), and (7.7),
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 k7rx, ~~VIXA, 2nat vir\
 (7.8) Eyk(t) sin-- fk sin cos ( sin ).

 k= 1 z k=l 1 2n

 Inasmuch as the index v is free to take the values 1, 2, , (n -1), this is a
 system of (n-1) equations.

 In structure the system (7.8) is evidently of the form (6.1) with the values

 yk(t) in the place of unknowns Ci. Its solution is therefore given by the formulas

 (6.13) to be

 2 'V rwxk si vrxi (2natsi
 (7.9) y1(t) =f- k sin sin cos -sin-,

 n V=1 k-1 I~k 2n/

 j = 1, 2, ** (n -1).

 With this result Lagrange's integration of the equations of motion is complete.
 It is suggestive for our purposes to consider the formalisms of a passage from

 the discretely loaded string to the continuous one upon the basis of Lagrange's
 formulas. If in the equations (7.9) the notational changes indicated by the sub-

 stitutions of x and y(t, x) for xj and y1(t), of sk and f(Sk) for xk and fk, and of
 As for i/n, are made, the formula assumes the aspect

 2 -1 n-l V_rSk . virx v7rat s 2n
 y(t, X) = - (f(sk) sin As) sin cos

 As n is indefinitely increased the relation

 . v7r\

 sin
 2n,

 lim = 1,

 maintains for each value of v and from the very definition of the definite integral

 n-1 v7Sk r v7rS
 lim E f(sk) sin As = f(s) sin ds.
 n- k1 1 JO 1

 These relations suggest as the limiting form of the solution (7.9) the formula

 X / 2 r v7rs 5\virx virat
 (7.10) y(t, x) = ZKgJ f(s) sin ds sin cos

 It will be noted at once that this is precisely of the type of the solution (5.1) for
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 EULER S DETERMINATION OF THE COEFFICIENTS 27

 which Bernoulli had insisted upon holding out. In it the initial position of the
 string is along the curve whose ordinates are f(x). At the instant t=0 the
 formula (7.10) thus reduces to the form

 002 l v7rs \ v7rx
 (7.11) f(x) = f(s) sin dssin-.

 The representability of an "arbitrary" function by a series of sines in precisely
 the manner (1.3), (1.4), would hereby seem to be unmistakably presaged.

 Although Lagrange carried out a limiting analysis upon his formula (7.9), it
 varied in some respects from that outlined above. His comparative result was
 the relation

 2 r X vrs MMx v7rat\
 (7.12) y(t, x)= sin sin cos )f(s)ds,

 1 11

 which differs from (7.10) in having the order of the integration and summation
 reversed. This form has the disadvantage of involving a series which is obviously

 divergent, a matter which was readily seized upon by opposing critics. Beyond
 that, both limiting considerations are open to criticism upon a number of ac-
 counts, for they fail to distinguish between the results of analytical operations
 upon an infinite series as a whole and upon the terms of the series individually.
 These distinctions, so essential to rigor, were but imperfectly understood at the
 time.

 While in the manner shown the formula (7.9) could easily have led to the
 conclusion (7.11), it remains a fact that it did not do so. In deducing the form

 (7.12) Lagrange was bent upon a different purpose, wholly remote from that
 of proving any such a theory as would be implied by the relation (7.11). In-
 deed, when such a theory was announced by Fourier more than a half century
 later, the then aged Lagrange is said to have remained incredulous of it.

 CHAPTER 8

 Euler's determination of the coefficients. In the latter half of the eighteenth

 century the properties of trigonometrical series were very much to the fore of
 mathematical interest, and numerous memoirs were written during that time
 upon one phase or another of the subject of the representability of functions by
 means of such series. In the main, however, these papers advanced the general
 theory but little. They may well be left aside in the present discussion as of
 only subordinate interest. A conspicuous exception to this, however, is a work of
 Euler's which he appears to have written in the year 1777, although its publica-
 tion was deferred until 1793, some years after his death. Concerned with func-
 tions known upon some grounds or other to be representable in terms of a cosine
 series of the type (1.5), Euler deduced in this work the formula (1.6) for the
 coefficients [9].
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 28 FOURIER' S SERIES

 If f(x) is any function which in terms of the variable {, under the relation

 cos 7rx/l, is expansible for -1 <? ? 1 in a convergent power series EXoCAj1
 then f(x) clearly admits of representation by a cosine power series of the form

 (8.1) f(x) = E cj cos-
 i=0 1

 over the interval (0, 1). For each term in this, however, there maintains a re-

 spective trigonometric identity (cf. appendix III), namely

 .irx 1 [ff2] /j\ (j -2M)lrx
 cos' - E cos -

 1 2j-1 1 o

 with [j/2 ] designating the greatest integer not exceeding j/2. The substitution
 of these evaluations into the equation (8.1) and the subsequent collection of
 terms of like character, give the equation formally the aspect

 ao V7rX
 (8.2) f(x) X-+ a,cos-.

 2 ,=1 1

 This is the type (1.5). It will be clear that a rather extensive class of functions
 f(-x) fulfills the assumptions that are basic to this reasoning.

 The argument given, although it is adequate to permit an inference of the
 form of the representation (8.2), is readily seen to be quite far from being prac-
 tical. It yields neither an easily applicable nor a generally lucid method by
 which the coefficients a, therein may be quantitatively evaluated. Since the
 series converges, it may, of course, be inferred that

 (8.3) lim a, = 0.
 P-* 00

 From this slender source Euler succeeded in deducing an evaluation of the
 contants a, which is directly referable to the function f(x) in question.

 Let the symbol n, for any integer n and any indices o, r, be defined to have
 the values

 fn, if a _ r (mod 2n)
 (8.4)

 lo, if ao0 r (mod 2 n).

 There is, then, a trigonometric evaluation (cf. appendix IV) to the effect that

 (8.5) cos = [1 + cos Uar] + n",O.
 ,u=i n 2

 From this a certain related formula can be easily deduced. If the equation (8.5) is
 written successively with a replaced by (v +k) and by (v -k), an addition of the
 results yields directly the equality
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 -1 r ,A(v + k)r u(v - k)r
 - cs + cos
 ,u=l n n _

 = - [1 + a cos (v + k)r + a cos (v - k)r] + nf+lk,o + npf-k,0,

 and this is contractible in an obvious fashion into the formula

 'n-i1 yr /t7
 (8.6) E 2 cos - cos - = - [1 + cos k7r cos v7r] + nf,,k + nf,,-7.

 ,u=l n n

 Consider now the representation (8.2). If this is multiplied by the factor
 2 cos (ATk7r/n) and is then evaluated at x = Al/n, it yields the equalities

 /I,l \ Lk7k7r4 t wV7r _kr
 2f -I cos- = ao cos + E a,2 cos -cos -
 n/ n n ,=1 n n

 When these are summed with respect to ,t the constants ao and a, appear with
 coefficients that are given by the formulas (8.5) and (8.6) respectively. It is
 thus found that

 2 Ef (-) cos = - [1 + cos k7r] - E a41 + cos k7r cos v7r]
 (8.7) v=1

 00

 + aonk,O +E a,[n,,k + nf,-k].

 This relation can be materially reduced. In the first place it will be found on the
 basis of the definitions (8,4) that for k = 0, or for k >0 and n > k,

 aonk,O + Z a,[nv,k+n,,-k] = n ak + J (a2nX-k+ a2nX+k)]
 PV=1 X=1

 In the second place the formula (8.2) itself yields the equation

 ao,
 f(O) + f(l) cos k7r =- [1 + cos k7r] + Z a,I[1 + cos k7r cos v7r].

 2 P=1

 With these evaluations, however, the formula (8.7) is simplified into the form

 v-1 Al kl.47 ~~~~~~~~~~~~~~~~~~~~~00
 (8.8) 2Ef- cos -= fak - [f(O) + f(l) cos k7r] + n E (a2,x-k + a2nX+k)

 j.=j n n X=1

 Let the notational substitutions s, = Al/n, As = i/n, now be introduced. These,
 together with a division by n, give to the equation (8.8) the form

 2 n- k~rs, 1 ( +f)cokr] . - f f(sz) cos As = ak - - [f(O) + f(l) cos kr] + (a2nx-k + a2nX+k).
 I u=i I n X=1
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 In this n is now to be permitted to become infinite. Since each term a2nx?k in the
 final sum approaches zero by virtue of the relation (8.3), and the term in 1/n
 does likewise, the right-hand member of the equation has as its limit ak. The
 limit of the left-hand member being a definite integral, the conclusion is that

 2 s k1rs
 (8.9) - Jf f(s) cos ds = ak.

 Herewith the problem was solved.
 Once in possession of the formula (8.9), Euler recognized the more direct

 manner in which he might have found it, and by means of which a verification
 of it might be made. This is, namely, the procedure now generally familiar, of
 multiplying the representation (8.2) by the factor cos (kirx/l), integrating it
 then term by term and applying the elementary evaluations

 0, if v*k,
 r'zvxrx kwrx (8.10) Icos - cos dx= 1/2, if v= k 0,

 i1, if v=k=0.

 To this day the constants al, as given by the formulas (8.9) are still widely
 known as the "Euler coefficients" of the function f(x). Such an attribution
 seems, however, to be somewhat over-generous if representations (8.2) of arbi-
 trary functions are in question. Euler was consciously concerned only with such
 functions as were known upon other grounds to be representable in .a cosine
 series. The crucial observation that the formulas (8.9) are significant for func-
 tions of a much wider class than those which, for instance, are representable in
 the manner (8.1) apparently escaped him. There is no evidence, either in this
 connection or in any other, that he ever receded from his opposition to Ber-
 noulli's claim that arbitrary functions submit to trigonometric representation

 CHAPTER 9

 Fourier and the theory of heat. In the interior of a material body heat is in
 general distributed in a manner that is both non-uniform and fluctuating-

 that is to say with temperatures that vary from point to point and from time
 to time. The distribution of temperatures throughout a body is, therefore,
 naturally determined by a function of the coordinates of position and time.

 What the precise form of this function is, in any particular case, depends in part
 upon the thermal properties of the material of which the body is constituted-
 its density, specific heat, and conductivity-but also in large part upon the
 instantaneous state in which the body finds itself at some specific time, and
 upon the conditions which thereafter maintain upon its surface.
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 FOURIER AND THE THEORY OF HEAT 31

 In the early years of the nineteenth century Fourier devoted himself to an
 analysis of this temperature function r, and deduced from physical funda-
 mentals [10] the fact that it must satisfy a partial differential equation of the
 form

 (9. 1) V27 = K2 _

 In this K2 is a positive constant whose value is determined by the thermal

 properties of the material, whilc V2-r is the so-called "Laplacian of r." In terms

 of rectangular co6rdinates this differential expression is

 4927 4927 4927-

 Ox2 4y2 0z2

 if all three of the coordinates x, y, z, are significant, or, more simply

 927 927 927
 +- or

 9x2 9y2 Ox2

 respectively, if the only space coordinates are x, y, or merely x alone. A tempera-

 ture function must accordingly solve a partial differential equation such as (9.1).
 In any specific instance it must be that solution of this equation which takes on

 those values which apply at some specific instant t, and which furthermore ful-
 fills upon the body's surface the thermal relations that maintain there.

 A simple and familiar physical formulation illustrates this and will serve also
 to show the relevancy of this subject of the flow of heat to the basic matter be-
 fore us, namely that of the representation of arbitrary functions by the means of
 trigonometric series. Consider a homogeneous material bar in the shape of a

 right cylinder of the length I and of any cross section. We may choose our co-
 ordinate system so that the direction of this bar is that of the x-axis with the
 end faces of the bar located at the points x 0 and x = 1. Let it be supposed now

 that at some specific instant, which may be designated as t = 0, the temperatures
 at all points within the bar having the abscissa x have the common value f(x).
 From this instant onward each end face of the bar is to be held constantly at

 the temperature zero, while the lateral surface is insulated againv t the passage
 of heat. Except in the trivial case in which f(x) is everywhere zero, heat will flow
 within the bar, and the lines of flow will be parallel to the x-axis. The problem is
 to determine the temperature at any point of the bar at any instant subsequent
 to the initial one, namely to determine the function r(x, t) for 0 <x <1, and t > O.
 The relations from which this is to be done are in this case evidently the dif-
 ferential equation
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 d92r 49r

 (9.2) -- = K2-, ax2 at

 the boundary relations

 (9. 3) r(O, t) = 0,
 T(l,t) = O, t> O,

 and the initial condition

 (9.4) r(x, O) = f(x), 0 < x <1.

 Fourier's method of attack upon a problem such as this is one that is still
 widely current in practice, namely the method of the "separation of variables."
 Let us, to begin with, seek a function r,(x, t) to fulfill the equations (9.2) and
 (9.3), while being of the form of a product of a function of the single variable x
 by a function of the single variable t, namely

 (9.5) T,(x,t) = ov(x*(t).

 Upon substituting this form into the equations in question, it is found that these
 are satisfied if the function 4,(x) fulfills the system of relations

 dx2

 (i) dX2 +~~lv(X) + XvK2,0V(X) = Ot

 (9.6) ()(O) 0,

 (iii) + ~~~~o(' 0)

 with X, designating a constant, provided that with, this same constant the func-
 tion 1,,(t) fulfills the equation

 d
 (9.7) - 4,(t) + X41VU(t) = 0.

 dt

 As a solution of the ordinary differential equation (9.6i) the function 4,(x) must
 familiarly be of the form

 4,,(x) = b, sin V\/X. KX + 7Y),

 in which b. and 'y, may be any constants. It will fulfill the condition (9.6ii) if
 -yV = 0, and then also the condition (9.6iii) if /X,v is any multiple of the constant
 T/Kl, namely, when

 (9.8) = (v)2
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 with v an integer. The associated solution of the equation (9.7) is then clearly

 ik(t) = e_(c22/K2j2) t*

 Through the formula (9.5) it has thus been found that the equations (9.2) and
 (9.3) are satisfied by the function

 (9. 9) r,(x, t) = bpe- sin I-I

 in fact by each of the infinite set of functions obtained from this formula by

 setting v= 1, 2, 3,

 Now it is a characteristic property of linear equations or of any system of
 such, that the sum of any set of solutions is itself a solution. One is motivated
 thus to infer from the set (9.9) a formal solution having the structure

 00 r

 (9.10) r(x,t)- E bpe-(v2r2I/2l2) t Sin
 v=1 I

 Aside from questions of convergence which are clearly to be raised in this con-
 nection, a primary matter still to be dealt with is the fulfillment of the condi-

 tion (9.4) whatever the function f(x) may be. Upon substituting the value t = 0
 into the formula (9.10), this is seen to devolve into the relation

 (9. 11) Ebp sin- f(x), 0 < x < 1.
 v=1 I

 The question of the representability of any function f(x) in a series of sines is
 thus clearly brought into issue.

