MA 520: Boundary Value Problems of Differential Equations Spring 2020, Midterm Exam

Instructor: Yip

- This test booklet has FIVE QUESTIONS, totaling 100 points for the whole test. You have 75 minutes to do this test. Plan your time well. Read the questions carefully.
- This test is closed book, closed note, with no electronic devices.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.

Some Useful Formula

1. The eigenvalues and eigenfunctions for $\partial_{x x}$ with homogeneous Dirichlet boundary conditions on $(0, \pi)$ are given by $\lambda_{n}=-n^{2}$ and $\phi_{n}(x)=\sin (n x)$ for $n=0,1,2, \ldots$.
2. Solution of of $\dot{c}(t)=a c(t)+b(t)$ with initial condition $c(0)=c_{0}$ is given by

$$
c(t)=c_{0} e^{a t}+\int_{0}^{t} e^{a(t-s)} b(s) d s
$$

| Question |
| :--- | :--- |
| $\frac{1 .(20 \mathrm{pts})}{2 \cdot(20 \mathrm{pts})}$ |
| $\frac{3 .(20 \mathrm{pts})}{4 .(20 \mathrm{pts})}$ |
| $\frac{5 \cdot(20 \mathrm{pts})}{\text { Total }(100 \mathrm{pts})}$ |

1. Find the Fourier series of the following functions which are defined for $-\pi<x<\pi$:
(a) x;
(b) x^{2};
(c) x^{3};
(d) x^{4}.

You should simplify all your constants as much as possible.
(a)

$$
\begin{aligned}
x & =\sum_{n=1}^{\infty} b_{n} \sin n x \quad-\pi<x<\pi \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{\pi}\left[-\int x \frac{d \cos n x}{n}\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left[-\left.\frac{x \cos n x}{n}\right|_{0} ^{\pi}+\int_{0}^{\pi} \frac{\cos n x}{n} d x\right] \\
& =-\frac{2}{n} \cos n \pi=\frac{2}{n}(-1)^{n+1} \\
x & =\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin (n x) \quad(F . q \cdot 26 \quad \# 1)
\end{aligned}
$$

(b)

$$
\text { b) } \begin{aligned}
x^{2} & =\int 2 x d x+c \\
& =4 \sum_{n=1}^{\infty} \int \frac{(-1)^{n+1}}{n} \sin n x d x+c \\
& =c+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x \\
\int_{0}^{\pi} x^{2} d x & =\int_{0}^{\pi}\left(c+4 \sum_{n=1}^{\infty}{\frac{(-1)^{n}}{n}}^{n} \cos n x\right) d x \\
\frac{\pi^{3}}{3} & =\pi c+0 \Rightarrow c=\frac{\pi^{2}}{3} \\
x^{2} & \left.=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x \quad \text { (F.p.28\#1 }\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
x^{3} & =\int 3 x^{2} d x \\
& =\int\left(\pi^{2}+\sum_{n=1}^{\infty} \frac{12(-1)^{n}}{n^{2}} \cos n x\right) d x \\
& =C+\pi^{2} x+\sum_{n=1}^{\infty} \frac{12(-1)^{n}}{n^{3}} \sin n x
\end{aligned}
$$

$\operatorname{set} x=0 \Rightarrow c=0$

$$
\begin{aligned}
x^{3} & =\pi^{2} x+\sum_{n=1}^{\infty} \frac{12(-1)^{n}}{n^{3}} \sin n x \\
& =\pi^{2}\left[\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin n x\right]+\sum_{n=1}^{\infty} \frac{12(-1)^{n}}{n^{3}} \sin n x \\
x^{3} & =\sum_{n=1}^{\infty}\left(\frac{2 \pi^{2}(-1)^{n+1}}{n}+\frac{12(-1)^{n}}{n^{3}}\right) \sin n x
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
x^{4} & =\int 4 x^{3} d x \\
& \left.=C+\int \sum_{n=1}^{\infty} \frac{\left(8 \pi^{2}(-1)^{(+1}\right.}{n}+\frac{\left.48(-1)^{n}\right)}{n^{3}}\right) \sin n x \\
& =c+\sum_{n=1}^{\infty}\left(\frac{8 \pi^{2}(-1)^{n}}{n^{2}}+\frac{48(-1)^{n+1}}{n^{4}}\right) \cos n x \\
\int_{0}^{\pi} x^{4} d x & =\int_{0}^{\pi} c d x+\cdots+10 \Rightarrow c=\frac{\pi^{5}}{5} \\
x^{4} & =\frac{\pi^{5}}{5}+\sum_{n=1}^{\infty}\left(\frac{8 \pi^{2}(-1)^{n}}{n^{2}}+\frac{48(-1)^{n+1}}{n^{4}}\right) \cos n x
\end{aligned}
$$

