Examples of Differential Equations

(1) Population Dynamics (Single Species:)

XH)= population at time t.

(a) Exponential growth:

$$\frac{dx}{dt} = rx$$

 $r = \frac{1}{x} \frac{dx}{dt} = 9rowth vake$ per capita

(b) Logistic growth:

K= Carrying Capacity.

Examples of Differential Equations (1) Population Dynamics Interacting Species. (R) Competing species: X=X(+), Y= Y(+): population of 2 species consuming the same food / resources.

Examples of Differential Equations (1) Population Dynamics (Interacting Species.) (6) Prevator-Prey

Y=X(+): population of prevotor

Examples of Differential Equations (1) Population Dynamics (Interacting Species.) (c) Epidemic Model (SIR) Sible infected

 $\frac{dS}{dZ} = \alpha SI$ $\frac{dI}{dZ} = \alpha SI - \beta I$ $\frac{dR}{dZ} = \beta I$

Examples of Differential Equations (1) (Linear) Harmonic Oscillator

$$X=0 \qquad X(H)$$

$$X = 0 \qquad X(H)$$

$$X = 0 \qquad X(H)$$

$$X = 0 \qquad X(H)$$

$$m\dot{x} = -kx - \gamma\dot{x} + h(t)$$

Examples of Differential Equations (1) (Linear) Harmonic Oscillator

$$m : x = -kx - xx + h(t)$$

Man Spring force friction extend force

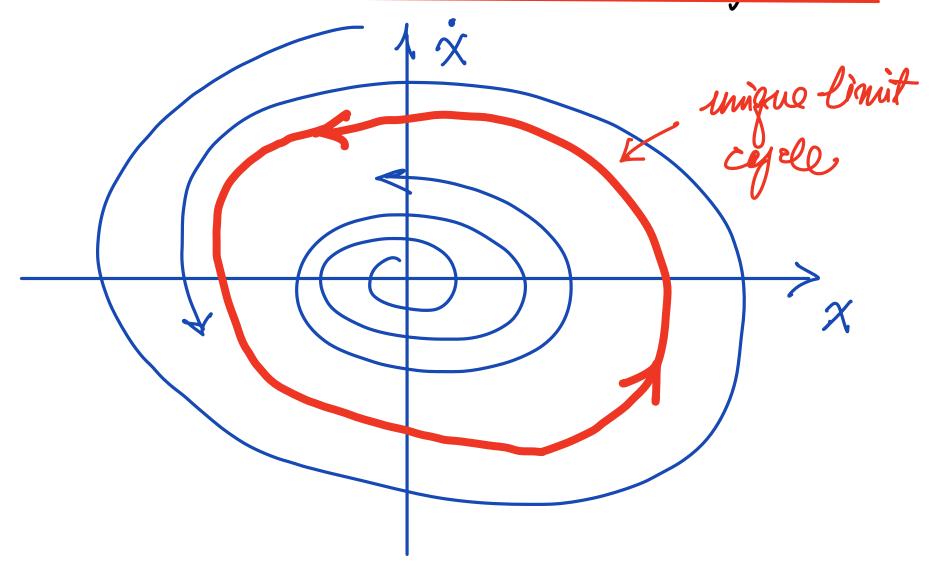
 $x = -kx - xx + h(t)$

(2) Nonlinear Spring van der Pol oscillator: nonlinear friction

$$m\dot{\chi} = -k\chi - \alpha\phi(\alpha)\dot{\chi} + h(t)$$

Frictional
$$\phi(x) = (x^2-1) = \begin{cases} <0 & \text{if } |x|<1 \\ >0 & \text{if } |x|>1 \end{cases}$$

(2) Nonlinear Spring Van der Pol oscillator: nonlinear friction



 $m\ddot{\chi} = (\chi - \chi^3) - \chi\dot{\chi} + h(\mathcal{X})$

$$m\ddot{\chi} = (\chi - \chi^3) - \chi \dot{\chi} + h(\mathcal{X})$$

$$\chi - \chi^3 = -\frac{\partial}{\partial x} V(x)$$
, where $V(x) = \frac{(\chi^2 - 1)^2}{4}$