 We propose to review in the following chapters Fourier's mode of coping with
 this problem. There are a number of reasons why a consideration of this may be

 regarded as worthwhile and of interest. It is, to begin with, ingenious and skill-

 ful. Aside from that it is a notable exemplar of work in the spirit of mathe-

 matics in the eighteenth century. Although this theory of Fourier's was actually

 created in the next century, and was crowned by the prize of the Academy of
 Paris in 1811, its disregard for rigor was even then outmoded and seemed, in

 fact, to run counter to the better standards of which Fourier himself was

 conscious. It is a formalism-no more-a play upon symbols in accordance

 with accepted rules but without much or any regard for content or significance.

 As such it has, of course, no place in the mathematics of our time. Fourier's

 work has had the profoundest effect both upon the development of pure mathe-
 matical concepts and upon the extension of the range of mathematical applica-

 tions to the sciences and technology. These deserts, however, sprung in the main

 from Fourier's interpretations and not from his manipulations. It was, no doubt,

 partially because of his very disregard for rigor that he was able to take con-

 ceptual steps which were inherently impossible to men of more critical genius.
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 CHAPTER 10

 Fourier's formal solution of his problem. [i1 ] In the study of a representa-
 tion (9.11) it comes to a mere matter of the choice of a unit of measurement to
 identify the length I with the value 7r. We shall suppose this to have been done
 since an appreciable formal simplification results from it. To summarize the
 problem at issue, then, it is that of determining from any given function f(x)
 a set of constants b, such that

 00

 (10.1) E b, sin vx = f(x),
 P=1

 for O<x<7r.
 Fourier began his considerations of this relation by substituting in it for each

 sine function its power series equivalent, namely

 (- 1) n-Ypn-l n-
 sin vx = E x2n1

 n-I (2n - 1)!

 Upon interchanging the order of the summations, an operation which was at
 that time generally resorted to without question, the relation (10.1) was made
 to appear in the form

 f(X) = E2n-1b) x2b1.
 n=1 (2n -1)! ,P=

 The function f(x) has thus been related to a series in powers of x, and since such
 a series must, in fact, be its MacLaurin series

 00 1

 (10.2) f(x) E j f[k](0)Xk,
 k=O k.

 in which f[k] (x) stands for the kth derivation of f(x), it was to be concluded by a
 comparison of the coefficients of like powers of x that f [k] (0) is zero whenever k
 is even, and that otherwise

 00

 (10.3) Z '2n-lbb = ('- 1)-lf[2n-1](0), n 3 1, 2, 3,
 ,=1

 The effect of this consideration has thus been to throw the constants by into the
 r6le of the infinitely many unknowns in a system of infinitely many linear
 equations.

 To deal with a system of this type Fourier had to invent his own method.
 He chose to base this upon the use of a chain of ordinary algebraic systems

 (10.4) E i'2'f-l3,(r) = On(r), n = 1, 2, r,
 v=1
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 of arbitrarily large degree r, the relevancy of these to the infinite system (10.3)
 to be assured by an adoption of the relations

 (10.5) On(oo) = (- 1)n-lf[2n-1](0), n = 1, 2, 3,

 Inasmuch as the solution /,(r), v = 1, 2, * * *, r, of the system (10.4) is unique,

 whatever the degree r may be, it was tacitly assumed that the solution of the
 infinite system could be inferred from those of the finite ones in the manner

 (10.6) 3,(oo) = by, v = 1, 2, 3, * .

 In the system (10.4) let the nth equation be multiplied by r2 and let the next
 following equation then be subtracted from it. If this is done for each value of
 n from 1 to (r -1) the result is the system of equations

 r-1

 (10.7) , v2n- { [r2 -v2]#3(r)} = r2q5n(r) - 4n+l(r), n = 1, 2, , (r-1).
 V=1

 This suggests imposing upon the members 40n(r) the relations

 (10.8) r2q5n(r) - +n(r) = -n(r-1), n = 1, 2, , (r - 1),

 for, since the coefficients of the system (10.7) will then be precisely those of the
 system given by the equations (10.4) when r is replaced by (r -1), it may be in-
 ferred that the unknowns (r2 -v2) 3,(r) in the one case and j3,(r -1) in the other
 case, are, in fact, the same, namely that

 f3. (r) = f3v (r - I)
 r2 -p2

 By suitable iterations of this relation it is evidently found that

 (10.9) #3(r) = (v)r > ,

 II (n2 - V2)
 n=p+l

 whence it follows by a simple formal step from the finite r to the infinite, that

 (10.10) by =
 00

 II (n2 -V 2)
 n==P+l

 To any modern investigator this conclusion could, of course, be only mean-
 ingless, for the infinite product involved in it is manifestly divergent. Nor is the
 source of this unfortunate result difficult to trace. It lies, namely, in the naive
 adoption of the relations (10.8) in the face of the fact that these are quite in-
 consistent with the previously adopted assignments (10.5). It requires no keen
 critical faculty to observe at once that under the formula (10.9) the sequence
 of values f,(r) inevitably converges to zero with 1/r and hence that no conclu-
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 sion other than that of the vanishing of each coefficient b, would be logically
 admissible. Fourier had no intention whatsoever of drawing that conclusion,
 and hence proceeded undismayed with the analysis of his formula. In so doing
 he found, quite naturally, that the divergence it already involved could be
 formally compensated for only by the introduction of still other divergencies.

 Let the determinant D(x) be defined by the formula

 1 2 ...(v-1) x

 1 3 23 . (v - 1)3 X3

 (10.11) D(x) = 15 25 .. (v- 1)5 x5

 12v-1 22v-1 * (V - 1) 2v-1 x2v-1

 and let the cofactor of its element in the ith row and jth column be denoted by
 Di ,. Then since the determinant of the system (10.4) when r =v is precisely D(v),
 it is seen at once that by Cramer's rule

 EDn, (n (V)

 (10.12) op(v) = - ^

 This formula can be made much more explicit. The determinant D(x) is, in the
 first place, found to admit (cf. appendix V) of the evaluation

 P-1

 (10. 13) D(x) = (-1)'-1Dp,px fJ (n2 - x2).
 n=1

 Upon expanding the left-hand member of this equality by the elements of its
 last column, and by agreeing to define the coefficients cn(r) for any value of r not
 less than v by the relations

 r r

 (10.14) 1I (n2 - x2) = ECn(r)X2n-2
 n-l,n7p7p n=1

 it evidently follows further that

 E Dn1px2n-1 = 1) 1Dp P E Cn (V) X2n-1.
 n=1 n=1

 Now in any identical equation between polynomials or power series, the
 coefficients of like powers of x in the two members of the equation must be the
 same. It will be seen at once that because of this the substitution of any quantity
 whatsoever in the place of any specific power of x will not destroy the equality.
 In the equation above, therefore, the replacement of X2n-1 for each value of n
 by the respective quantity 4>n(v) is legitimate. It leads to the result
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 v v

 Dn,,>n(V) = ) (-- lDpl,p Cn(V)On(V),
 n=l n=l

 and this, together with the value of D(v) that is obtained from the relation
 (10.13), yields upon substitution into the equation (10.12) the formula

 p

 E Cn (V) On (V)

 (10.15) 3P(V) = n-1
 V-1

 pHIl (n2 -v2)
 n-1

 Let it be observed now that the removal of the factor (r2 - x2) from the left-
 hand member of the equation (10.14) has the mere effect of reducing the index r

 to (r - 1). From that relation it is thus seen that

 r r-1

 E Cn(r)x2n-2 = (r2 - x2) E Cn(r - X2n-2
 n=1 n-1

 namely that

 r -

 C c(r)X2n-2 Cn(r - 1) [r2x2n-2 - X2n]
 n=1 n=1

 If in this each power x2i is replaced by the respective value ?j+i(r), it follows
 because of the relation (10.8) that

 r r-1

 E Cn (r) (kn(r) =E Cn(r -1)(kn(r - 1).
 n-1 n=l1

 The sum on the left of this equality is thus independent of r, and this having
 been established it is a simple formal step to write

 v 00

 (10.16) Cn(V) )On(V) = Cn( ?? )4'On)( CO
 n=1 n=1

 It was familiar in Fourier's time (c.f. appendix VI) that

 I (1_ =sin wx
 n=l n 7rx

 a relation which in a formal sense, if in no other, yields the formula

 - (n2 -x2) = ( 2)(1 )
 n=l,nop nLrnOp V TX

 Upon replacing the left-hand member of this by the equivalent series (10.14)
 and substituting on the right the series equivalents
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 x2 X 1 0X x22

 q==2 2q V v2 q=0 V2(
 sin '7rx ? (- k)'b ir2'

 = E ~~~~~x2 k-2,
 TX k==1 (2k - 1)!

 it becomes

 00 -2 00 ?? ?? 0 - 1\k-17r2k-2 2+ -
 ? C,( ??)X2n-2= t n ) ? E --x2a2
 n=1 n=l,npv q=O k=1 v q(2k - 1)!

 The procedure of replacing each power X2'-2 by 4j(oo) leads from this to the
 equation

 00 X0 2 ?? ?? (_ 1dk-172k-2
 ? Cn( oo)?0n( oo) = I n )a E 2q O q+k( ?? )
 n=1 n=l,no^7 q=O k=1 V q(2 k-)

 or, by virtue of the relations (10.5) and (10.16), to the relation

 v 00 ?? ?? 0 1)qr2k-2
 E Cn(V)p)4n(V) = (f n2 E E -' ' f[2q+2k-1 ](0)
 n=l n=l,n^v q=O k1 Y q(2k - 1)!

 With this result the formula (10.15) for j3,(y) becomes wholly explicit, and
 through it the formula (10.10) assumes the form

 00

 IIn2
 (10 . 17) n=l ,nS7t ??0 ( - l ) 0 [2q+2k-1] (0)

 (10.17) bp = n=1n0.E 2k-2.
 v II (n2 - v2) p2q &i (2k - 1)!
 n=l ,npv

 Inasmuch as all quantities in the right-hand member of this are to be regarded
 as known when f(x) is known, this result amounts, at least in a formal sense, to
 an evaluation of the constant b.

 CHAPTER 11

 The reduction and interpretation of the solution. [12] The result (10.17),
 although it formally accomplishes the task originally set, namely the construc-
 tion of a formula through which the coefficients b, are expressed in terms of the
 given function f(x), will nevertheless hardly be found completely satisfying. For
 the purposes of practical calculation, namely, some reduction of its intricacy
 would clearly be imperative, and Fourier, realizing this, turned his attention to
 its simplification. His effectiveness in achieving this is eloquent commentary
 upon his skill in analytical manipulations.

 Consider, to begin with, the product of the values (n2-p2) which the formula
 contains. The first (v- 1) factors of this are negative and have as their product
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 v-1 v-1

 (-1)-llH (v-n)l(v+ n).
 n=l n=1

 The product of the remaining (positive) factors may be written in the form

 00 00

 I (n- v) II (n + v),
 n=,v+ n=,v+ 1

 and thus, by simple changes of the index in each of the partial products, the
 entire expression may be made to appear as

 v-1 2v-1 oo oo

 (-) 1In II nHn rI n.
 n=1 n=v+1 n=1 n=2v+1

 Since in this each natural integer except v and 2v occurs twice, the excepted
 ones occurring just once, an alternative form for the product is evidently

 ( 1)V' o
 11 n2

 2v2 n=1

 It has been found thus that formally

 00 1('f-1 00

 (n 2 2) / 11 2. (11.1) II (n2-V2) = J IIn
 n=l ,noiv 2 n=l,noiv

 Consider now the formula

 00 f [2n-1] (O)

 (11.2) f(x) = a.2
 n-1 (2n - 1)!

 which is the equivalent of the relation (10.2) by virtue of the fact that in the
 latter each coefficient f[k] (0) with an even index k is zero. A 2q-fold term by
 term differentiation leads from this to the companion formula

 co f[2n-1](0)

 n=q+l (2n - 2q - 1) !

 and if in this x is given the value 7r and the index of summation is suitably
 changed, the result is the equation

 (11.3) oo f[2k-2q-1](O) .2k-1 =
 (11 (2 k - 1)!

 The substitution of the evaluations (11.1) and (11.3) into the formula (10.17)
 causes a reduction of this latter to the form

 (11.4) = 2 1-1E (-1) f[2a](r)
 V ~~q=0 V 2qr
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 The infinite series which still appears in this result suggests the formal
 definition of a function u(x) by the relation

 u(x) =co (- 1)qf[2q](x)
 "()=E v2q+l

 Upon differentiating this twice term by term and thereupon adjusting the index
 of summation, it is found that

 c) (- )qf[2qJ(x) 11 (X) - 2 -Y E 2q+l

 and hence that

 U"1(X) + V2U(X) = vf(x).

 This is a differential equation of an elementary type. Its reduced equation is
 solved by the function (cl sin Vx+C2 cos vx) and from this fact the method of
 "variation of parameters" [13] leads readily to the conclusion that the equation
 itself has a solution

 r
 u(x) = 1 f(s) sin v(x - s)ds.

 This is, of course, verifiable at once by direct substitution into the differential
 equation. Upon setting x = ir it is thus found that

 IrX

 (11.5) U(7r) = (-1) ' f(s) sin vsds.

 Let the integral in this formula now be integrated by parts 2n times in
 succession, the trigonometric factor being each time the one to be integrated.
 Since, as may be seen from the formula (11.2), every even ordered derivative of
 f(s) is zero at s = 0, while the function sin vs vanishes at both s = 0 and s = ir, the
 result of these integrations is the relation

 '4 (- f1q, ( - T)n;
 U (- 1)ef[2q(lr) + 2)_J2 f(2n+l] (s) sin vsds.
 q=0

 By the step from the finite n to the infinite the formal relation

 U(ir) = 2q+ r

 q-0 V2 1

 may be drawn therefrom, and this together with the formula (11.5) yields the
 equality

 ? E (- 1)f[22](i) = (- 1)vf f(s) sin vsds.
 V qO Vq
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 By virtue of this the formula (11.4) is now once more and finally reduced to the
 form

 2 fb r
 (11.6) b = - f(s) sin 7'sds.

 7ro

 This is, of course, the familiar formula in virtue of which the coefficients b, are
 generally known as those of Fourier. It is the formula (1.4) for the special case
 in which l= r.

 Elegant though the conclusion (11.6) unquestionably is, the verdict of any
 critical appraisal of Fourier's accomplishment to the point of its derivation must
 inevitably be profoundly disappointing. As to the result, in the first place, that
 was not new. It had been contained in the mathematical literature for over a
 decade to be precise, since the publication of the memoir of Euler that was
 discussed in chapter 8. While, to be sure, Euler's results applied only to func-
 tions of a certain class, that is no less true of Fourier's, since his deductions
 were based upon such material restrictions as the representability of the func-
 tion f(x) in power series of the form (11.2) that converge when x = r.

