MA 520: Boundary Value Problems of Differential Equations
Spring 2020, Midterm Exam

Instructor: Yip

e This test booklet has FIVE QUESTIONS, totaling 100 points for the whole test. You have

75 minutes to do this test. Plan your time well. Read the questions carefully.
e This test is closed book, closed note, with no electronic devices.

e In order to get full credits, you need to give correct and simplified answers and explain in

a comprehensible way how you arrive at them.

Some Useful Formula

1. The eigenvalues and eigenfunctions for d,, with homogeneous Dirichlet boundary conditions
on (0,7) are given by \, = —n? and ¢, (z) = sin(nz) for n =0,1,2,. ...
2. Solution of of ¢(t) = ac(t) + b(t) with initial condition ¢(0) = ¢ is given by
t

c(t) = coe™ +/ e t=3)p(s) ds.
0
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1. Find the Fourier series of the following functions which are defined for —7 < z < 7:

(a) =
(b) a?;
(c) a?;

(d) z*.

You should simplify all your constants as much as possible.
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2. Let D be the unit disk {:U2 +9? < 1} in R?. Consider the inner product on the space of L2-
functions defined on D as (f, g) = // f(z,y)g(x,y) dzdy. Let further f,(z,y) = (x + iy)"
D
forn=0,1,2,....

(a) Show that {f,} 7, is an orthogonal set. Find also || fy|.

(Hint: use polar coordinates z + iy = e and the formula dxdy = rdrd6.)

(b) Let f(z) = a0+a1z+ -apzF and g(2) = bg + b1z + - - - bpz® where z = x + iy.
Find [|f]}, llgll, (
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3. Consider the following one dimensional heat equation:

U = Uge+x, x€(0,7)
u(0,t) =0, u(m, t) =0,
u(z,0) = 0. p

PN (e, ¢) and limg, 4o u(z, £).
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You can use this blank page.
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5. Consider the one dimensional Laplace operator Lf = DJ2f on the space of (L?-)functions
deﬁned on the interval (0, L) endowed with boundary conditions f(0) =0 and f(L) = 0. Let
fo x) dx be the standard inner product.
(a) Prove that (Lf, g) = (f, Lg), i.e. L is symmetric in the context of linear algebra.
(b) Prove that (Lf, f) <0, i.e. Lis negative (semi-)definite in the context of linear algebra.
(c) Let ¢ be an eigenfunction of £ with eigenvalue A, i.e. L& = \¢ (with ¢ # 0). Prove that

A must be negative.

(d) Let ¢ and 1 be functions with distinct eigenvalues A # p: Lo = A¢ and Ly =pp). Prove
that ¢ L 1, i.e. (¢, V) =

(Remarks:

(i) Hint for (a) and (b): use integration by parts. Beware of boundary conditions.

(i) Hint for (d): apply (a) with ¢ and .

(iii) For (c) and (d), you need to prove the statements without using any explicit formula

about the elgenvalues and eigenfunctions, for example, tho e given in the first page.)
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