1. You are given the following facts:

-5 2 2 _ 4 2 and -5 2 -1y __ 9 ~1
2 -8 1 1 2 -8 2 2
Solve the following systems:

(a)

z(t) = —5z(t) + 2y(t),
w(t) = 2x(t) —8y(t)
such that z(0) = 4 and y(¢) = 1.
(b)
zu(t) = —5z(t) +2y(t),
yu(t) = 2z(t) — 8y(t)

such that z(0) = 4, y(t) = 1, z;(0) = —1 and y,(0) = 2.
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2. Let f(x,y) be a 27m-periodic function in both variables. Consider the following double Fourier
series expansion of f(z,y) for (z,y) € (—n,7) x (—n,7):

oo o0
flz,y) = %0 + Zan cosnz + by sinnz + Za; cos ny + b}, sinny

n=1 n=1

oo oo
+ Z Z cxi coskx cosly + di cos kz sinly + ey sin kz sinly
k=1i=1

(a) Derive an expression in terms of f for each of the coefficients a,, al,, b, , b, o, Crt, Ak, €kl

(b) Derive an expression for /_ _W f(z,y) dz dy in terms of the coefficients.
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3.

(a)

(b)

Consider the following equation:

Au(z,y) = p(z,y), (z,y) €N
ou
o

where § is a two dimension domain (such as a square) in R? and 5‘% denotes the outward

unit normal derivative at 9f2.

Find the condition on p and f such that the above equation has a solution.

Consider the following equation:
uge(z) = 23—z z€(0,1)
ug(0) = a, uz(1l) = b.

Find a condition for a and b such that the above equation has a solution. Furthermore,

using the condition you have just found, solve the equation explicitly.

(Note: It is not necessary to use eigenvalues and eigenfunctions to solve this one-

dimensional problem.)
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Urx = K% xe (0b)
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4. (a) Consider the operator Lf = 8, ((z° + 1)8,f) for z € (0,1) subject to the Neumann
boundary condition: fz(0) = fz(1) = 0. Show the following fact:

All the eigenvalues of L are negative except one zero eigenvalue.

In addition, find the corresponding eigenfunction corresponding to the zero eigenvalue.

(b) With the above L, consider the differential equation u, =fu with- N\umann boundary
condition ug(0,t) = uz(1,?) = 0 and initial value u(z,0) =28 — . /

Find limy_, o u(z, t).
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