[F, p.86\#3]
2. Let D be the unit disk $\left\{x^{2}+y^{2} \leq 1\right\}$ in \mathbb{R}^{2}. Consider the inner product on the space of L^{2} functions defined on D as $\langle f, g\rangle=\iint_{D} f(x, y) \overline{g(x, y)} d x d y$. Let further $f_{n}(x, y)=(x+i y)^{n}$ for $n=0,1,2, \ldots$.
(a) Show that $\left\{f_{n}\right\}_{n=0}^{\infty}$ is an orthogonal set. Find also $\left\|f_{n}\right\|$.
(Hint: use polar coordinates $x+i y=r e^{i \theta}$ and the formula $d x d y=r d r d \theta$.)
(b) Let $f(z)=a_{0}+a_{1} z+\cdots a_{k} z^{k}$ and $g(z)=b_{0}+b_{1} z+\cdots b_{k} z^{k}$ where $z=x+i y$.

Find $\|f\|,\|g\|,\langle f, g\rangle$.
(a) $\left\langle f_{n}, f_{m}\right\rangle_{D}=\int_{0}^{1} \int_{0}^{8 \pi}(x+i y)^{n}(\overline{x+i y})^{m} \underline{r} d r d \theta$
$=\int_{0}^{1} \int_{0}^{2 \pi}\left(r e^{i \theta}\right)^{n}\left(r e^{-i m \theta}\right) r d r d \theta$
$=\int_{0}^{1} \int_{0}^{2 \pi} r^{n+m+1} e^{-i(n-m) \theta} d \theta d r$

for $n=m$,

$$
\begin{aligned}
&\left\|f_{n}\right\|^{2}=\left\langle f_{n}, \sigma_{n}\right\rangle=\left(\int_{0}^{1} r^{2 n+1} d r\right) 2 \pi \\
&=\frac{2 \pi}{2 n+2}=\frac{\pi}{n+1} \\
&\left\|f_{n}\right\|=\sqrt{\frac{\pi}{n+1}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f(z)=a_{0}+a_{1} z+\cdots+a_{k} z^{k} \\
& g(z)=b_{0}+b_{1} z+\cdots+b_{2} z^{k}
\end{aligned}
$$

$\langle f, g\rangle_{\bar{p}}$

$$
\begin{aligned}
& =a_{0} \bar{b}_{0}\langle 1,1\rangle+\cdots p\left\langle a_{k}, \bar{b}_{k}\right\rangle\left\langle z_{k} \bar{c}_{1}\right\rangle \\
& =a_{0} \overline{\sigma_{0}} \frac{\pi}{1}+a_{1} \overline{b_{j}} \frac{\pi}{2}+\cdots a_{k} \bar{b}_{k} \frac{\pi}{k+1} \\
& \left(=\sum_{n=0}^{k} a_{n} \bar{a}_{n} \frac{\pi}{n+1}\right)
\end{aligned}
$$

3. Consider the following one dimensional heat equation:

$$
\begin{aligned}
u_{t} & =u_{x x}+x, \quad x \in(0, \pi) \\
u(0, t)=0, & u(\pi, t)=0, \\
u(x, 0) & =0
\end{aligned}
$$

Method 1 F
Method 1

$$
\begin{aligned}
x & =\sum_{n=1}^{\infty} b_{n} \underline{\sin n x} \\
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{\pi}\left[-\left.\frac{x \cos n x}{n}\right|_{0} ^{\pi}+\frac{2}{n} \int_{0}^{\pi} \cos n x d x\right] \\
& =\frac{2(-1)^{n+1}}{n}
\end{aligned}
$$

$$
=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin n x \quad(\text { See also prob. \#1) }
$$

$$
\text { Let } u(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin n x
$$

\Downarrow

$$
\begin{aligned}
u_{t} & =u_{x x}+x \\
\Rightarrow \quad(\dot{U}(f) & =-n^{2}\left(n(x)+\frac{2(-1)^{\eta+1}}{n}, n \geqslant 1\right.
\end{aligned}
$$

$$
\begin{aligned}
C_{n}(t) & =C_{n}(0) e^{-n^{2} t}+e^{-n^{2} t} \int_{0}^{t} e^{n^{2} s} \frac{2(-1)^{n+1}}{n} d s \\
& =e^{-n^{2} t} \frac{2(-1)^{n+1}}{n}\left(\left.\frac{e^{n^{2} s}}{n^{2}}\right|_{0} ^{t}\right) \\
& =e^{-n^{2} t} \frac{2(-1)^{n+1}}{n^{3}}\left(e^{n^{2} t}-1\right) \\
& =\frac{2(-1)^{n+1}}{n^{3}}\left(1-e^{-n^{2} t}\right) \\
u(x, t) & =\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{3}}\left(1-e^{-n^{2} t}\right) \sin n x
\end{aligned}
$$

as $\rightarrow+\infty, e^{-n^{2} t} \rightarrow 0$

$$
u(x, t) \longrightarrow \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n^{3}} \sin n x
$$