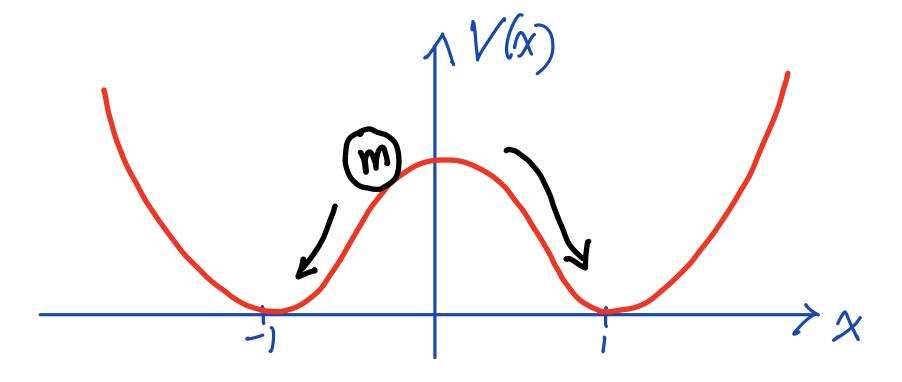
potential function

$$m\ddot{\chi} = -\frac{\partial}{\partial x}V(x) - y\dot{x} + h(t)$$

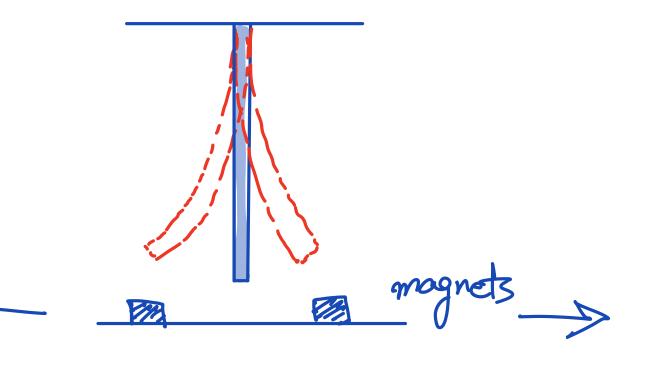
$$\chi - \chi^3 = -\frac{\partial}{\partial x} V(x)$$
, where $V(x) = \frac{(\chi^2 - 1)^2}{4}$

potential function

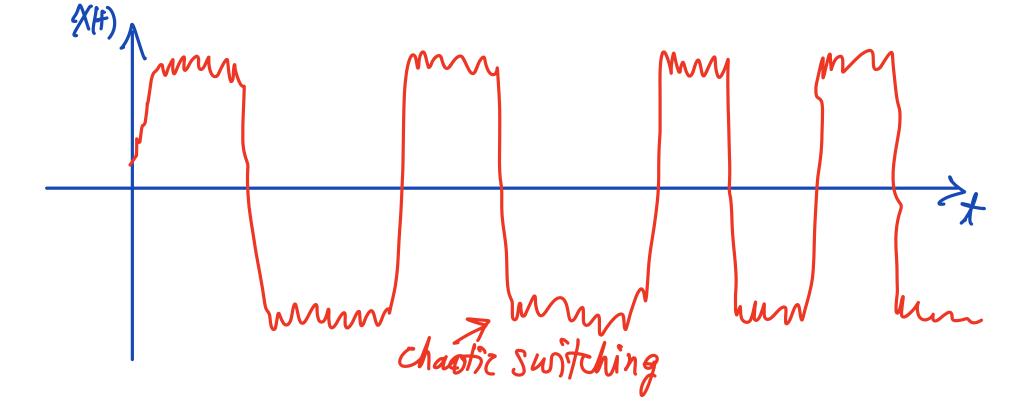
$$m\ddot{\chi} = -\frac{\partial}{\partial x}V(x) - y\dot{x} + h(t)$$



$$m\ddot{X} = -\frac{\partial}{\partial X}V(x) - y\dot{X} + h(t)$$



$$m\ddot{X} = -\frac{\partial}{\partial x}V(x) - y\dot{x} + h(t)$$



(4) Celestial Mechanics (Newton's Gravitational Motion)