 Nor could any advantage be claimed by Fourier in the matter of method.
 On the contrary-and even leaving aside the important fact that. by its em-
 ployment of divergent processes it divested itself of all rigorous validity-the
 method of Fourier suffers in almost every respect by comparison with that of
 Euler. The device of referring the problem to a system of linear equations,
 ingenious though it is, is nevertheless quite foreign to the nature of the problem.
 The trigonometric functions are conspicuously endowed with many peculiar
 properties and fulfill a great many characteristic interrelationships. Of this im-
 portant fact Fourier's approach in no way avails itself, while Euler's, by contrast,
 exploits it to the utmost. In cutting directly to the heart of the matter Euler
 thus attained his result more perspicuously and incomparably more cheaply. In
 this respect the superiority is all his.

 With the priority and preference in manipulative matters thus denied him,
 Fourier's claim to renown must be based upon other grounds, and these are,
 namely, those of interpretation. Approaching the formula (11.6) afresh, without
 regard for the manner of its derivation, it was observed by him that through it
 each coefficient by admits of interpretation as the area between the abscissas
 x =0 and x = i, and under the graph

 2
 (11.7) y = -f(x) sin vx.

 1r

 Such an area is evidently conceivable, and retains its clear-cut significance, in
 association with functions f(x) that are in a very general sense quite arbitrary.
 Certainly these functions need not be assumed to be continuous or expansible
 by any simple analytical formulas. They might be graphically defined and
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 might well represent distributions of functional values that are extremely er-
 ratic. On the basis of such considerations Fourier concluded that any and every
 function f(x) had associated with it a set of constants b,.

 From this fact alone it would not follow, of course, that with such coefficients
 the representation of the function f(x) by a series (10.1) would result. As has
 been seen in chapters 1 and 5, the masters of the eighteenth century had re-
 jected such a possibility as manifestly absurd. In this matter, however, Fourier
 was willing to disregard opinions and precedents, however well established, and
 to look further for himself. From calculations of the coefficients bV with small
 indices o' in the cases of a great variety of functions f(x), and from subsequent
 plottings of the respective initial segments of the resulting trigonometric series,
 he came to convictions upon two salient points, namely: (i) that the series (10.1)
 always represents the function over the interval 0 <x < wr, and (ii) that in general
 this representation does not persist for values of x outside that interval.

 Fourier's announcement of these facts was quite generally met with in-
 credulity. Even the mass of his substantiating evidence won, in many cases, only
 grudging and reluctant acceptance. The implications behind the new assertions
 were too revolutionary to be easily assimilated. They called for no less than a
 fundamental revision of many concepts that were wholly traditional, some of
 them lying at the very basis of mathematical analysis. On the other hand
 Fourier's new theory did now finally vindicate the half century old reasoning of
 Daniel Bernoulli by which he had convinced himself, if no others, that any curve
 from which a taut elastic string could spring into vibration could be represented
 by a trigonometric series.

 CHAPTER 12

 The Dirichlet integrals. Once Fourier had deduced the formula (11.6), he,
 like Euler before him, observed that in a schematic way the result is recoverable
 in a most direct and simple manner by the mere expedient of multiplying the

 relation (10.1) through by sin Ax with any natural integer A, and then integrating
 term by term over the interval (0, ir). The infinite series reduces under this
 process to a single term, because of the evaluations

 (12.1) f sin vx sin yxdx = 0, for i ,

 and the formula for b, thus emerges. The procedure is obviously adaptable also
 to the case of a cosine representation

 ao 00
 (12.2) f(x) =- + E a, cos vx,

 2 -

 the evaluations
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 (12.3) fcos vx cos ,uxdx = 0, for v $ ,

 leading in this case to the formulas

 2 7
 (12.4) ap = - f(s) cos vsds, v = 1, 2, 3,

 liro

 An extension of these results to the case of a function that is given over the
 larger interval (- r, xr) is of importance and is easily deduced. Through the
 relati on

 f(x) fo(x) + f e(x),

 with

 fo(x) i [i(x) - f(- x) ]

 f e (x) "Y [A(X) + A - x) ],

 the function f(x) is expressed as the sum of two components of which the first
 one is an odd function and the second one even. Now the relations (10.1) and
 (12.2) for these respective functions, namely

 00

 fo(x) = E b, sin vx,
 v=1

 ao 00
 f e(x) = - + E ap cos vx,

 2 ,=1

 obviously remain quite unchanged if x is replaced by -x. Any validity they may
 have over the interval (0, r) therefore implies the same over the larger interval

 (-7r, 7r). It follows at once that for the originally given function the representa-
 tion in question is of the form

 ao 00
 (12.5) f(x) = + E [a, cos vx + b, sin vx].

 2 v=l

 The formulas for the coefficients in this are, moreover, easily freed from
 reference to the componentsfo(x) andf0(x), and may thus be brought to expres-
 sion directly in terms of the function f(x) itself. Since

 rt ~~~~~1 rX
 f fo(s) sin vsds = y (s) sin vsds, o ~ ~~~~~ 2 r

 as may easily be verified, and also

 1 f6(s) cos vsds = - f(s) cos vsds,
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 the formulas in question are, namely, seen to be

 1 r7r
 a, = if Jf(s) cos vsds,

 (12.6)

 bp - f(s) sin vsds.
 7r _x

 In the instance that the interval (-xr, r) which has been taken to be basic is
 replaced by the more general interval (-1, 1), the representation (12.5), (12.6),

 is correspondingly replaced by that given in the formulas (1.1), (1.2).
 Let the sum of the first 2N+1 terms of the series (12.5) be designated by

 SN(x), thus

 (12.7) SN(X) =- + N, [a, cos vx + bp sin vx].
 2 ,=1

 The substitution of the values of the coefficients (12.6) into this gives it the
 aspect

 SN(X) = 7f f(s) [- + E cos V(s - x)ds]
 7 2 P=1

 and this may be contracted by the use of elementary trigonometric relations
 (cf. appendix VII) into the wholly compact form

 1sin [ (N + )(s - x)]
 (12.8) SN(X) f(S sin [( (s-x)] ds.

 An equivalent manner of writing this, and one that has some analytic ad-
 vantages, is

 f(s)sin [ (N +D (s -x)] (12.9) SN(X) 1 rf(S) sin ds F(s(s-x) d s)(s, x, N)ds,
 r-7r (S- X) -7

 with the symbols F(s) and '(s, x, N) having the significance

 F(s)- f(27{r [s(s-x)] -_(s-_)'

 1(s, x, N) sin [(N + 2)(s - x)l.

 From the latter of these formulas it is easily inferred that

 I *(s, x, N) I < 1, and
 {Jb ('xNd|,frr<c< 4
 f s ,N)d for7r?<a <j3?lr.

 a ~ ~~ =2N + 1
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 The function T(s, x, N) thus possesses the properties:
 (i) that it is bounded uniformly as to N and s;
 (ii) that its integral over any sub-interval of the range (-7r, 7r) converges

 to zero with 1/N uniformly as to the sub-interval.

 These properties. are sufficient to insure [14] the relation
 pr

 (12.10) lim J F(s) T(s, x, N)ds = 0,
 N-- 4

 whenever the function F(s) is integrable (in the sense of Lebesgue) over the
 interval (- r, ir).

 Now from the definition of the function F(s) it may readily be seen that
 integrability is assured to it by that of the function f(s) provided the point x is
 in the interior of the interval (-ir, ir). Thus for every integrable function f(x) the
 final integral in the relation (12.9) converges to zero, and that relation thus
 implies that

 1 sin [(N?+ ) (s -x)]
 (12. 11) lim SN(X) = urn - J f(s) ds,

 N-,oo N- oo r (S - X)

 whenever the right-hand limit involved in this exists. This permits us at once
 the conclusion: that any function f(x) which is integrable and which is further-
 more such that for it

 (12.12) lim s [(N+ (S-X)] ds f(x) N- 7r_ (s- X)

 is a function which is representable by a trigonometric series in the manner
 (12.5), (12.6).

 Although Fourier made calculations upon many specific cases, he gave no
 general proof of his ultimate assertion of the trigonometric representability of
 arbitrary functions. Indeed no such proof could have been given, since in the
 omission of all qualifications upon the functions the assertion is too broad to
 be valid. The first proof that was both satisfactory in the matter of rigor and
 ample in the matter of generality was given by Dirichlet in the year 1829. In
 the manner that has been indicated above, this proof was based by Dirichlet
 upon an establishment of the relation (12.12). The integrals involved in that
 relation and-in (12.8) are accordingly known generally as "Dirichlet integrals."
 Dirichlet's proof in its original form, or as it has been improved and refined, is
 to be found at many places in the mathematical litera-ture [15]. We shall,
 therefore, go no further into it here but shall draw this part of the discussion
 to its close. In the following part the primary subject of study is to be a gen-
 eralization of the entire theory in which the representations of functions in
 trigonometric terms sink to the status of special cases.
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 PART II

 CHAPTER 13

 The differential boundary problem. Among the most powerful of mathe-
 matical means for the formulation of natural laws are the linear differential
 equations of either the partial or the ordinary type. Varied and diverse as
 physical phenomena certainly are, they nevertheless submit quite generally to

 description by such equations. The flow of heat in material bodies and the
 vibrations of elastic strings under tension are instances of this that have already
 been noted.

 By its very nature as the formulation of a more or less general law, any par-
 ticular differential equation applies, of course, to the entire category of mani-
 festations which the law itself governs. To single out for description any indi-
 vidual phenomenon from such a category, therefore requires that some auxiliary
 means beyond the equation itself be resorted to. This ordinarily takes on the
 form of a set of one or more restricting relations that are expressive of the
 characterizing initial or boundary conditions. The differential equation to-
 gether with such relations is commonly designated as a differential system. It is
 also said to define a differential boundary problem. The system consisting of the
 equations (4.6) and (4.7), for instance, thus defines a partial diffitrential
 boundary problem, namely the one which is descriptive of a certain stretched
 string vibrating with specified end points and initial position of release. The
 equations (9.2), (9.3) and (9.4), define a similar problem, one which describes
 a linear flow of heat from specific initial temperatures and under certain bound-
 ary conditions.

 The method that was employed in the reduction of the boundary problem
 of chapter 9 was designated there as that of the "separation of variables." Its
 immediate effect was to refer the partial differential system to an ordinary
 system (9.6), this latter having the peculiarity of involving an unspecified con-
 stant or parameter, which was designated by X,. Following the solution of this
 ordinary boundary problem at characteristic values of this parameter, the
 theory led in a natural way to the further problem of representing an arbitrary
 function in terms of the respective solutions. This method was in no way espe-
 cially designed for the problem of chapter 9. It is on the contrary one that is
 highly flexible and of very wide applicability. In the particular instance there
 considered the ordinary differential equation which characterized the problem
 was one whose solutions were trigonometric functions, and it was because of
 that, that the representation of the functionf(x) took the form (9.11), namely
 that of the Fourier theory. This feature was special, to the extent that it would
 not even have maintained for the equation (9.2) if the coefficient K2 involved in
 it had been dependent upon the co6rdinate x, rather than constant. In the fol-
 lowing a discussion is to be framed which is free from such peculiar specializa-
 tions.

 46
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 Let the variable x be real, with the range

 (13.1) a ? x < b,

 and on this interval let p(x), q(x), and r(x), be differentiable functions. The sym-
 bol L(b, X) is to designate the differential expression

 (13.2) L(41, X) -p" + p(x)>' + [q(x)X + r(x)]4.

 In this X is to play the role of a parameter, the range of which is to be the

 entire complex plane. The differential equation

 (13.3) L (/, X) = 0,

 is, then, one that is regular, in the sense that it has no singular points upon the
 interval (13.1). As an equation of the second order it will, of course, not gen-
 erally be explicitly solvable. Certain facts concerning its solutions are, however,
 familiar. Of these the following ones will be especially relevant to the discussion
 proposed [16].

 (i) The equation admits of solutions +(x, X) that have continuous second'
 derivatives as to x, and that are analytic in X over the entire complex X plane.

 (ii) There is a pair of such solutions q5i(x, X), 02 (x, X), that are linearly inde-
 pendent as functions of x for all values of X.

 (iii) The Wronskian Q(x, X) of this pair, namely the determinant

 (13.4) Q(x ) _01(X, ) 02(x, A))
 } +{ (X, X) 0 ' (X, ) l

 is subject to the relation

 (13.5) Q(x, X) = Q(a, X)eJ-p(x)dx,

 with Qi(a, X) an analytic function of X that is different from zero for all X.
 (iv) The general solution of the equation (13.3) is expressible in terms of the

 pair 41(x, X), 052(x, X) by a form

 (13.6) h241(x, X) + hk12(X, X),

 in which the coefficients hl, h2 are constants as to x, though they may be func-
 tions of X.

 For any equation (13.3) there are known to be infinitely many pairs of solu-

 tions 41(x, X), +2(X, X), that have the properties enumerated. Of these pairs any
 one serves in every way as well as any other, and the choice that is made is
 accordingly immaterial. For the sake of avoiding gratuitous complications, how-
 ever, it will be supposed throughout the discussion that when a choice of such a
 pair in the instance of any specific equation has been made, it will be con-

 sistently adhered to. To that extent, then, the designations 41(x, X), 42(x, X)
 will be understood to apply not to random but to specific solutions.

 Let the symbols fl si,y, si= 1, 2;j= 1, 2,3,4; now denote any constants which
 are such that when
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 (13.7) ai, i(X) = fi, jX + yi, j,

 then the matrix

 (13.8) 1aj,j(X) al,2(X) al,3(X) al,4(X)
 .a2,i(X) a2,2(X) a2,3(X) a2,4(X)

 is of the rank 2 for every value of X. In terms of the values of any function 0 and
 its derivative 0' at x = a and x = b, the forms

 (13.9) Aj(0, X) a-,i(X)O'(a) + ai,2(X)O(a) + ai,3(X)O'(b) + ai,4(X)O(b), i = 1, 2,

 are then always linearly independent. Under these circumstances the dif-
 ferential system

 L(u, X) = 0,

 (13.10) A l(u, X) = 0,

 A2(u, X) = 0,

 defines an ordinary boundary problem. It is this problem which is to be central
 to our discussion. It will be seen at once to include as a special case the problem

 (9.6), and to do that even if in the latter the coefficient K2 varies with x. Many
 other boundary problems that stem from physical origins are also included, as
 will upon occasion be seen in the following.

 CHAPTER 14

 The characteristic values and solutions. Since any solution u(x) of the differ-

 ential system (13.10) must in particular solve the differential equation (13.3),
 it must have the form

 (14. 1) u(x) = h241(x, X) + h142(x, X).