Method 2) Make use of steady state
Find \tilde{u} st. $\tilde{u}_{x x}+x=0$

$$
\begin{aligned}
\tilde{u}_{x x}=-x & \Rightarrow \tilde{u}_{x}=-\frac{x^{2}}{2}+a \\
& \Rightarrow \tilde{n}^{=}-\frac{x^{3}}{6}+a x+b
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{u}(0)=0 \Rightarrow b=0 \\
& \widetilde{u}(\pi)=0 \Rightarrow a=\frac{\pi^{2}}{6}
\end{aligned}
$$

1 Have $\tilde{u}=-\frac{x^{3}}{6}+\frac{\pi^{2} x}{6}$
Set $u=\widetilde{u}+q$
Then $q_{t}=q_{x x}, q(0, t)=q(\pi, t), q(x, 0)=-\tilde{u}$

$$
\begin{aligned}
& q(x, t)=\sum_{n=1}^{\infty} e^{-n^{2} t} c_{n}(0) \sin n x \\
& c_{n}(0)=\frac{2}{\pi} \int_{0}^{\pi}-\tilde{n}(x) \sin n x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\pi} \int_{0}^{\pi}\left(-\frac{\pi^{2} x}{6}+\frac{x^{3}}{6}\right) \sin n x d x \underset{\text { (Lese pro6. \#1) }}{ } \\
& =-\frac{\pi^{2}}{6} \frac{2(-1)^{n+1}}{n}+\frac{1}{6}\left(-\frac{2 \pi^{2}}{n}+\frac{12}{n^{3}}\right)(-1)^{n} \\
& =\frac{2}{n^{3}}(-1)^{n}
\end{aligned}
$$

Hence $v(x, t)=\tilde{v}(x)+g(x, t)$

$$
=\left(\frac{x \pi^{2}}{6}-\frac{x^{3}}{6}\right)+\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{n^{3}} e^{-n^{2} t} \sin n x
$$

\qquad

$$
\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{2}{1}=-4\binom{2}{1} \text { and }\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{-1}{2}=-9\binom{-1}{2}
$$

Solve the following system of differential equations:
$x_{t}(t)=-5 x(t)+2 y(t)+4-t$
$y_{t}(t)=2 x(t)-8 y t+2+2 t$
$y_{t}(t)=2 x(t)-8 y(t)+2+2 t$

$$
\begin{aligned}
& \frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
-5 & 2 \\
2 & -8
\end{array}\right)\binom{x}{y}+\binom{4-t}{2+2 t} \\
& \binom{x}{y}=c_{1}(t)\binom{2}{1}+c_{2}(t)\binom{-1}{2} \\
& \binom{4-t}{2+2 t}=b_{1}(t)\binom{2}{1}+b_{2}(t)\binom{-1}{2}
\end{aligned}
$$

orthogonal

$$
\begin{aligned}
& b_{1}(t)=\frac{\left\langle\binom{ 4-t}{2+2 t},\binom{2}{1}\right\rangle}{5}=\frac{8-2 t+2+2 t}{5}=2 \\
& b_{2}(t)=\frac{\left\langle\binom{ 4-t}{2+2 t},\binom{1}{2}\right\rangle}{5}=\frac{-4+t+4+4 t}{5}=t
\end{aligned}
$$

You can use this blank page.

