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PREFACE

The fundamental problem in the theory of differential equations is
that of deducing the properties of the solutions of a given differential
equation from the analytic form of the equation. Although occasionally
and fortuitously this may be accomplished very simply by expressing the
solution in terms of the elementary functions of analysis, in general the
equations which appear in theoretical investigations, of both mathemati-
cal and physieal origin, are not explicitly integrable. Rather they con-
stitute the principal source of new transcendents whose properties may
be determined only by a systematic and penetrating analysis of wide
classes of equations.

We shall in this book consider only real solutions of real equations and
the behavior of these solutions as the independent variable increases
without limit. In problems of physical interest this variable is most
frequently the time. The properties of the solution of greatest interest
to us will be boundedness, asymptotic behavior, oscillation, and stability.

No attempt has been made to be encyclopedic and to catalogue every
result that possibly falls within our scope. This is neither feasible nor
desirable in an introductory volume. We have rather tried to unify the
theory as much as possible by focusing attention on a small number of
powerful techniques. It is for this reason that we have not scrupled
occasionally to prove theorems several times over, employing varied
approaches. A

The arguments throughout are elementary, depending only upon the
fundamental concepts of analysis. It is due to this fact that much of the
work is quite difficult, since many of the results must be built up, block
by block, tediously and laboriously, from the elemental notions, each
new result requiring a new structure.

To preserve the elementary character of the work, we have omitted
any discussion of periodic solutions of nonlinear differential equations,
such as the famed equation of Van de Pol, since such discussion would
require the use of quite advanced analytic and topological tools.

The plan of the book is as follows: In Chap. 1 we study the funda-
mental properties of linear systems, deriving the results which are essen-
tinl for the later deeper study of linear and nonlinear systems. To that

v



viii PREFACE

end we introduce vector-matrix notation and study swimple transforma-
tions of matrices which are of great utility in the theory of nsymptotic
behavior. It has been intended that tho account given of the small
amount of matrix theory required be soll-contained. Unfortunately,
there is no single source to which we can refer the reader for any more
extensive treatment covering the topics that are ncoded.

In Chap. 2 we turn to the interesting and important question of deter-
mining the asymptotic behavior of solutions of equations whose coeffi-
cients are nearly constant, whose study was initiated by Dini and
Poincaré. After presenting a number of results which yield first-order
estimates, we consider the problem of obtaining approximations of
arbitrarily high order. This leads naturally to the concept of asymptotic
series, as introduced by Poincaré. Since the literature on this subject is
vast and much of the material quite complicated, we have, consistent
with our general aim, presented only one of the most important results in
order to enable the reader to taste the flavor of the general theory.

Chapter 2 also contains, in connection with the discussion of asymptotic
behavior, a discussion of the concept of stability, that much overburdened
word with an unstabilized definition.

Existence and uniqueness theorems for nonlinear systems constitute
the content of Chap. 3. These are given not so much for their own sake,
but because they furnish excellent motivation for exhibiting two powerful
methods, the method of successive approximations, already viewed in a
simpler setting in Chap. 1, and the method of approximating to differen-
tial equations by difference equations.

Next, in Chap. 4, we present the fundamental results of Poincaré and
Liapounoff concerning the stability of solutions of nonlinear systems.
In order to illustrate a variety of important techniques, we present
several proofs under conditions of varying degrees of restrictiveness.

Chapter 5 1s dedicated to the study of real solutions of the polynomial
equation P(t,u,du/df) = 0. Introducing the important concept of a
proper solution, a solution which remains finite for ¢ > ¢, which is pre-
cisely the type of solution which is required in most physical investiga-
tions, we present the remarkable results of Borel and Hardy concerning
the asymptotic behavior of the real, proper solutions.

Chapter 6 presents results which are a combination of ingenuity and
special techniques. Just as the geometry of the triangle and of the circle
obstinately refuses to rest content as a set of corollaries of results valid
for general algebraic curves, and constantly furnishes its devotees new
theorems undreamt of in the broader discipline, so the study of the
equation %" + a(f)u = 0 is replete with elegant and unexpected results
which are not to be derived from any general theory of the nth-order
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linear system. We have attempted to present a sufficient number of
devices (remembering that a device is a trick that works at least twice) to
enable the diligent reader who has worked through the chapter to obtain
new results and to read research papers.

Chapter 7 is devoted to a particular nonlinear equation of the form
u"” 4+ tmu® = 0. This equation came first into prominence in connection
with the astrophysical researches of Emden. A number of results
obtained by Emden in the usual half-intuitive, wholly ingenious fashion
of the physicist were made precise by Fowler, who was then stimulated
to continue and give a complete discussion of the proper solutions of this
equation for all values of the parameters. This equation, and the
closely related equation #” + ey = 0, have become of increasing
importance recently in nuclear physics, in connection with work of
Fermi and Thomas.