 Except for the trivial solution u(x) _0, which we shall herewith specifically and

 permanently rule out of this discussion, the values hl, h2 will not both be zero.
 The substitution of this form into the boundary relations of the system give to
 the latter the aspect

 h2A1,1(X) + h1A1,2(X) = 0,

 (14.2) h2A2,1(X) + hlA2,2(X) = 0,

 in which the abbreviations

 (14.3) Aj,>(X) _ Aj(41(x, X), X), i, j = 1, 2,

 have been resorted to.
 The equations (14.2) constitute an algebraic system in which the values

 hl, h2, function as the unknowns. Since this system is homogeneous its non-
 trivial solvability is contingent upon the vanishing of its determinant A(X),
 where

This content downloaded from 128.210.107.27 on Fri, 31 Jan 2020 00:44:54 UTC
All use subject to https://about.jstor.org/terms



 CHARACTERISTIC VALUES AND SOLUTIONS 49

 (14.4) - A1,1(X) A1,2(X)
 A2, 1(X) A2,2(X)

 A proper solution of the boundary problem thus exists if and only if X is a root

 of the so-called characteristic equation

 (14.5) A(X) 0.

 These roots are called the characteristic values (Eigenwerte) of the boundary
 problem. The multiplicity with which such a value occurs as a root of the equa-

 tion (14.5) is also designated to be its multiplicity as a characteristic value. If
 the root is one at which the elements of the determinant (14.4) do not all
 vanish, namely at which the rank of the determinant is 1, it is said to be a char-
 acteristic value of the index 1. On the other hand a value at which the elements
 do all vanish is said to be of the index 2. It is not difficult to see that in this
 latter case its multiplicity must also be at least 2, and hence that in every case

 (14.6) (The index) ? (The multiplicity).

 There is material advantage to be gained by formally regarding a value whose
 index is 2 as being, in fact, two coincident characteristic values. We shall here-
 with, once for all, adopt this convention.

 The determinant A (X) is an analytic function for all values of X. The number
 of its zeros in any finite region of the X plane is, therefore, finite. Thus, in par-

 ticular, only a finite number of these zeros fulfill a relation I XI < N, whatever the
 constant N may be, a fact from which it follows that they-the characteristic
 values-may be sequentially ordered in a succession of non-decreasing absolute
 value. With the assignment of subscripts in such a succession, the characteristic
 values thus follow each other in the array

 (14.7) X0, X1, X2, X3*

 In this, then,

 (14.8) Xr |<Xr+li I
 for every subscript r. Each characteristic value of the index 2 occurs in the
 array twice, occupying, as we may and shall assume, two consecutive positions.
 Each characteristic value of the index 1 occurs just once.

 Consider now any characteristic value Xr that is of the index 1. The pairs of

 values (hl, )= (h(T), h2()) which satisfy the system (14.2), namely for which
 (r) (r)
 h2 A1,1(Xr) + hi Al,2(Xr) = 0,

 (14.9) h2r A2,1(Xr) + hr) A2,2(Xr) = 0,
 have in this case members that stand in a fixed ratio to each other. Any such
 pair yields through the formula

 (14.10) Ur(X) = h2 101(x, Xr) + hi T42(x, Xr),
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 an associated solution for the boundary problem, and the solution so obtain-
 able from any other pair is a mere multiple of this. The function ur(x) is known

 as a characteristic solution (Eigenfunktion) of the boundary problem.

 If now, on the other hand, Xr and X,r+ are the designations of a characteristic
 value of the index 2, then at this value the system (14.9) is vacuous since each

 quantity A ,j(X,) is zero. There is, therefore, no restriction upon the choice of
 hl, h2, and hence in particular two pairs that are not multiples of each other may
 be taken. These lead through the formula (14.1) to two linearly independent
 characteristic solutions ur(x), ur+i(x), which we may regard as associated with

 the values X. and X,+1 respectively. Thus in every instance each symbol X, has
 associated with it a function u,(x).

 There exist boundary problems that have only a finite number of character-
 istic values or even none at all. There also exists, however, a large class of such

 problems for which the characteristic values are infinitely numerous. It is only
 to problems of this latter category that the continuing discussion will, in all its
 phases, be relevant.

 CHAPTER 15

 The adjoint boundary problem. With the coefficient functions p(x), q(x), and
 r(x), that occur in the expression (13.2) let M(S, X) be defined by the formula

 (15. 1) M(c, )- " - (po)' + [q(x)X + r(x) ]4.

 This differential form is said to be adjoint to the form L(4, X). It is customary
 also to refer to it as the adjoint of L(b, X). If it is completely written out, thus

 "- p(x)4)' + [q(x)X + r((x) - ],

 and its adjoint is in turn constructed, this latter is found to be again the form

 L(0, X). The relationship of being adjoint is thus a reciprocal one, either of
 two forms so associated being the adjoint of the other. For the two adjoint
 forms the equality

 d
 (155.2) VIL(, X) - 4)M(s, X) =-Q(7, A, x),

 dx

 with

 (15.3) Q(47, V/, x) _)'(X)V(x) - 4 (x)0t'(x) + p(x)4(x)Vt(x),

 is easily verified for any two suitably differentiable functions X and V/. The rela-
 tion is thus an identity. It is generally known as the "Lagrange identity," and is
 the' source of many important analytical formulas.

 The notion of the adjoint relationship is extensible in the most direct and
 immediate way to differential equations such as the equation (13.3). This latter
 and the equation
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 (15.4) M(N, X) = 0,

 are thus likewise said to be adjoint. As the discussion proceeds there will be
 ample illustration of the manner in which the differential equations of an ad-
 joint pair, or their respective solutions, interplay in the development of a
 theory. Even here it may be observed that the solubility of either equation
 implies that of the other, since the, solutions of either are simply expressible in

 terms of those of the other. Thus if the solutions 01(x, N), 02(X, X) of the equa-
 tion (13.3) and their Wronskian (13.4) are used to construct the functions
 i'1(x, N), +/2(x, N) by the formulas

 - 402(X, )4i(,X

 (15.5) V/l(xl X) = n(( x) ) ,2(x, X) --Q(', X))
 these latter are found by direct substitution to satisfy the equation (15.4). They
 are similarly seen to fulfill the relations

 (15.6) Q(i X if x =j
 0i f j i I

 and to be linearly independent. In terms of them the general solution of the
 equation (15.4) is accordingly expressible in the form

 (15.7) v(x, X) = k2VI1(x, I) + k1V12(x, X),

 with coefficients kl, k2 that are free from x. The relations (15.6) when applied
 to the form (15.7) yield at once the evaluations

 (15.8) Q(G0, v, x) = k2,
 Q (02, V, X) = ki.

 The extension of the notion of the adjoint relationship to the complete
 boundary problem (13.10), although it is not immediate is nevertheless possible,
 and may in fact be made in several formally different but essentially equivalent
 ways. We shall do this in the following manner. Consider the differential system

 M(v, X) = 0,

 v(a) = /12a1,1(X) + i1a2j1(X),

 (15.9) v'(ac) + pt(a)v(a) = I2al,2(X) + i1a2,2(X),

 - v(b) = 2aE1,3(X) + M1a2,3(X),

 v'(b) - p(b)v(b) = IJt2a1, 4(X) + M1a2,4(X),

 in which there occurs besides the function v(x) also a pair of "parameters" p, /2
 that are independent of x. The coefficients aij(X) are to be those which were
 defined by the formulas (13.7). We shall show that this system in- fact defines a
 boundary problem which is essentially of the type (13.10), and that the param-
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 eters pi, /2 may be looked upon as standing for certain specific linear forms in
 the values v'(a), v(a), v'(b) and v(b), with coefficients that are functions of W.

 The condition that the set of boundary relations of the system (15.9) be

 consistent in the "unknowns" IXi, /X2, iS that the matrix

 v(a) al,l a2,1

 -v'(a) + p(a)v(a) a 1,2 a2,2

 - v(b) al,3 a2,3

 v'(b) - p(b)v(b) al,4 a2,4

 be of the rank 2. Now by hypothesis there is, for every X, some two rowed
 determinant from the last two columns of this matrix that is not zero. This
 occurs as a minor in two of the three rowed determinants of the matrix. The
 results of setting these latter equal to zero are two equations in the quantities
 v'(a), v(a), v'(b), v(b). That these equations are independent follows at once
 from the fact that each contains one of the four quantities which the other does
 not contain. Thus the differential equation of the system (15.9) is seen to have

 imposed upon it two linear boundary conditions. A boundary problem is thus
 defined. The boundary relations of this problem evidently have coefficients
 that are polynomials in X. To this significant extent the problem is accordingly
 similar in form to the problem (13.10). It is true that the coefficients of the
 boundary relations of the system (13.10) were taken to be linear polynomials,
 whereas those of the newly found system may be quadratic. That, however, is
 not truly important, for the assumption of the coefficients of the problem (13.10)
 to be of the first degree in X was motivated only by the desire for simplicity,
 and is in no way essential. Finally some pair of the equations (15.9) is always

 solvable for pi and M2. By that solution /j and /u2 are expressed as linear forms in
 the values v'(a), v(a), v'(b), v(b) as was asserted above to be possible.

 It is a matter to be observed that if in the equations (15.9) the parameters

 Ml, /2 were to be both zero, it would follow that v'(a) and v(a) would also neces-
 sarily vanish. Only the trivial solution of the differential equation M(v, X) con-
 forms to these values. Since this solution is to be ruled out of the discussion, it

 is evident that the simultaneous vanishing of pi and M2 iS likewise to be barred.
 It is to be understood henceforth, therefore, that of the value pair Ml, M2 at least
 one member is in every case different from zero.

 If in any differential system the differential equation is replaced by its gen-
 eral solution, and the boundary relations are replaced by independent linear
 combinations of them, the content of the system clearly remains unchanged. In
 consonance with this let the first two of the boundary relations of the set (15.9) be

 multiplied respectively by the factors ch (a, X) and Oj(a, X) with j = 1, 2, and let
 them then be added. The left-hand members thus obtained are found to be

 Q(4j, v, a), and thus by the relations (15.8) the resulting equalities are

 (15.10) k3_j = JU2A ()(X) + M1A2 a(X), j = 1, 2,
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 with

 (15. 11) A!a (X) = ao,l(X)40f (a, X) + ao, 2(X)4j(a, X), i, j = 1, 2.
 In a similar way the last two of the relations (15.9) may be combined with

 the multipliers -c (b, X) and -cj(b, A) to assu-me the forms

 (15.12) k3_j = IJ2[A (X) -A1(X)] + Md[A2a2(X) - A2, (X)], j = 1, 2.
 In content the equations (15.7), (15.10) and (15.12) are thus equivalent to the
 set (15.9).

 Consider now the case in which X is any characteristic value of the boundary
 problem (15.9), namely a value for which a set of elements v(x), ml, ,u2, fulfilling
 the equations (15.9) exists. From the fulfillment of the equations (15.10) and
 (15.12) it follows then at once that

 (15.13) A2A1,1(X) + /LA2,l(X) = 0,
 /2A1,2(X) + -4lA2,2(X) = 0.

 Since ,ui and 12 are not both zero, the detelminant of this system must vanish.
 This determinant is, however, precisely A (X), as that was defined by the formula
 (14.4). Thus X must be a root of the equation (14.5), namely a characteristic
 value of the boundary problem (13.10). Every characteristic value of the adjoint
 boundary problem is thus also a characteristic value of the given one.

 The converse of this may also be established. Thus let X, be any value from
 the set (14.7). WithX at this value the system (15.13) is non-trivially satisfiable
 by values y(n)4, l(8), which, of course, fulfill the relations

 (n) (n)

 /2 Al,l(Xn) + Al )A2,1(Xn) = 0,

 (15.14) n) Al;2(n) + n A2,2(Xn) = 0.

 Let vn(x) be the solution of the first three equations of the set (15.9) with X=Xn
 and yj=4 - ) j = 1, 2. The familiar "existence theorem" for a linear ordinary
 differential equation [17] gives assurance of both the existence and the unique-
 ness of this function. Now with the values at hand the equations (15.10) are ful-
 filled. Because of this, however, and with the equations (15.14), the relations
 (15.12) are seen to be also fulfilled. This means that the entire system (15.9)
 admits this solution, namely that Xn is also a characteristic value of the boundary
 problem (15.9). We may go even somewhat further. If the index of Xn relative
 to the boundary problem (13.10) is 1, the system (15.14) determines the values
 Yl(n) ,2(n), except for a common multiplicative factor which remains arbitrary.
 From the manner in which vn(x) is determined it is then seen that this function
 is also fixed except for a constant multiplier. If, on the other hand, Xn is of the
 index 2 relative to the boundary problem (13.10), the system (15.14) admits of

 solution by two linearly independent pairs of values Ml, M2. Each of these leads in
 the manner described to an associated solution v(x), and the two of these so ob-
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 tained are also linearly independent. It has thus been shown that adjoint bound-
 ary problems have the same characteristic values, and, moreover, that each
 such value has the same index relative to each of the two problems.

 For the characteristic solutions vn(x) of the boundary problem (15.9) the
 formula (15.7) yields the form

 (15.15) Vn(x) = k(n ifi(x, Xn) + kn I2(x, Xn).
 The coefficients in this, as they may be drawn from the equations (15.10), have
 the evaluations

 (n) (n) (a) (n) (a)
 k = ,2 Al,l(Xn) + y1 A2 1(X\n)X

 (15. 16) (n) (n) (a) (n) (a)
 k( = L12 Al,2(Xn) + Yi A2,2(in).

 In general the boundary problems (13.10) and (15.9) are distinct. In a re-
 stricted class of cases, however, they may be effectively the same. Boundary
 problems of this class are said to be self-adjoint. Many familiar physical phe-
 nomena admit of mathematical formulations in terms of self-adjoint differential
 systems.

 CHAPTER 16

 Generalized orthogonality. Of the methods for the determination of coeffi-
 cients in a trigonometric representation, that of Euler (Chapter 8) Was seen to
 be by all odds the simpler one. It is more direct and very much shorter than
 Fourier's (Chapters 10, 11). And this advantage was recognized in Chapter 11
 to be attributable essentially to the fact that from the very start it exploits
 strategically the peculiar properties of the functions in terms of which the
 representation is made. These properties are particularly those which enter into
 the so-called orthogonality of the trigonometric functions, namely, those which
 come to their most familiar expression, at least in part, in the relations (12.1),
 (12.3), (8.10) etc. A directive influence upon the present discussion is evidently
 to be discerned in this fact. The role that is filled by the trigonometric functions
 in the classical theory is to be assigned in this generalization to the characteristic
 solutions of the boundary problem (13.10). The discovery of interrelations be-
 tween these solutions, and especially of such as reduce to orthogonality under
 suitable specialization, therefore appears as a significant issue at this turn.

 In terms of the coefficients hi4 h14), with which the relation (14.10) main-
 tains, let the function U(x, X) be defined by the formula

 (16.1) Ur(X, X) -h2 )1(x, X) + hl 0)+2(x, X).