$$\chi_i$$
 m_i

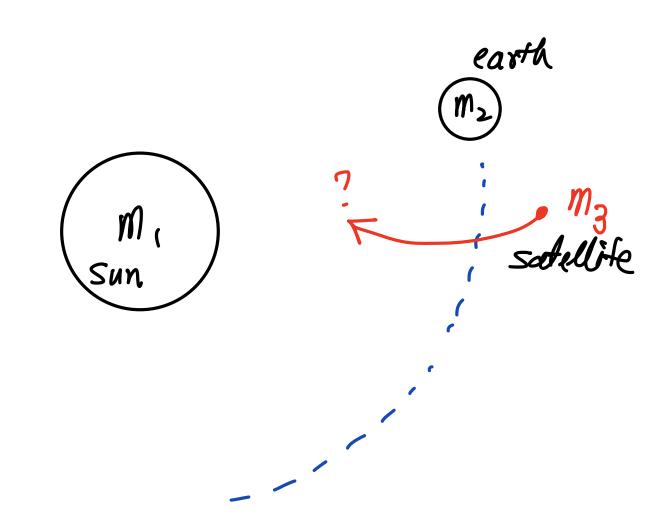
$$Fij = 6 mim_5 \frac{\chi_j - \chi_i}{|\chi_j - \chi_i|^3}$$

(4) Celestial Mechanics (Newton's Gravitational Motion)

$$\frac{\chi_i}{m_i}$$

 $m_i \chi_i = \sum_{j \neq i} Gm_i m_j \frac{\chi_j - \chi_i}{|\chi_j - \chi_i|^3}$

(4) PCR3BP (Planar Circular Restricted Three Body Problem) M, (Sun), M2 (earth) >> M3 (satellite)



(4) PCR3BP (Planar Circular Restricted)
Three Body Problem) M, (Sun), M2 (earth) >> M3 (Eatellite) motions prateterminal (known)

$$\chi_{3} = (4m_{1}) \frac{\chi_{1} - \chi_{3}}{|\chi_{1} - \chi_{3}|^{3}} + (4m_{2}) \frac{\chi_{2} - \chi_{3}}{|\chi_{2} - \chi_{3}|^{3}}$$

State variables: $X(t) \in \mathbb{R}^n$ (position) $Y(t) \in \mathbb{R}^n$ (momentum)

1+amittonian function: H(X, Y) ∈ R

Dynamics:

$$\dot{X} = \nabla_{Y} H(X, Y)$$

$$\dot{Y} = -\nabla_{X} H(X, Y)$$

State variables: $X(t) \in \mathbb{R}^n$ (position) $Y(t) \in \mathbb{R}^n$ (momentum)

1+amittonian function: H(X,Y) ∈ R

Dynamics:

$$\dot{X} = \nabla_Y H(X, Y) \quad \text{(friction)}$$

$$\dot{Y} = -\nabla_X H(X, Y) - YX$$

State variables: $X(t) \in \mathbb{R}^n$ (position) $Y(t) \in \mathbb{R}^n$ (momentum)

1/amittonian function:

H(X,Y) = V(x) + K(Y)potential energy kinetic energy

State variables: $X(t) \in \mathbb{R}^n$ (position) $Y(t) \in \mathbb{R}^n$ (momentum)

Dynamics:

$$\dot{X} = \nabla_{X} K(Y)$$

$$\dot{Y} = -\nabla_{X} V(X) (-YX)$$

eg. Harmonic Decillator:

$$M\dot{\chi} = -k\chi - \chi\dot{\chi}$$

$$H(x,y) = \frac{1}{2}kx^2 + \frac{1}{2m}y^2$$

$$\dot{x} = H_y(x,y) = \frac{1}{m}y$$

$$\dot{\chi} = H_y(x,y) = \frac{1}{m}y$$

$$\dot{y} = -H_{x}(x,y) = -kx - y\dot{x} \quad (m\dot{x} = -kx - y\dot{x})$$

$$(y = m\dot{x})$$

$$(m\ddot{x} = -kx - \chi\dot{x})$$

(6) Chaotic Behavior

(Sensitive dependence on initial data: $|x_1(t)-x_2(t)| \sim e^{\lambda t} |x_1(0)-x_2(0)|$) Lorenz Model

$$\dot{x} = \nabla(y - x)$$

$$\dot{y} = \gamma x - x - y$$

$$\dot{z} = xy - bz$$

(6) Chaotic Behavior

(Sensitive dependence on initial data: \[\langle \chi_{1}(t) - \chi_{2}(t) \rangle \chi e^{\chi t} / \chi_{1}(0) - \chi_{2}(0) \rangle \rangle \]