The purpose of Chaps. 5 and 7 is not only to rescue from partial
oblivion a number of extremely interesting results and techniques in the
theory of differential equations, but also to illustrate the fact that non-
linear differential equations are by no means the intransigent creatures
they appear to be upon first frightened glance. Since modern physical
theory is being driven more and more to rely upon nonlinear explanations
of basic phenomena, we hope that the contents of these chapters may be
some slight consolation for the lapse from the grace of superposition.

It is with great pleasure that I record at this time my deep appreciation
to Solomon Lefschetz, who first guided my footsteps into the path of
research in the theory of differential equations. His stimulating discus-
sions and constant encouragement furnished continued sources of
inspiration.

I should also like to acknowledge my gratitude to Mina Rees and the
Office of Naval Research, who supported and encouraged my original
work in the theory of differential equations. Finally, I should like to
thank a number of friends who read various portions of the manuscript
and made many helpful comments.

Richard Bellman
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CHAPTER 1

PROPERTIES OF LINEAR SYSTEMS

1. Introduction. In this introductory chapter we shall consider the
fundamental properties of solutions of the system of linear differential
equations,

n

dy; .
(1) dyt = 2 aii(t)yj: 1= 1: 2; RPN (4

i=1

The independent variable ¢ is to range over the interval [0,], and we
shall assume that the coefficient functions a;;(f) are piecewise-continuous
over any finite subinterval. Under this assumption, we may consider
all integrals that appear to be Riemann integrals. For our purposes
there is very little to be gained from the sophistication of the Lebesgue
integral, and we prefer, in consequence, to keep our discussion on as
elementary a level as possible.

We furthermore postulate that the coefficients are real functions.
Occasionally, particularly in the discussion of linear systems with con-
stant coefficients and with coefficients close to constant, we shall introduce
complex solutions. For example, we may use (e,e~**) as a basic set of
solutions of d*u/dt* 4+ u = 0, rather than (cos ¢, sin ). This is purely
a matter of convenience, however, and we shall always be primarily
interested in real solutions of real systems.

The only way to study the behavior of solutions of systems of linear
algebraic equations or linear differential equations in any systematic
fashion is to make use of the concepts of vectors and matrices. In
this chapter we shall introduce these concepts and demonstrate the few
results required for the theory of differential equations. No prior knowl-
edge of vector or matrix theory will be assumed.

Ezxercise
Show that the nth-order linear equation
u™ + a,(Hur 4 - -+ a,(u =0
may be converted into a linear system of the type of (1) above by means

of the substitutions u = wi, ¥ = ug, . . . ,u*V = u,,

1



2 STABILITY THEORY OF DIFFERENTIAL EQUATIONS

2. Vector-Matrix Notation. The column of n quantitics,

W

Yo
m) y=1.

Yn
where the y; are real or complex, will be called an n-dimensional column
vector, and the symbol (y1, y2, . . . , y») will be called an n-dimensional

row vector. If the y; are functions of ¢, y will be called a vector function
of t; otherwise, it will be called a constant vector. The quantity y; is
called the 7th component of y. We shall, for the greater part, use column
vectors.

The letters z, y, 2, %, v, and w will be systematically reserved to repre-
sent vector functions, while a, b, ¢, and d will be used to represent con-
stant vectors. As far as possible, u and v will be reserved to denote one-
dimensional vectors which we call scalars, and ¢, ¢z, . . . will be used to
denote scalar constants.

Let us now consider various operations which may be performed upon
vectors. The simplest is addition. The sum of two vectors x and v,
written  + y, is defined to be the vector whose ¢th component is ; + y..
It follows from our definition that the operation of addition is com-
mutative and associative. Using a limiting process, we are led to define
the integral of y = y(t) as the vector whose ith component is [y; df, and
we write [y dt. The product of a scalar ¢, and a vector y is a vector
¢y whose 7th component is ¢yy;.

To measure the magnitude, or length, of a vector y, we introduce the

scalar quantity
n

@) Il =Y I
i=1
which we call the norm of y. It is readily verified that
®3) lz + yll < ll=ll + llyll,  (triangle inequality)
[ewll = lalllyl
[y atl] < [llyll at
and that ||y| = 0 if and only if every component of y is equal to zero.

n
The advantage of this norm over the Euclidean norm (2 y?) % lies in
Na1
its simplicity.
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Having defined vectors, we now introduce the concept of a square
matrix, the only type of matrix we shall employ. The square array of
numbers, real or complex,

ayy G2 Qi
A21 Q22 * * ° Q2a

(4) A=y = (ay)
Ay Ap2 ot Ann

will be called a matriz of order n. The quantity a; is called the 7jth

element of A. As before, A will be called a matrix function if its ele-

ments are functions of ¢, and otherwise a constant matrix. It will be

said to be continuous in [a,b] if its elements are continuous in this interval.
The sum of two matrices A and B is defined by

(5) 4+ B = (a; + by)
while the product is defined by

(6) AB = (En aikbk,-) -
k=1

It is clear that addition is commutative and associative, but that mul-
tiplication, while always associative, is, in general, not commutative,

Ezxercise

1. Show that A(B + C) = AB -+ AC, and that
(B+4+C)4A = BA + CA

A matrix of particular importance is the identity matrix

10 -+ 0
0 1 0
- U :
00...1

IFor all 4 we have AT = 14 = A.