 This is evidently a solution of the differential equation (13.3), specifically one
 which becomes a characteristic solution of the boundary problem (13.10) when
 1X is given the value )\. If, then, as usual, v"(x) is used to designate the nth char-
 acteristic solution of the adjoint problem, it is clear that
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 L(Ur, X) = 0,

 M(vn, X) = (X - Xn)q(x)vn(x)-

 In virtue of these relations the identity (15.2), with U,(x, X) and vn(x) in the
 place of c and VJ, yields, upon integration, the equation

 rb

 (16.2) (X - Xn) f q(x)Ur(X, X)Vn(x)dx = Q(Ur, Vn, a) - Q(Ur, v, b).

 Now when pi48, 4u7 and X,A stand in the place of Ml, M2 and X, the boundary
 relations of the system (15.9) are fulfilled by the function vN(x), while their right-
 hand members may be written as

 /,2 [0al j(-) ( - XA)31,j] + l [la2,j(X) - (A - Xn)P2 j], j = 1, 2, 3, 4.

 Upon multiplying them respectively by U' (a, X), Ur(a, X), Ur' (b, X), Ur(b, X),
 and then adding them, it is accordingly found that

 (n) Al(r )+y(n) A2U~X
 Q(Ur, Vn, a) - Q(Ur, Vn, b) = /M2 Ai(Ur, X) + 1 A2(U7, X)

 - ( - X )[ir2 2UB(Ur) + B2(Ur)],

 the symbols Bi having been introduced here in the sense

 (16.3) Bi(4) =_ Oi,0'(a) + i3,24(a) + Oi,34'(b) + fli,40(b), i = 1, 2.

 The equation (16.2) therefore assumes, after a division by (X-Xn), the form

 b

 (16.4) q(x) Ur(x, X)vn(x)dx + ,U2Bl(Ur) + M, B2(Ur) =

 in which the right-hand member is explicitly given by the formula

 (n) (n)
 (16.5) 'In,r (X) _ 2 Al(Ur, X) + yi A2(Ur, A) Xn.

 X - ni n

 We are to be specifically concerned with the form of the relation (16.4) and hence
 with the value of the expression (16.5) when N=N,.

 From the relations (16.1) it is to be seen at once that

 (16.6) Aj(Ur, X) = h2() A;,i(X) + h() Aj,2(X), j = 1, 2.
 The equations (14.9) thus assure the relations

 (16.7) A j(Ur, Xr) = 0, j = 1, 2,

 and from these it follows that the expression (16.5) vanishes at X., whenever
 Xr %Xn. For its evaluation at X = n we may observe that by virtue of the formulas
 (16.6) the numerator of the expression (16.5) may be written out explicitly as

This content downloaded from 128.210.107.27 on Fri, 31 Jan 2020 00:44:54 UTC
All use subject to https://about.jstor.org/terms



 56 FOURIER S SERIES

 hr2 [M2 A1,1(X) + n A2,1(X)] +1 [/.)2 A1 2(X) + z1 A22 (X)]

 and that the relations (15.14) thereupon show it to reduce to zero at X.. At this
 value of X the expression (16.5) is, therefore, indeterminate. To fulfill the rela-

 tion (16.4) it must, however, be continuous. The value to be assigned it at X,
 is, therefore, that which is obtainable by an application of the familiar "l'Hospi-
 tal's rule," namely, with the use of a superscribing dot to denote a derivative
 with respect to X, thus

 (16.8) F(x, Xn) - EF(x, X)]

 the value

 (16.9) pn,-r(Xin) - 2 A (Ur X.) + X A n)A

 For the further analysis of this formula we must distinguish between the case in
 which the index of Xn iS 1, and that in which it is 2.

 If Xn is of the index 1 we are still concerned with the formula (16.9) only in
 the case that r = n. In this instance the relation

 (16.10) Ao,7(Xn) #? 0,

 is, moreover, fulfilled for some choice of the subscripts a-, r, and this implies
 through the equations (14.9) and (15.14) that

 (16. 11) ~hn #0, 4n) #o .

 Now the relations (14.4) and (16.1) assure the equation

 |Al(Un X) A2(Un, X) |- ( n )h()(x

 and a differentiation of this, together with the evaluations (16.7), shows that

 A1(Un, Xn) A2(UnT Xn) - (_ 1)t14)A()

 |Al1,T (Xn) A 2 ,T (n) Tl(n

 The determinant on the left of this equality is, however, that of the system
 which is comprised of the equation (16.9) with r =n, and the equation

 (nt) (nt)

 0 = /2 Al,T(Xn) + Al A2,T(Xn),

 which is one of the pair (15.14). The eliminant of the coefficient of A?,T(Xn) in
 this system is, therefore, found to be the relation

 (n) (n)

 (16.12) 4n,n(Xn) = (- 1)+ T() A(Xn)
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 The right-hand member of this is different from zero or equal to zero according
 as the multiplicity of Xn as a root of the characteristic equation (14.5) is equal
 to or greater than 1. It has been shown thus for the case at hand, namely when
 the index of Xn is 1, that the relations

 = 0, if r n,

 (16 . 13) i~){' O if r n,

 maintain if and only if the multiplicity of Xn and its index are equal.
 Consider now the case of a characteristic value Xn of the index 2, and let its

 designations in the array (14.7) be Xm and Xm+,. The set of equations obtained
 from the relation (16.9) when n and r are given values from the pair m, m+1,
 yield the determinant relation

 (in) (m+1)
 fbm,m(XAn) 'bm+1,m(Xn) l_ A(Um, Xn) A2(Umi Xn) j2 U2

 I 1 ~~~~~~~~~~~(i) (M+ 1)

 'Ibm,m+i(Xn) b1m+1,m+i(Xn) Al(Um+l Xn) A2(Um+l Xn) Igi i Pi

 Now the formulas (16.6) assure the equation

 Al(Un, X) A2(Um, X) h2 k2 l
 |AI(tTm+,, X) A2(Um+l, A,) I sh(m) h (M+l) I \(X) I

 and a two-fold differentiation of this together with the evaluation (16.7) leads
 to the equality

 (in) (m+1)
 Al(Um, n) A2(Um, n) I|2 h2

 2 (in) ~~~~~~(m+1) A(xn)
 2 A1(Um+1, Xn) A2(Um+l, Xn) - Ihi hi

 The combination of this result with that above evidently leads to the relation

 (m) (m+1) (m) (m+1)
 'I'm,mGkn) 4'm+i,in(Xn) 1 /1t2 / 2 A2

 ( 1 6 .14) - (m) (m+ 1) (m) (m+l) A(Xn)-
 (. m,m+i(Xn) 'Im+1,m+1(Xn) 2 ,Lt1 gi h1 A1

 If the multiplicity of Xn is greater than 2 the right-hand member of the
 equation (16.14) is zero. It is clear that in that case the equation is contradicted
 by the relations (16.13) and that these latter, therefore, do not maintain. If,
 on the other hand, the multiplicity of Xn is 2, namely the same as its index, no

 such contradiction is involved. If in this case the parameter pairs e, y2 and
 AO, +1, y9Z+1, which have thus far been left unspecified except that they be
 linearly independent, are now specified to fulfill the relations

 /42 Ai(Um+l, Xn) + yj A2(Um+l, Xn) = 0,
 (16.15) (m+1) .(in+1)

 /(12 .1A(Um, Xn) + gi+1 2(Um, Xn) = 0,

 it follows at once through the equations (16.9) that 4'm,m+i(Xn) = 4'm+i,mi(An) = 0,
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 58 FOURIER S SERIES

 and then through the equation (16.14) that 4n,n(Xn)i0, for n=m, m+1. The
 relations (1'6.13), which by virtue of the equation (16.4) take the form

 (16.16) b ~ ~ iU) '~2U)10, if r 74n,9
 (16.16) rJ (x)ur(x)vn(x)dx + 2 B (u,) + g #BO, { fr=n

 thus maintain whenever the characteristic value Xn is one whose index and
 multiplicity are equal, and do not maintain in any other case. These relations
 are the ones that were sought. They are, namely, those which are expressive of
 the generalized orthogonality which subsists among the characteristic solutions

 of two boundary problems that are adjoint.

 CHAPTER 17

 The formal representation of an arbitrary function. In the instance of any

 boundary problem which admits of infinitely many characteristic solutions, the
 physical context in connection with which the problem arises leads in a natural

 way to the question of the representability of an arbitrary function in terms of
 these solutions in the manner

 00

 (17.1) f(x) = CTUr(X).
 r=O

 This has already been observed in several instances of the Fourier theory, which
 is, of course, exemplary of the more general case. As in the trigonometric case,

 the crux of the formal problem thrown up in this way devolves upon a deter-
 mination of the coefficients cr. We shall consider this matter now, not in a rigor-
 ous way, but formally. The relation (17.1) will, therefore, be taken to be amen-
 able to all such operations as shall be made upon it, and no consideration will be
 given to matters of convergence. The deductions will, therefore, of course, be

 levoid of all power of proof. Their purpose is purely an exploratory one.

 To begin with, let the symbols fi, i =1, 2 be used as abbreviations for the
 expressions Bi(f), as these latter are obtainable from the relations (16.3). the
 equation (17.1) thus has associated with it the pair of auxiliary relations

 00

 (17.2) = C crBi(Ur), i = 1, 2,

 and in terms of the elements f(x), fi and f2 the formulas

 I b
 (17.3) In(f) q(x)vn(x)f(x)dx + ,U2 fl + Y1 f2, n = 0, 1, 2, * *

 a

 may be taken to define their left-hand members. Upon substituting into these
 formulas the infinite series evaluations (17.1) and (17.2), interchanging the order
 of the integrations and summations, and collecting the terms in any coefficient

 cr, it is found that alternatively
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 FORMAL REPRESENTATION OF AN ARBITRARY FUNCTION 59

 In(f) = E
 r=O

 The symbols 4n,r(Xr) in this stand, as heretofore, for the left-hand members of
 the relations (16.16). Since these latter vanish whenever r $n, the equation
 reduces to the simple form

 (17.4) In(f) = Cn<bn,n(n)-

 Let it be assumed now as a hypothesis which is to cover the entire remaining
 portion of these deductions, that the boundary problem (13.10) in question is one
 for which there are infinitely many characteristic values, and for which, moreover,
 each of these is of a multiplicity that is equal to its index. By the relations (16.13)
 the equations (17.4) yield, then, for each n, the evaluation

 (17.5) In(f)
 Dn ,n (Xn)

 It will be evident even from the most casual review of the procedure de-

 scribed that it is limited, insofar as actual applicability is concerned, to the
 functions of a materially restricted class. The expressions Bi(f) are, for instance,
 significant only for functions that are differentiable at x = a and x = b, while other
 heavy restrictions are manifestly involved. Beyond that it is clear that the result

 can imply nothing of the representability of a function f(x), since that repre-
 sentability was at the very outset assumed. A theory of representation must,
 accordingly, be approached differently.

 Let it be supposed, therefore, that a function f(x) which is arbitrary except

 that it possesses certain requisite properties of integrability, and a pair of con-

 stants fl, f2 are given. The constants are likewise to be regarded as arbitrary. In
 particular they need have no specific relation to the values of f(x). From these

 elements f(x), fi, and f2 the values In(f) are constructible through the formulas
 (17.3). There is thus associated with them a sequence of constants (17.5), or,
 in other words, a series of the form (17.1). We shall indicate this association in
 the manner

 (17.6) f(l) n(f)Un(X)
 n=O Dn,n(n)

 There is no implication at this stage that the series here written down is con-
 vergent, or, even should that be the case, that its value is f(x). The continuing
 theory is to be shaped toward the investigation of those matters. As it stands, the
 series is to be approached afresh and with no regard for the manner in which it
 was deduced. Its convergence is to be studied. Any conditions, if such are found,
 under which the series does converge and to the value f(x), will be conditions
 under which the symbol of association in the relation (17.6) may be replaced
 by one of equality and a theory of representation maintains. The direction of
 our further theoretical developments is thus forecast.
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 CHAPTER 18

 Some examples. Throughout the discussion thus far no references whatso-

 ever to illustrative examples have been made. A stage has now been reached,
 however, at which the consideration of some explicit cases may be both interest-
 ing and instructive. We shall, therefore, interrupt the theoretical developments

 at this point to review some particular examples with the special purpose of
 illustrating concretely some of the salient features of the theory as it has thus

 far been deduced. It will be seen in connection with one of these cases how the
 present more general theory wholly includes that of Fourier.

 Because of the breadth of the basis upon which the theory is built, it is a sim-
 ple matter to construct in great variety examples that are subsumed under it.
 In the choice that is set forth below, however, an effort has been made to avoid
 in as large a measure as possible all such complications as are not germane to
 the matters essentially at issue. Such could be only distracting and not illuminat-
 ing. For this reason, in particular, the boundary problems that are drawn upon
 have all been chosen to be such as involve differential equations that are ex-
 plicitly solvable. The theory in no way requires that. For convenience in the
 notation the symbol p has been introduced to stand for a square root of X, thus

 (18.1) p2 = X

 This, however, is to be looked upon merely as an abbreviation. The effective
 parameter -will continue to be X even when an expression is written in terms of p.
 It will generally be found on this account that a form that is indeterminate as

 to p is quite specific in X, as is the case with the form sin atp/p, which near X = 0
 is to be thought of as defined by the power series

 a3 a5
 a!- - X + .n2 .. .

 3! 5!

 It may also be worth observing in conjunction with the notation defined through
 the relation (16.8), that

 1 aF
 (18.2) F = -- a

 2p clp

 Example 1. The boundary problem

 2 / 2
 u"-- '-t 2) X = ,

 (18.3) (2

 23r
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 SOME EXAMPLES 61

 The fundamental interval at the ends of which the boundary relations of this
 problem apply, namely 1r/2 ? x ? 37r/2, is one upon which the differential equa-

 tion has continuous coefficients and no singular points. Beyond that the coeffi-

 cients ai,oj of the boundary relations are the elements of the matrix

 0 1 0 0 1

 11o o o 1 1

 and this, the matrix (13.8), is of the rank 2 for all values of 'X. The boundary
 problem is thus of the type (13.10). Its differential equation admits as linearly
 independent solutions analytic in A, the functions

 +1(x, ) x[eP$ + e-Px]

 02(X, e)-- [eP- e-P,
 p

 and as it is formed from these the determinant (14.4) is

 2 [eP/2 + e-P1r/2] l [epr/2 - e-pr2]
 2 $2p

 2[e3pr/2 + e-3Pr/2] 2[ePpI2 - e-3Pr/2]
 22p

 The evaluation

 i\(X)= t[2P7 - eP ]

 shows that its zeros occur at the points p = ? ni, with n = 1, 2, 3, . At each of
 these points the determinant A(X) is reduced to the rank 1 and A (X) is not zero.
 The characteristic values, which are infinitely many, are thus all of the index
 aiid multiplicity 1. They are to be arranged after the fashion (14.7) in the order

 Xn = - (n + 1)21 n = 0, 1, 2, * X < .