Lorenz Model (Lorenz attractor)

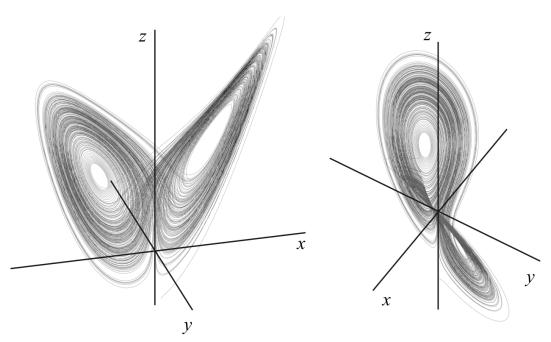


Figure 4.20. Two views of a numerical approximation of the Lorenz Attractor for $(\sigma, b, r) = (10, 8/3, 28)$. The axes shown are centered at (0, 0, 20) and are of length 50.

(6) Chaotic Behavior

(Sensitive dependence on initial data: $|x_1(t)-x_2(t)| \sim e^{\lambda t} |x_1(0)-x_2(0)|$)

ABC Flow

$$\dot{x} = A \sin 2 + C \cos y$$

$$\dot{y} = B \sin x + A \cos 2$$

$$\dot{z} = C \sin y + B \cos x$$

(6) Chaotic Behavior (sensitive dependence on initial data: (x,(t)-x2(t)/~ ext/x(0)-x5(0)) ABC Flow (Arnold-Beltrami-Childress) $\dot{x} = A \sin 2 + C \cos y$ $\dot{y} = B \sin x + A \cos 2$ $\dot{z} = C \sin y + B \cos x$ V(x, y, z): $\dot{v} = \nabla x$

(6) Chaotic Behavior (Simplest Chaotic Sys) Table 1.1. Quadratic, chaotic differential equations. (M. p. 21)

Sprott's #	ODE	Reduced Parameters (others set to +1)	Chaotic Parameter Values
В	$ \dot{x} = ayz, \dot{y} = bx - cy \dot{z} = d - exy (ae > 0) $	d	d=1
С	$\dot{x} = ayz, \dot{y} = bx - cy$ $\dot{z} = d - ex^2, (abce > 0)$	d	d=1
F	$\dot{x} = ay + bz, \dot{y} = cx + dy$ $\dot{z} = ex^2 - fz$	c,d	c = -1, d = 0.5
G	$\dot{x} = ax + bz, \dot{y} = cxz + dy$ $\dot{z} = -ex + fy, (be > 0)$	a,d	a = 0.4, d = -1
Н	$\dot{x} = ay + bz^2, \dot{y} = cx + dy$ $\dot{z} = ex - fz$	a,d	a = -1, d = 0.5
K	$\dot{x} = axy - bz, \dot{y} = cx - dy$ $\dot{z} = ex + fz, (be > 0)$	d,f	d = 1, f = 0.3
M	$\dot{x} = -az, \dot{y} = -bx^2 - cy$ $\dot{z} = d + ex + fy$	d,e	d = e = 1.7
О	$ \dot{x} = ay, \dot{y} = bx - cz \dot{z} = dx + exz + fy $	b,f	b = 1, f = 2.7
P	$\dot{x} = ay + bz, \dot{y} = -cx + dy^{2}$ $\dot{z} = ex + fy, (be > 0)$	а,с	a = 2.7, c = 1
Q	$\dot{x} = -az, \dot{y} = bx - cy$ $\dot{z} = dx + ey^2 + fz$	d,f	d = 3.1, f = 0.5
S	$\dot{x} = -ax - by, \dot{y} = cx + dz^2$ $\dot{z} = e + fx$	b,e	b = 4, e = 1
1	$a\ddot{x} + b\ddot{x} - c\dot{x}^2 + dx = 0$	Ь	b = 2.017
2	$a\ddot{x} + b\dot{x} - cx^2 + d = 0,$ (ab > 0)	d	d = 0.025