$$
\begin{aligned}
\dot{c}_{1}(t) & =-4 c_{1}(t)+2 \\
c_{1}(t) & =\left(c_{1}(0) e^{-4 t}+e^{-4 t} \int_{0}^{t} e^{4 s} 2 d s\right. \\
& =c_{1}(0) e^{-4 t}+e^{-4 t} \frac{1}{2}\left(e^{4 t}-1\right) \\
& =c_{1}(0) e^{-4 t}+\frac{1}{2}-\frac{1}{2} e^{-4 t} \\
\dot{c_{2}}(t) & =-9 c_{2}(t)+t \\
C_{2}(t) & =c_{2}(0) e^{-9 t}+e^{-9 t} \int_{0}^{t} e^{9 s} s d s \\
& =c_{2}(0) e^{-9 t}+e^{-9 t}\left[\left.\frac{s e^{9 s}}{9}\right|_{0} ^{t}-\frac{1}{9} \int_{0}^{t} e^{9 s} d s\right] \\
& =c_{2}(0) e^{-9 t}+e^{-9 t}\left[\frac{t e^{9 t}}{9}-\frac{1}{81} e^{9 t}+\frac{1}{81}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
=C_{2}(0) e^{-9 t}+\frac{t}{9}-\frac{1}{81}+\frac{e^{-9 t}}{81} \\
C_{1}(\partial) & =\frac{\left\langle\binom{ 4}{1},\binom{2}{1}\right\rangle}{5}=\frac{9}{5} \\
C_{2}(0) & =\frac{\left\langle\binom{ 4}{1},\binom{-1}{2}\right\rangle}{5}=-\frac{2}{5} \\
\binom{x(t)}{y(t)} & =C_{1}(t)\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)+C_{2}(t)\binom{-1}{2} \\
& =\left(\frac{9}{5} e^{-4 t}+\frac{1}{2}-\frac{1}{2}-\frac{-4+t}{2}\right)\binom{2}{1} \\
+\left(-\frac{2}{5} e^{-9 t}+\frac{t}{9}-\frac{1}{81}+\frac{e^{-9 t}}{81}\right)(-1 \\
2
\end{array}\right) .
$$

5. Consider the one dimensional Laplace operator $\mathcal{L} f=D \partial_{x}^{2} f$ on the space of $\left(L^{2}\right.$-)functions defined on the interval $(0, L)$ endowed with boundary conditions $f(0)=0$ and $f(L)=0$. Let $\langle f, g\rangle=\int_{0}^{L} f(x) g(x) d x$ be the standard inner product.
(a) Prove that $\langle\mathcal{L} f, g\rangle=\langle f, \mathcal{L} g\rangle$, i.e. \mathcal{L} is symmetric in the context of linear algebra.
(b) Prove that $\langle\mathcal{L} f, f\rangle \leq 0$, i.e. \mathcal{L} is negative (semi-)definite in the context of linear algebra.
(c) Let ϕ be an eigenfunction of \mathcal{L} with eigenvalue λ, i.e. $\mathcal{L} \phi=\lambda \phi$ (with $\phi \not \equiv 0$). Prove that λ must be negative.
(d) Let ϕ and ψ be functions with distinct eigenvalues $\lambda \neq \mu: \mathcal{L} \phi=\lambda \phi$ and $\mathcal{L} \psi=\boldsymbol{\mu} \psi$. Prove that $\phi \perp \psi$, i.e. $\langle\phi, \psi\rangle=0$.
(Remarks:
(i) Hint for (a) and (b): use integration by parts. Beware of boundary conditions.
(ii) Hint for (d): apply (a) with ϕ and ψ.
(iii) For (c) and (d), you need to prove the statements without using any explicit formula about the eigenvalues and eigenfunctions, for example, those given in the first page.)

$f_{x x}=\lambda f$

$$
\Rightarrow\left\langle f_{x x}, f\right\rangle=\lambda\langle f, f\rangle
$$

ie. $\int_{0}^{L} f x_{x} f d x=x \int_{0}^{2} f^{2} d x$

$$
\text { L.H.S. } b_{y}(b)=-\int_{0}^{1} f_{x}^{2} d x
$$

ie. ${\underset{y}{g}}_{-\int_{0}^{L} f_{x}^{2} d x}^{\int_{x}}=\lambda \underbrace{\lambda}_{+n} \int_{0}^{L} f^{2} d x$

$$
\Rightarrow \lambda \leqslant 0
$$

If $\lambda=0 \Rightarrow f_{x x}=0, \Rightarrow f(x)=A x+B$

$$
\begin{aligned}
& f(0)=0 \Rightarrow B=0 \\
& f(L)=0 \Rightarrow A=0
\end{aligned}
$$

ie. $f(x) \equiv 0 .{ }_{15} N_{o}+$ possible for eigen fundious
(d)

$$
\begin{aligned}
& \varphi_{x>}=\lambda \varphi, \quad \psi_{x x}=\mu \psi \\
& \left\langle\varphi_{x x}, \psi\right\rangle \stackrel{(a)}{=}\left\langle\varphi_{1} \psi_{x x}\right\rangle
\end{aligned}
$$

$$
\langle\lambda \varphi, \psi\rangle=\langle\varphi, \mu \psi\rangle
$$

$$
\lambda\langle\varphi, \psi\rangle=\mu\langle\varphi, \psi\rangle
$$

$$
\lambda \neq \mu \Longrightarrow\langle\varphi, \psi\rangle=0
$$