 When r is any even integer, say r = 2n, the coefficient of h22n) in the first one
 of the equations (14.9) is zero. This is seen to determine h(21) to be zero, while
 leaving h22s) arbitrary (not zero). This latter coefficient may evidently be chosen,
 therefore, so that the respective characteristic solution, as it is given by the

 formula (14.10), is explicitly

 U2n(x) = x cos (2n + 1) x.

 In a quite similar manner it is found that 4n-1) = 0, and that we may accordingly
 choose

 U2n_l(x) x sin 2nx.

 By the formulas (15.9) the differential system adjoint to (18.3) is
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 2
 V"/ + v'- XV-O ,

 x

 V (2) = 0,

 - V () - )- V () 2=-2

 4p

 2~ ~ 2 /

 ~2(x, X) - [e + oef]

 /37 4 /337

 vt)3 vg 2)=

 Of the equations in this, the frst, the second, and the fourth, effectively define
 the adjoint boundary problem, while the remaining ones give equivalents of the
 parameters v( andx)2. The formulas (be5.5) yield as solutions of the dieerential
 equation in this system the functions

 V{1(X, )- [ePx - e-px]
 4px

 {P2(x, X))- 4x ePx + e~P]

 The equations (1 5.16) show that for any n, kl"-' = and ka" 0. The ch aracter-
 istic solutions v,,(x) may accordingly be taken to be

 sin 2nx
 V2n-l(X)- -

 cos (2n + 1)x
 V2n(X) -

 x

 The boundary problem (18.3) does not involve X in its boundary relations.

 Hence the constants &, that appear in the formulas (13.7) and (16.3) are all
 zero, and the forms (16.3) accordingly all vanish. The relation (16.4) thus shows
 that

 3 3/2

 4)n,r(xr) = - Ur (X)vn(x)dx,
 7T/2

 and the relations of orthogonality (16.16) therefore assume a familiar, purely
 trigonometrical form. With the special choice of constants fi=0, f2=0, the
 formulas (17.3) and (1 7.6) yield, in association with an arbitrary function f(x),
 the series of characteristic solutions

 f(x) cOx cos x + clx sin 2x + C2X cos 3x + c3x sin 4x + *

This content downloaded from 128.210.107.27 on Fri, 31 Jan 2020 00:44:54 UTC
All use subject to https://about.jstor.org/terms



 SOME EXAMPLES 63

 with the coefficients

 2 3r/2 sin 2ns
 C2n1 -J f(s) ds,

 Ir r/2 S

 2 3r/2 cos (2n + 1)s
 2n = - f(s) - ds.

 J7r/2 S

 Example 2. The boundary problem

 1 167r2x2
 "-u -u + -Xu = ,
 x 9

 (18.4) uu(1) = 0,

 2u'(1) - u'(2) = 0.

 This boundary problem is of the form (13.10) on the fundamental interval
 1 ?x _2. Its differential equation admits the solutions

 +1(X, Co 3 C (X2)

 1 /2rp\
 +02(X, ) =- sin ( x2),

 and as formed from these functions

 Cos2'rpX 1 si {27rp\
 cosrVp3 8 + 3(

 ()=87rp~ F 87rp ~ 27rpN 87r (27rp /87rp .
 - sin--) sin (-)] C[o (, cos

 The evaluation

 8,ir

 NX) = (1 - cos 27rp),

 shows that the zeros occur at the points p =0 ?1, ?2, . There are thus
 infinitely many characteristic values, and since at each of them the determinant

 is reduced to the rank 1 they are all of the index 1. We may accordingly write

 n =n2, n = 0, 1, 2, - - - .

 But it is now seen at once that A(X)=0 for each n. The characteristic values
 are thus each of a multiplicity that is higher than its index and the boundary
 problem is therefore excluded by the hypothesis of chapter 17.
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 Example 3. The boundary problem

 u" + Xu = O,

 (18.5) u(- 7r) u (7r) = 0,

 u'(- 7r) -U'(r) = 0.

 On the interval -7r<x? r this boundary problem is of the form (13.10).
 We find for it

 sin px
 (18.6) kl(x, X) cos px, +2(x, X)_

 p

 and accordingly

 2
 O -- sin p7r

 (18.7) A(X) p

 2p sin pr 0

 Since from this

 (18.8) 'A(X) = 4 sin2 ps,

 its zeros occur for p = 0 1? ? 2, . At the first of these the rank of the

 determinant (18.7) is 1, at all others it is 0. The first characteristic value o = 0
 is thus of the index 1 and the remaining ones are of the index 2. They are ac-
 cordingly to be arranged thus

 (18.9) Xo = 0 X2n-1 = X2n =2 n=1, 2, 3,**.

 Each value is found to be of a multiplicity equal to its index. By the relations
 (14.9) it is shown that h(?) = 0, so that the first characteristic solution is uo(x) 1,
 or any multiple of this. For the other characteristic values the equations (14.9)

 are vacuous and the coefficients h(I) and h2() accordingly arbitrary. We may
 therefore choose u2n1(x) and u2.(x) as +1(x, ?X2n-1) and 02(X, X2n) respectively,

 u2n1l(x) cos nx,

 U2,(X) sin nx.

 The boundary problem (18.5) is readily seen to be self-adjoint. It is, there-
 fore, admissible to choose v"(x) -u (x) for every n. Since the boundary relations
 are independent of X the forms B,(un) all vanish, and it is found accordingly that

 rX

 'In Ir(xr) = f Ur(X)Un(X)dx.

 The relations (16.13) are thus, in this instance, merely expressive of the familiar
 property of orthogonality of the sines and cosines of multiples of x. With the
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 choice of constants fi=O, f2=0, the formulas (17.3) and (17.5) define the co-

 efficients cn to be those of Fourier, and the relation (17.6) is simply the associa-
 tion of a fuLnction f(x) with its Fourier series.

 CHAPTER 19

 Another example. Although the examples that have been cited in the chapter
 above were earmarked among themselves by some conspicuous qualitative dis-
 similarities, they fail, even when taken together, to illustrate adequately some
 of the more pronounced departures from classical theory which the generaliza-

 tion permits. The reason for this lies in the fact that the boundary problems
 that are basic to them all involve only such boundary relations as do not depend
 upon the parameter A. In the following a problem of the excepted class is to be
 briefly analyzed.

 Example 4. The boundary problem

 u" + 4Xu = 0,

 (19. 1) u(O) = 0,

 u'(l) + [V2 + 1 - X]u(i) = O,

 with v standing for any real constant.

 Such boundary problems as this present themselves in connection with a
 variety of physical investigations of which the following ones may be looked
 upon as in some measure typical. [18]

 Problem (i). A right cylindrical solid with a cross-section of any shape and
 size, and with plane terminal faces at x = 0 and x = 1, has its lateral surface insu-
 lated against the passage of heat and has an initial distribution of temperatures

 depending only upon the longitudinal co6rdinate x. At the time t = 0 this solid is
 placed in contact with a quantity of liquid at one of its terminal faces, and the
 liquid is thereupon kept well stirred to insure that the temperature is uniform

 throughout it at each instant. The temperature of the liquid and the temperature
 distribution in the solid at any subsequent time are to be calculated.

 Problem (ii). A solid metal sphere with an initial distribution of temperatures
 that is symmetrical about its center, is cooled by being plunged into a mass of
 liquid. The liquid is kept well stirred. The temperatures of the liquid and those
 within the solid during the cooling are to be determined.

 Problem (iii). A mass of material is uniformly distributed at the time t =0
 throughout a jelly in a cylindrical container. The jelly is covered with a liquid
 that is kept well stirred. From the experimental measurements of the concentra-
 tion of material in the liquid as a function of the time, the coefficient of diffusion
 of the material in the jelly is to be found.
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 The boundary problem (19.1) is of the form (13.10). Its differential equation

 admits as solutions the functions

 p1(x, X) cos 2px,

 (19.2) sin 2px
 +2(X, X)_

 p

 and the evaluation of the determinant

 1 0

 (1 9. 3) AGkX) -2p sin 2p+(v2+1-X) cos 2p 2 cos 2p+(v2+1-X) P
 p

 gives as the characteristic equation

 sin 2p
 (19.4a) 2 cos 2p + (v2+ -p2) 0.

 p

 Alternative forms of this are

 (19.4b) cot 2p = p +
 2 2p

 and

 (19.4c) -4pi (p + i)2-
 (p - j)2 2

 The characteristic values are thus the squares of the roots of a transcendental
 equation and it is readily seen that they do not admit of expression by any
 elementary formula. The essential facts concerning them are nevertheless deduci-
 ble.

 Thus if p is any complex value with a positive imaginary part, the point
 (p+i) in the complex plane is more distant than the point (p-i) from any point
 on the axis of reals, and hence in particular from the points v and -v. Hence

 I (p + i) - vI > I (p - i) - vI

 I (p + v I > I (p - i) + v I

 and from these relations it follows that the right-hand member of the equation
 (19.4c) is greater than 1 in absolute value. But for a value of p such as this the
 left-hand member of that equation has an absolute value that is less than 1.

 This p is, therefore, not one for which the equation is satisfied. A similar argu-
 ment establishes that same fact for any value of p that has a negative imaginary

 part. The roots of the equation must thus all be real.
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 Now that being so, it is observable from the equation in the form (19.4b),
 that its roots are the abscissas of the points common to the graphs

 y = cot 2p,

 p V2+1

 2 2p

 in the Cartesian (p, y) plane. These graphs are easily seen to intersect infinitely
 often and without being tangent to each other at any intersection point. From
 this it follows at once that there are infinitely many characteristic values and
 that they are each of the multiplicity 1. From the general relation (14.6), or from
 the fact that the determinant (19.3) has a constant non-vanishing element, it is
 to be seen that every characteristic value is of the index 1.

 By the first one of the equations (14.9) it is shown that for each r, (r)= 0.
 The characteristic solutions may, therefore, be taken as the functions

 (19. 5) Un(x) _ sin 2V/Xn x,

 and since the boundary problem is self-adjoint we may also take vn(x) _un(x).
 The formulas (16.3) and the boundary relations of the system (15.9) give in this
 case the evaluations

 Bl(ur) 0, B2(Ur) -U,(1)

 (n) - o ,(n) JU2( - - Vn = - V=(1)

 It is thus found from the equations (16.4) that

 4bn,r(Xr) = 4 Ur(X)Un(x)dx + Ur(1)Un(1).
 4

 Because of the simple form of the functions un(x) the integration in this expres-

 sion is explicitly possible, and the relations of generalized orthogonality (16.16)
 are therefore verifiable upon the basis of the equation (19.4a). The formulas
 (17.3) and (17.5) yield as the coefficients in the association

 co

 (19.6) f(x) E cn sin 2V/1;n x,
 n=O

 the values

 (7 = 4 f (s)un(s)ds -filu'(O) -f2un(1)

 (i19. 7) Cn =

 4 J n g(s) ds + n(1
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 A scrutiny of the formulas (19.7) reveals one of the salient features in which
 this and the Fourier representations are effectively dissimilar. While the coeffi-
 cients of the latter are wholly determined by the functionf(x), those given by the
 formulas (19.7) depend also upon the prescribed constants fi and f2. The same
 function f(x) may thus be associated here with many different representations.
 This is quite consonant with the nature of the physical problems from which
 boundary problems of the type (19.1) arise, as may easily be appreciated from
 a consideration of the problems (i) and (ii) that were cited above. In each of those
 cases the function f(x) represents the initial temperatures in the solid. The sub-
 sequent temperatures therein depend, however, not only upon these but also
 upon the initial temperature of the fluid into which the solid is immersed or with
 which it is placed in contact. It is through the constantsfi andf2 that this initial
 fluid temperature comes to account. [19]

 CHAPTER 20

 The Green's function. A noteworthy feature of the Fourier's series, and one
 which is almost invariably taken as the point of departure for studies of its
 convergence properties, is the fact that any initial segment of it may be ex-
 plicitly summed and hence expressed by a compact formula. This was observed
 in chapter 12, the summation of the segment SN(x) as given by the relation
 (12.7) having been accomplished there by the formula (12.8). It is far from
 obvious that the advantages inherent in this are retainable in the generalization
 of the theory, for the derivation of the formula in question is directly and ex-
 plicitly based upon relationships that are peculiarly trigonometric. We shall
 show that this may nevertheless be done, the key to the requisite deductions
 residing in a certain function, the so-called Green's function, which generally
 plays an important r6le in the theory of boundary problems.

 Let X be taken and retained throughout the deductions of this chapter as not
 a characteristic value of the boundary problem (13.10). This problem then ad-
 mits of no solution, which is to say that a function which fulfills its boundary
 relations cannot also satisfy the stipulations of its differential equation for all
 values of x upon the fundamental interval. Now it is significant that the conces-
 sion which must be made on the part of the differential equation is very slight,
 amounting to no more, in fact, than the partial relaxation of its stipulations at
 only a single point x = s of the interval. The function which fulfills the specifica-
 tions except at x = s may even be required to be continuous there. The failure
 will occur in its first derivative, which is subject at this point to an ordinary
 discontinuity. When this discontinuity is of the proper sign and of the unit
 magnitude, matters which are adjustable without otherwise affecting the issues,
 the function is called the Green's function. Inasmuch as it depends upon the
 location of the point s as well as upon the variables x and X, it is to be denoted by
 the symbol G(x, s, X). Its properties, by way of summary, are, then:
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 (i) As a function of x it satisfies the differential equation of the system

 (13.10) over each of the intervals a <x <s, and s <x <b;
 (ii) It is continuous in x over the whole interval (a, b), but its derivative

 is discontinuous at the point x = s to accord with the prescription

 (20.1) - G(x, s, X) -- G(x, s, =) 1;
 ax x=s'+ aOx x-

 (iii) It fulfills the boundary relations of the differential system (13.10).
 By these properties the function G(x, s, X) is uniquely determined, as the fol-

 lowing derivation of its form will incidentally show.
 As a solution of the differential equation (13.3) the function is expressible

 upon each of the intervals (a, s) and (s, b) as a linear combination of the solutions

 4j(x, X), j = 1, 2, namely

 G(x, s,X) = 1l,24b1(X, X) + 71,102(X, X), for a ? x ? s,

 72,201(x, X) + y2,1+2(x, X), for s < x < b.

 The specifications (ii) impose upon these forms the relations

 'Y2,2Sbl(S, X) + 'Y2,1b2(s, ) = 'y1,241(s, X) + 'yl,1b2(S, X),

 72,21b1 (S, X) + 'Y2,1S2' (S, X) -'Y1,21 (S, X) - 'y1,12 (S, ) = 1,

 in other words, a pair of equations which may be solved into the form

 4bi(S, X)
 'Y1, 'Y 2,1 - (

 2 02(S, )

 Because of the formulas (15.5) these relations are alternatively

 Y1,1 = -2,1-2(S, X),

 'Y1,2 = 'Y2,2 - V11(S, X).

