
MA 520: Boundary Value Problems of Di↵erential Equations

Spring 2020, Midterm Exam

Instructor: Yip

• This test booklet has FIVE QUESTIONS, totaling 100 points for the whole test. You have

75 minutes to do this test. Plan your time well. Read the questions carefully.

• This test is closed book, closed note, with no electronic devices.

• In order to get full credits, you need to give correct and simplified answers and explain in

a comprehensible way how you arrive at them.

Some Useful Formula

1. The eigenvalues and eigenfunctions for @xx with homogeneous Dirichlet boundary conditions

on (0,⇡) are given by �n = �n2 and �n(x) = sin(nx) for n = 0, 1, 2, . . ..

2. Solution of of ċ(t) = ac(t) + b(t) with initial condition c(0) = c0 is given by

c(t) = c0e
at +

Z t

0
ea(t�s)b(s) ds.

Name: (Major: )

Question Score

1.(20 pts)

2.(20 pts)

3.(20 pts)

4.(20 pts)

5.(20 pts)

Total (100 pts)

1

 

Answer key



1. Find the Fourier series of the following functions which are defined for �⇡ < x < ⇡:

(a) x;

(b) x2;

(c) x3;

(d) x4.

You should simplify all your constants as much as possible.
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You can use this blank page.
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2. Let D be the unit disk
�
x2 + y2  1

 
in R2. Consider the inner product on the space of L2-

functions defined on D as hf, gi =
ZZ

D
f(x, y)g(x, y) dxdy. Let further fn(x, y) = (x + iy)n

for n = 0, 1, 2, . . ..

(a) Show that {fn}1n=0 is an orthogonal set. Find also kfnk.
(Hint: use polar coordinates x+ iy = rei✓ and the formula dxdy = rdrd✓.)

(b) Let f(z) = a0 + a1z + · · · akzk and g(z) = b0 + b1z + · · · bkzk where z = x+ iy.

Find kfk , kgk , hf, gi.
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3. Consider the following one dimensional heat equation:

ut = uxx + x, x 2 (0,⇡)

u(0, t) = 0, u(⇡, t) = 0,

u(x, 0) = 0.

Find u(x, t) and limt!+1 u(x, t).
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You can use this blank page.
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4. You are given the following information:

 
�5

2

2

�8

! 
2

1

!
= �4

 
2

1

!
and

 
�5

2

2

�8

! 
�1

2

!
= �9

 
�1

2

!

Solve the following system of di↵erential equations:

xt(t) = �5x(t) + 2y(t) + 4� t,

yt(t) = 2x(t)� 8y(t) + 2 + 2t

such that x(0) = 4 and y(t) = 1.
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5. Consider the one dimensional Laplace operator Lf = D@2xf on the space of (L2-)functions

defined on the interval (0, L) endowed with boundary conditions f(0) = 0 and f(L) = 0. Let

hf, gi =
R L
0 f(x)g(x) dx be the standard inner product.

(a) Prove that hLf, gi = hf, Lgi, i.e. L is symmetric in the context of linear algebra.

(b) Prove that hLf, fi  0, i.e. L is negative (semi-)definite in the context of linear algebra.

(c) Let � be an eigenfunction of L with eigenvalue �, i.e. L� = �� (with � 6⌘ 0). Prove that

� must be negative.

(d) Let � and  be functions with distinct eigenvalues � 6= µ: L� = �� and L = ⌫ . Prove

that � ?  , i.e. h�,  i = 0.

(Remarks:

(i) Hint for (a) and (b): use integration by parts. Beware of boundary conditions.

(ii) Hint for (d): apply (a) with � and  .

(iii) For (c) and (d), you need to prove the statements without using any explicit formula

about the eigenvalues and eigenfunctions, for example, those given in the first page.)
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