 The formulas for G(x, s, X) are, therefore, more explicitly

 (20.2) G(x, s, X) = 'y2,2S61(x, X) + 'y2,1S62(x, X) + g9(x, s, X),

 in which the final term is that defined by the relations

 (20.3) gi(x, ., ) ={- 1(x, X)11(s, X) - S62(x, X)#2(s, X), for a ? x ? s,
 1 ~~~~0, for s?<x?::_~b.
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 The requirement (iii), that G(x, s, X) fulfill the boundary relations, comes to
 its expression in terms of the symbols (13.9), (14.3) and (15.11), in the pair of
 equations

 'y2,2Ai,1(X) + 'y2,1Ai,2(X) - A(,1 (X)>'1(s, X) - A(,2 (X) f'2(s, X) = 0, i = 1, 2.

 Their solution determines for the coefficients 72,2 and 72,1 the evaluations

 1+1 (a) (a)
 (- 1) Al,1(X) A1,1 (X)1'l(s, X) +Al,,2 (X)Vf2(s, X)

 A(X) j A2,j(X) A2,a (X) V'1(s, X) + A2,2(X) V12(S, X) 1, 2.

 The substitution of these into the formula (20.2) leads to the result

 (20.4) G(x, s, X) = g(x l X + g2(x , s , X-
 g(X)

 in which

 01(X, X) 02(X, X) 0

 (20.5) g2(x, s, X) = - Al,1(X) A1,2(X) Al,l (X)VII(s, X) + A (,) (X) 12(s, X) .
 (a) (a)

 A2,1(X) A2,2(X) A2,1 (X)1V(s, X) + A2,2 (X)>I2(s, X)

 The Green's function has thus been completely determined.
 The method which has in this way been described in connection with the

 differential system (13.10), may now be applied equally well to the calculation
 of the Green's function Ga(X, s, X) of the adjoint system (15.9). If this is done it
 will be found that the two Green's functions are simply related by the equation

 (20.6) Ga(x, s, X) G(s, x, X).

 The function (20.4) thus operates as the Green's function of the adjoint differen-
 tial system when its second argument is taken to be the variable and the first
 one is fixed. The set of its properties enumerated above may thus be extended to
 include the following ones:

 (iv) As a function of s it satisfies the differential equation of the system
 (15.9) over each of the intervals a<s<x and x<s<b;

 (v) It is continuous in s over the whole interval (a, b), but its derivative as to
 s is discontinuous at the point s = x to accord with the prescription

 (20.7) - G(x, s, X) - --G(x, s, X) = P
 as 9= + as ''i3=X .

 (vi) As a function of s it fulfills the boundary relations of the differential

 system (15.9), with appropriate determinations of Ml(x, X) and/42(x, X).
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 It is on the whole simpler to verify these facts than to deduce them. By the
 formulas (20.4), (20.3) and (20.5), the function G(x, s, A) is evidently expressed

 as a linear combination of the solutions VIj(s, X), j= 1, 2, on each of the intervals
 (a, x) and (x, b). The property (iv) is thus assured to it. The forms

 c01(X, X)IP1(S, X) + +2(X, X)1P2(S, X),

 +i(x, x),1 (s, X) + +2(X, X)IN (s, A),

 are readily seen from the relations (15.5) and (13.5) to take on the values 0 and 1
 respectively at the point s = x. By that the properties (v) are implied. Finally the
 formulas (15.5) and (15.11) may be drawn upon to supply the evaluations

 A) (X)il (a, X) + A(2 (X)IP2(a, X) = axi,I(X), i = 1, 2.
 By virtue of them it is clear that

 - ckl(X, X) +k2(X, X) 0

 G(x, a, X) = A A1,i(X) A1,2(X) ai,i(X)
 A2,1(X) A2,2(X) a2,i(X)

 This, however, is simply the statement that

 G(x, a, X) = -2(X, X)al,l(X) + 8i(x, X)a2,1(X),

 namely that the first boundary relation of the system (15.9) is fulfilled, with the
 parameter values

 (20.8) M X) ) 0 A1(X X) 02(X) = 1, 2.

 By the same procedure it may equally well be shown that the remaining bound-
 ary relations are also fulfilled with the same values (20.8). Thus the property
 (vi) maintains.

 Although it will not be relevant to the discussion which follows, a conspicu-
 ous property of the Green's function may still be mentioned. This is, namely,
 that the non-homogeneous differential system

 L(w, X) = F(x),

 A1(w, X) = 0,

 A2(w, X) = 0,

 which is obviously related to the system (13.10), is solved, whatever the function
 F(x) may be, by the formula

 rb
 w(x, X)= G(x, s, X)F(s)ds.
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 CHAPTER 21

 The residues of the Green's function. If the requirement that X be fixed is
 now abandoned and this parameter is, on the contrary, regarded henceforth as a
 variable that is free to range over the complex plane, it is recognizable from the
 formulas (20.3) and (20.5) that the functions gi(x, s, X) and g2(x, s, X) are analytic
 in X. The same is also true of the function A(X). The formula (20.4) therefore
 shows that the Green's function is analytic except for poles, these latter occur-
 ring at and only at the zeros of A(X), namely at the characteristic values. It has
 been assumed as a part of our general hypothesis that each characteristic value
 is of a multiplicity equal to its index. As a consequence of that it will be found

 that for each n the product (X--Xn)G(x, s, X) approaches a finite limit when
 X_-A.. This limit is known as the residue of G(x, s, X) at XA. We shall use the
 prefix "resn" to designate it, thus

 (21 . 1) resn G(x, s, X) = lim (X - Xn)G(x, s, X),

 and shall show that certain residues closely related to these are significantly
 associated with the terms of the series in a representation (17.6).

 Since the function gi(x, s, X) is analytic in X when x and s have any specified
 values, this part of G'(x, s, X) evidently makes no contribution to the right-hand
 member of the relation (21.1). It is, therefore, only the part g2(x, s, X)/A(X) that
 needs consideration. Upon expanding the determinant (20.5) by the elements
 of its last column, therefore, it is found that the relation (21.1) may be more
 explicitly written as

 2 ;k) [A (a) (a)
 reSn G(x, s, X) = lim (X - Xn) Ei(x, X) [A3i,1(X)u11(s, X) + A3-i,2(X)1P2(s, X)II

 WW ~~~i=l

 the functions Ei(x, X) being defined by the formulas

 (21.2) Ei(x, X) =(-) i A (X) A (X)
 A(X) Ai,1(X) Ai,2(X)i=1,2

 From the alternative form

 reSn G(x, s, X)

 (21.3) 2()(a)
 (= {resn Ei(x, X) } [A 3-i,1(Xn)1)1(S, Xn) + A3-i,2(XAn)i2(S, Xn) 1,
 i=1

 it thus follows that the evaluation of the residues of G(x, s, X) may be made to
 depend upon the determination of residues of the functions (21.2). To make
 these determinations we must consider separately the case in which the index of
 Xn is 1 and that in which it is 2. In doing that it will be convenient to employ
 the symbol Sj,j to stand for the "Kronecker delta," namely in the sense
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 {l if ij,

 Of 80 f i j.

 Suppose then, to begin with, that XA is of the index 1. Then

 rn A(X)-

 lim --X = (Xn)i
 X-tN.n X - n

 and there is a pair of subscripts o-, r, for which the relations (16.10) and (16.11)
 maintain. It will be clear that we may write

 (X xni) 41(X, X) 402(X, X) 0
 (21.4) (X - Xn)Ei(xt X) = - - ) A1,1(X) A1,2(X) 63-i,i , i- 1, 2,

 A2,,(X) A2,2(,) 33-i,2

 and that therefore

 41(x, X.) +2(X, X.) 0
 (21.5) resn Ei(x, X) = . A1,() Al,2(Xn) 63-i.

 A(Xn) A2,1(Xn) A2,2(Xn) 33-i,2

 This formula may be considerably modified. It will be seen that if it is multiplied
 on the right by the determinant

 h(n) ,, 0
 (n)

 hi 62,t- 0

 0 0 1

 and this operation is then compensated for by dividing out the value of this
 determinant, (-I)1zh(f, the resulting form is, by virtue of the relations (14.9)
 and (14.10),

 Up(X) 45T(X, Xn) 0

 0 Al,,(Xn) 63-i,1

 (-l)'h(7)i\(Xn) 0 A2,I(Xn) 33-i,2

 The further multiplication of this on the left by the determinant

 1 0 0

 0 31,o 62,, I
 0 (n) (n)
 0 th2 qil

 and the appropriate subsequent- dilvision gives it the form
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 Un (X) 40 (X, x,n) 0

 1_) o+r k(n)(fZ),, ()&X) 0 Aer,r()n) a3s-" I l
 o 0 /j,

 by virtue of the relations (15.14). The expansion of this reduces it, because of the
 equation (16.12), to the evaluation

 (21.6) resn Ei(x, X) = x , i = 1, 2,
 .[n ,n (Xn)

 and the substitution of these results into the equation (21.3), together with an
 application of the relations (15.16) and (15.15), leads to the conclusion that

 (21.7) resn G(x, s, A) =un(X)V(S)
 tn ,n (Xn)

 Finally with the formulas (21.6) and (21.7) at hand it is a simple matter to recog-
 nize that the value of

 (21.8) res, {f q(s)G(x, s, X)f(s)ds + El(x, X)f2 + E2(x, X)fi},

 is precisely the term

 In(f)un(x)

 )n ,n (Xn)

 of the series (17.6).

 If 'X. is of the index 2 and appears in the array (14.7) as Xm, and Xm+l, the rela-
 tion (21.4) is more appropriately taken in the form

 lSl(X, X) k2(X, X) 0

 Al,1(X) A1,2(X) a

 - - xn X -xn

 A2,1(X) A2,2(X)

 (X - X~)E~(-,-X)-= 63-i,2

 0 0 1

 A 1,1(X) A 1,2(X) 0

 X xn X -xn

 A2,1(X) A 2,2(X) 0
 X - xn X - Xn

 Since in this instance each element A ;,j(X) vanishes at )Xns it is seen that
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 lim Ai(X) sj(Xn)
 X - n X n

 and hence that

 401(Xi Xn) 402(Xf XR) 0

 - A1,1(Xn) A1,2(Xn) 63i,1

 resn Ei(x, X) - - O -.
 0 0

 A1, 1(Xn) A 1,2(Xn) 0

 A2,1( Xn) A 2,2(X?n) 0

 Let each one of the determinants in this ratio be multiplied on the right by

 (in) k(m+1) /2 h2 0
 (inM) k(m+i)
 kl hl 0 .
 O 0 1

 Because of the relations (14.10) and (16.6) it then takes the form

 Um(X) Um?l(X) 0

 A l(Um, Xn) A l(Um+l, Xn) 53-ij

 A 2( Um, Xn) A2(Ut?1, Xn) 63-.i,2

 0 0 1

 A l(Um Xn) A l(Um+l, Xn) 0

 A2(Umt Xn) A2(Um+l, Xn) 0

 and if this is again modified by multiplying each of the determinants on the left
 by the factor

 1 0 0
 (m+l) (M+i)

 0 M2 ALl
 (m) (m)

 0 A2 li

 the result, as a consequence of the relations (16.9) and (16.13), is

 uM(x) Um+l(X) 0
 _ O b~m+i,m+i(Xn) (m+l

 'Im,m(Xn) 0 A

 0 0 1

 0 (bM+i,,ml(?n) 0
 4]bm,mn(xn) 0 0
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 Upon expansion this yields the formula
 (n) (m+l)

 Uin(X)12 um+i(X) /.Li
 (21.9) resn Ej(X, X) = + - i = 1, 2

 bm,m(X,) Pm+l,M+l(Xn)

 in accordance with which the relation (21.4) assumes the explicit form

 (21.10) res,G(x, s,X) =--(X)Vm(S) + 1(X)VM+1(S)
 4m,m(Xm) 4'm+i,m+i(Xm+i)

 Thus when Xn is of the index 2 the residue (21.8) is the sum

 1I,(f)U.(X)+ Im,+1WU)m+1(X)
 ?n,M(;XM) 4m++,m+1(m+1)

 of the pair of terms which appear in the series (17.6) in association with X,.
 From these conclusions it may now be seen that if the points representing

 the characteristic values are plotted in the complex plane, and if the first
 (N+1) of them taken in the order of increasing distance from the origin are
 enclosed by a curve CN, the segment SN (x) of the series (17.6) that is made up
 of terms that are associated with these characteristic values is given by the
 formula

 N rb

 SN(X) = reSn { q(s)G(x, s, X)f(s)ds + El(x, X)f2 + E2(x, X)fl .

 Such a sum of residues is, however, familiarly expressible as a contour integral
 with respect to X over the curve CN, namely as

 (21. 11) SN(x) = 2h { q(s)G(x, s, X)f(s)ds + El(x, X)f2 + E2(x, X)fi} dX.

 This is the formula in the general theory that stands in the place of the Fourier
 formula (12.8)

 CHAPTER 22

 The Fourier's series again. The formula (21.11) is useful, like its specialized
 counterpart (12.8), as the natural medium through which an investigation of the
 associated representations of arbitrary functions may be made. As the contour
 of integration CN is successively taken to include more and more characteristic
 values the formula sums more and more terms of the series, and the approach
 of the integral to a limit reflects the convergence of the series. An identification
 of the function (if any) which the series represents thus becomes accessible
 through a study of the formula's integrand, more particularly through an
 analysis of the Green's function and the functions (21.2) when |XI is large.
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 The exposition of the complete analysis that would be requisite for the gen-
 eral case would at this point go well beyond the bounds which have been set for

 the scope of this discussion. The character of the functions q1(x, X), q52(x, X) as
 these depend upon X would need to be determined. In general, however, no ex-
 plicit formulas for these functions are available, since the differential equation
 (13.3) is not ordinarily solvable. The difficulties which this circumstance inter-
 poses will be manifest, although, to be sure, they are not insurmountable. So-
 called asymptotic forms for the solutions of an equation of the type (13.3) are
 deducible by well established methods, and these are entirely adequate to tbe
 requirements. This theory of asymptotic solutions, however, we do not propose
 to go into here. Without it, a restriction of the discussion to considerably nar-
 rower confines than have hitherto been observed is in the nature of things in-
 evitable. We shall yield to the necessity by limiting the exposition henceforward
 to the basis of an outright, albeit a wholly typical, specialization. In fact, there-
 fore, the further investigation is to take the form of an extended analysis of the
 example 3 of chapter 18. It will be recalled that the theory of the boundary
 problem basic to that example is none other than the theory of Fourier's series.

 For the boundary problem (18.5), and with the choice of constants fi = 0,

 f2 = 0, the special form of the formula (21.11) to which the attention is to be given
 is

 1 r rT

 (242. 1) SN(x) = ---. JJ G(x, s, X)f(s)dsdX.

 The functions ql(x, X), 42(X, X) may be chosen as those that are given by the
 relations (18.6), and these lead through the formulas (15.11) and (15.5) to the
 evaluations

 ()(a) sin pir
 Al,1(X) = cospir, A1,2(X) = - -'

 p

 A2, (X) = p sin pir, A2,) (X) = cos p7r,
 and

 V/i(s, X) --sin ps, V12(s, X) cos PS.
 p

 The formula (20.5) is thus explicitly

 cos px -sin px 0

 g2 (X, S, X) 21
 0 --sin pr --sin p(r + s)

 P P

 2p sin pir 0 cosp(r + s)

 and this with the relations (20.3) and (20.4) yields the form
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 (sin p(x - s)

 (22.2) G(x, s, X) = cos p(r+s-x) - he p(x-s)
 2p sin p7r

 O, when s < x < 7r.

 In the complex X-plane the characteristic values are located at the points
 n2, with n = 0, I, 2, 3, . The contour CN, which must enclose precisely the
 first (N+ 1) of these, may, therefore, be chosen as the circle centered at the or-
 igin and of the radius (N+ )2. In the p-plane the semi-circle rV which is
 centered at p = 0, which has the radius (N+? 4), and upon which 0< arg p <7r,
 is an image of the circle CN under the mapping defined by the relation (18.1). The
 formula (22.1) with its integration expressed in terms of p is, therefore,

 1 i P

 (22.3) SN(X) = -ff pG(x, s, X)f(s)dsdp.

 When the point x at which the sum SN(X) is to be cQnsidered lies in the in-
 terior of the interval (-ir, iv), it is advantageous to take the formula (22.2) in
 the equivalent form

 -i ePi Cos p(S - X)
 (22.4) G(x, s, X) = e 18-zI1Pi +

 2p 2p sin pir

 the symbol Is- x standing as usual for (s - x) or (x - s) according as x < s or
 x>s. The formula (22.3) then assumes the form

 (22.5) SN(X) = - JJ eI'-xIPif(s)dsdp + C ql(s, x, N)f(s)ds,

 with the function I(s, x, N) defined by the formula

 1lf eXP" cos p(s -x)
 (22.6) I(s, x, N) = - . r--- c. - dp.

 2grs rN sin pir

 Since this latter function is explicitly integrable as to s, it is found at once that
 for any choice of (a, ,B) as a sub-interval of the range (--ir, vr)

 r (S x N)ds =1 I el'Pi sin p(# - x)

 f (s, x, N)ds 27r= r p sin p7r
 (22.7) aitN pipr d

 1 r ertP sin p(a - x)
 - ~~~~~~~~dp.

 2iiJrN p sin p7r

 The integrals which appear in this formula closely resemble that in the formula
 (22.6) since the sine and cosine functions are effectively similar in structure.
 The analysis of the one, which is to be set forth, will therefore be found obvi-
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 ously and readily adaptable to the others also. In the event that the point x is
 an end point of the interval (-ir, ir) a somewhat different grouping of terms in
 the formulas (22.4) and (22.5) is advantageous. The analysis is, however, es-
 sentially similar to that which applies when - -<x <x<r, and that being so we
 shall content ourselves with the discussion of this latter case alone.

 When it is expressed entirely in terms of exponentials the formula (22.6) may
 be made to appear in the form

 1 r e2 12rf (a-z) ]pi + e 12X-(s-x) I pi

 (22.8) TJ(s, x, N) = e[2+(] + e2(p)] dp.
 2 7r(l 2Pt p

 Even relatively crude appraisals of the functions which appear in the integrand
 of this yield some significant results. Under the resolution p = t+it1, with t and
 ti real, the equation of the arc rv is

 t2 + 72 = (N + 1)2, > O,

 and from this it is readily seen that each one of its points is either one for which

 N++ ? < | < N+,

 or else one for which

 1> 4A3.

 At every point of the first one of these categories cos 22rh<0, and the value

 II - e2wpi Iwhich is explicitly

 (22.9) {1 - e27 cos 2ir + e-417 1112,

 thus clearly exceeds 1. At any point of the second category the value (22.9) ex-
 ceeds (1-e-I 314), and is thus ipso facto greater than 1/7r. The relation

 (22.10) 7rl 1 - e2rpi > 1,
 thus maintains^over the whole arc rN.

 Consider now the values

 (22.11) 1 e 1r? (s-z) Ipi

 with s and x both upon the interval (-7r, xr) and p still upon r,2. For all such
 s and x the relation

 27r ? (s - x) > -rI x, l

 is easily verified, and since the formula p = (N+ 1)ei0, in which 0 stands for arg p,
 shows that the real part of pi is - (N+ 2) sin 0, it is seen that the values (22.11)
 are both less than

 e[T II](N+I) sin 0
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 Since this latter value is increased by the substitution of -1G for sin 0 when

 0?w! S r/2 and of 2i (x-), for sin 0 when w/2 <0 <r, we may evidently draw
 from the formula (22.8) the relation

 | {(s, x, N) I <f e-[-Ixz](N+v+D)(N + 1)dO
 7r

 +1J e[z-I-x] (N+ ) i(7-6)(N + -1) A
 X2

 By explicit integrations this reduces to the inequality

 4
 (22.12) | I(s, x, N) I < -

 The companion result

 r ~~~~~~~8
 (22.13) I(S, x, N)ds (<r -1 x I )(N + 4)

 may be drawn by similar reasoning from the formula (22.7).
 These conclusions are significant. In accordance with them the function

 '(s, x, N) is uniformly bounded as to s and N, and is such that its integral as
 to s converges to zero with 1/N uniformly as to the interval of integration.
 These properties, however, are precisely those which were invoked in chapter 12
 as being sufficient to insure the relation (12.10) for an arbitrary integrable
 function F(s). In the present instance, therefore, we may similarly conclude
 upon the basis of them that the final integral in the equation (22.5) converges
 to zero. Since the remaining integral in that equation may be evaluated thus

 eI8zIPifsin (s) 1) d -dp
 ei f -xPif(s)dsdp f(s) s (N+2)(s-x)ds

 27r rN 7r r s-x

 it is clear that the equation (22.5) implies for every integrable function f(x) the
 relation

 lim [SN(X)--r f() sin (N + 1)(s - x) = lim SN(X) - f(S)- dsl 0 N-c 7r _T s - x

 This is the relation (12.11) already familiar, and through it the reference of the
 sum SN(X) to the Dirichlet integral has evidently again been accomplished. The
 method of its accomplishment here, however, by contrast with that of chapter
 12, is one of very general applicability. In particular it is one which in no way
 depends upon the special trigonometric combination formulas. With adaptations
 which essentially concern only details, this method is adequate to the analysis
 of the general series (17.6), namely to the representations of arbitrary functions
 in terms of the characteristic solutions of any properly constructed boundary
 problem [20].
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 APPENDICES

 I. The solution of the system of equations

 o= 0,

 (I. 1) Uk+1 +qfuk + uk- =O , k = 1, 2, ... , (n-1),

 Un = 0.

 If, in terms of unspecified constants a and ,B, a solution of the system is
 sought in the form

 (. 2) UAk = A; -k

 it is found upon substitution into the equations to be requisite that

 (I 3) ak[-1 la2+ qa + 1] - #k-1[#2 + q# + 1] = 0, k = 1, 2,* , (n-).
 These conditions are fulfilled if a and 3 are roots of the equation

 x2+ qx + 1 = 0,

 namely if

 (I.4) a+3= -q, a13=1.

 Since A must thus be the reciprocal of a, whereas the form (I.2) must vanish
 when k = n, it is seen to be necessary that

 an - a-n =0

 namely that

 a = eP1tIn A =

 with an integral value of v. For such an index v the relations (I.4) and (1.2)

 show that q and uk have the values

 v7r
 (I.5) q= - (eri/n + e-PTi/n) = -2 cos-,

 n

 and

 kv7r
 Up,k = (ekvri/n - e-kv7rin) _ 2i sin -,

 respectively. Since the system under consideration is homogeneous, any multiple
 of a solution is also such. Hence we may write

 kv7r
 (L.6) Up, k = A, sin j k = 0, 1, 2, * I n,

 n

 with the coefficient A arbitrary.

 82
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 APPENDICES 83

 For the indices v = 1, 2, , (n -1), the characteristic values of q, as given
 by the formula (1.5), are distinct. There can be no others, for by inspection the
 determinant of the system of equations is a polynomial of the degree (n-1)

 in q.

 II. A proof of the relation

 (II . 1) sin vt = sin . p,_1(cos t),

 with p,_ a polynomial of the degree (v -1).
 If in Demoivre's formula

 (cos vt + i sin v#) = (cos t + i sin s)v,

 the right-hand member is expanded by the binomial theorem, each resulting
 term that involves i to an odd power also involves sin t to such a power. Upon
 equating the pure imaginary components on the two sides of the equation it is
 thus found that

 sin vt = sin t Q(cos i, sin' t),

 each term of Q being of the degree (v-1) in cos t and sin {, and of even degree
 in sin t. By the substitution of (1 -cos24) for sin2 the form (11.1) results.

 III. A deduction of the identity

 (III1. 1) cosi x = 2 E ( cos (j--2,) x.

 If in the familiar equality

 (II1. 2) cos x = (eiX + e-ix),

 each member is raised to the jth power and the one on the right is then ex-
 panded by the binomial theorem, the result is the relation

 (III. 3) cosi x e(j-2A)ix

 in which the symbol ( designates the coefficient of all in the expansion of

 (1+a)i. Since (.) =(i), the formula (III.3) may be written alternatively as

 cos3 x=- ,XE ( i )I{ e(i-2P) i+ e- (-2A)zi},
 21 A-0 9

 with Li/2 ] denoting the largest integer not exceeding j/2. By invoking the rela-
 tion (III.2) again this may be given the form (III.1).
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 84 FOURIER'S SERIES

 IV. A derivation of the evaluations

 (IV. 1) ' J.s7r n f- (1+cos sr), if s_O (mod 2n),
 ( ) =) n 3'(1 + cos sr), if s y O (mod 2n).

 The first one of these evaluations is obvious. For when s 0 (mod 2n) each
 term in the sum on the left has the value 1 while the right-hand member is

 (n-1). If s p4O (mod. 2n) the relation

 ,isir 1
 COS- = - (eAsTiIn + e-tIn)

 n 2

 leads at once to the equation

 ,n- I gS- 1 n-i1
 E COS-= - E e1s 7rin
 i= n 2 p=-n+1, peO

 or, as it may equally well be written, to

 (IV.2) E cos 1 [ E (e.1ri/n A
 , 1 L2 - n+ 1

 The sum in the right-hand member of this is a geometric progression. It is
 summed, therefore, by the formula

 ,n- 1 (es 7ir/n)-n+l - (es 7ri/n) n

 (n e 1 - (e82iln)
 and since

 (es8ri/n) ?n = (_ 1)8 = COS Sr,

 its value reduces to -cos s-r. T1he formula (IV.2) thus takes on the form of the
 second evaluation (IV.1).

 V. An evaluation of the determinant

 1 2 .. (v-1) x

 13 23 ...(v-1)3 X3

 (V.1) D(x) 15 25 (v-X1)5 X5

 * . . . . . . . . . . . . . . .

 12;l 22P-1 . (V - 1)2Y-1 x2;-1

 If i-n this determinant the elements of each row, beginning with the last
 one and extending in turn back to the second one, are modified by subtracting
 from them x2 times the corresponding elements of the preceding row, the value
 of the determinant is unchanged. In its new form, however, all but the first ele-
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 ment in the last column are zeros, and hence, upon an expansion by the ele-
 ments of this column, it is found that

 1(12 _X2) 2(22 _X2) . . .I [-1 ](l [- 1 ]2 _x2)

 D(x) = (_ -1 ) 13(12 - X2) 23(22 -x .) [ .IV - [ 1]3([v - 1]2-X2)
 * . . . . . . . . . . . . . . . . . . . . . . . .

 12,-3(12 - X2) 22Y-3(22 - x2) . . . [V - 1]2-3([V - 1]2 -x2)

 As it now stands, the factor (n2 - x2) is common to the elements of the nth
 column for n= 1, 2, , (v -1). Upon factoring these from the determinant the
 evaluation

 v-1

 (V. 2) D(x) = (- 1)v-x [I (n2 - x2) DvYvJ
 n-=1

 is obtained, D, designating the cofactor of the element in the vth row and
 vth column of the original form of D(x).

 VI. A formal deduction of the relation

 X/ x2\ sin7rx
 (VI . 1) II 1-- - -

 n=l n2/ rx

 The roots of the equation z2k=1 are obviously z =1 and z =e?n1r ik, for
 n=1, 2, . . . , (k-1). The factorization

 k-1

 z2k - 1 = (z2 - 1)Jl {(z - enri/k) (z r-/k)

 is, therefore, proper. It is, however, clearly equivalent to

 k-1 r
 z2k - 1= (z2 - 1)I( z2 + 1 - 2z cos

 ,n=l k

 a relation from which it follows that

 zk _ z- k /z _ z-1\ k-1/ nlr

 2i k 2iz-Z + ZZ -2 cos-k

 Now if in this the quantity ei1rxk is substituted for z, the equation becomes

 k n-l L k k]

 or, since

 rx rfl / rn rx
 cos -cos- =-2 sin2 - sin2 1

 k k \ 2k 2k1
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 86 FOURIER S SERIES

 sin(_ f sin_ 1~
 sin7rx 2 k- 2 ik- 1 n k -

 (VI.2) kk! Sinii 2- H
 7rx 7 x 4l 2IkLsi T = Sin 2kJ

 1 ~~2k

 This is an identity. Its limiting form as x-*O must, therefore, maintain, namely

 1=- -{22k12 Isin2 X},
 k n 2k

 an evaluation by virtue of which the relation (VI.2) may itself be reduced to the
 form

 sin rx (nQ)1k-l sin k

 - - - 1-_ ..sin I
 XX (7X2k J J

 This is valid for all k, and we may, therefore, permit this index to become in-
 finite. The evaluation (VI.1) formally results.

 VII. Establishment of the formula

 sin 2n + 1 0 n ~ i 2
 (VII. 1) 1 + E 2 cosvG .2 - , for 0 0 0 (mod 27r). v=l sin [Io]

 Upon substitution of the relations

 2 cos PO = evo + e'0oi

 into the left-hand member of the formula (VII.1), this latter is found to be
 expressible as

 n

 E evoi.
 1=-n

 This is a geometric progression whose sum, if 0 0 (mod 2ir) is

 e-8i e- (lo)s i

 1e@$

 If in this the numerator and the denominator are each divided by the factor
 - 2ieiI2, the fraction assumes the form of the right-hand member of the formula
 (VII.1). This latter is, therefore, established.
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