The product of a scalar ¢, and a matrix 4 is the matrix ;4 = Ac¢; equal
to (cia;;). The product of a column vector y by a matrix 4 is written
Ay—note the order of the factors—and is defined to be the vector whose
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ith component is 2 azy;- It is easily seen that ABy is unambiguous,
i=1
being equal to (4B)y = A(By).

The definitions of addition and multiplication, at first sight quite
artificial, become reasonable and intuitive if we consider the matrix 4
to represent the linear transformation in n dimensions,

(8) x§=2a,-jx,-, t=12 ...,n

i=1
The resultant of the transformation represented by B followed by the
transformation represented by A yields another transformation C, which
we call AB. It is readily seen that this new definition of AB coincides
with the one given above by (6). It is clear now, geometrically, why
AB # B4 in general.
To measure the magnitude of 4, we use the scalar quantity

n

®) l4l = ) la

which we call the norm of A. Itis ea;ily seen that

(10) ' 4 + B|| < 4]l + Bl
4B < |4} B]
lend] < ledfll 4]l
Azl < 4l

As before, we define [A4 df to be the matrix whose ijth element is
fa,-j dt.
' Exercise
2. Show that || [A dt|| < [ii4]l dt.

Having defined integration of vectors and matrices, we also define
the inverse operation of differentiation in the expected fashion:

dA. . dai,-
1 4~ (%)
dys
dt
@ _ .
dt
dyn
dit
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In terms of this new notation, our fundamental linear system described
in (1) of Sec. 1 takes the simple, elegant form,

dy

(12) it

= Ay
If we assign an initial value to y, it becomes
(13) : —= =4y, y0) =c

In the next section, we turn to the problem of determining whether
or not (13) has a solution.

Before proceeding to this, we require a few more elementary facts
about matrices. Associated with each matrix we have the scalar quan-
tity, |4|, the determinant of A. If |4| = 0, we say that 4 is singular,
otherwise nonsingular,

Ezxercise
3. Show that |AB| = |4]| |B|.

The importance of this new concept lies in the fact that a nonsingular
matrix A possesses a unique inverse, a matrix which we shall denote by
A~1, This matrix has the property that

(14) AA-1 = A-14 =T

Ezercises

4. Show that 4~ = (a;;/}A|), where a;; is the cofactor of a;. Show
that (A~1)~1 = A, and that (AB)~! = B4,

5. Show that
: (AB) dAB+AdB

Tan =4y ra2
%A—l: —A.%A -1

We shall also require the notion of an infinite series of vectors or
matrices. We define
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N o

s S = (3, ap)

m=1 m=1
(m)
yr
mes1l
0
y(m) =
m=1
o
(m)
Yn'
m=1

provided, of course, that the infinite series appearing on the right converge.

Exercise

6. Show that sufficient conditions for the convergence of 2 A™ and

nel

2 y™ are that 2 [A™] and 2 ly™ ||, respectively, converge.

m=1 nm=1 m=1

3. Existence of Solutions of the Vector-Matrix Equation dy/df = A (f)y.
Our first theorem will be an existence and uniqueness theorem. The
result is included in a later result concerning nonlinear systems, and the
method is precisely the same as that used for the more general case.
Nevertheless, we shall present the proof in all its details since it furnishes
an excellent introduction, free of extraneous difficulties, to thetechniques
we shall employ in what follows.

Theorem 1. Let A(f) be continuous in the interval [0,¢)). Then there
exists a unique solution of

M W sy, O =c
in this interval.

Proof of Existence. Let us introduce a method which will be used
frequently in what follows, the celebrated and fundamental method of
successive approximations due to Picard.

Consider the sequence of (vector) functions defined inductively as
follows:
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(2) Yo =2¢
Wi Ay, 0O =,

d?{;;’l = A(i)ym yn+1(0) = ¢, n = 0’ 1’ 2’ ot

This is equivalent to

(3) Yo = o
ywis = o+ [[A@yadt, n=0,1,2, ...

We wish to show that the sequence of functions defined by (3) con-
verges uniformly to a function y(¢) for 0 < ¢ < t,. If so, we may pass
to the limit under the sign of integration in (3) as n — o, obtaining

(4) y=c+ ﬁ)’ Aty dt

Differentiation yields dy/dt = A(f)y, and clearly y(0) = c.

We are deliberately violating our convention of representing the com-
ponents of y by y; because of our distaste for superscripts. There is at
the moment no danger of confusion.

To demonstrate the convergence of the sequence {y.}, we consider the
series

(5) 8O = Y et — )
n=0
N
The Nth partial sum sy = 2 (Yn+1 — ¥») has the simple form
n=0

Sy = Yn+1 — Yo

Consequently, the series converges uniformly if and only if the sequence
converges uniformly. The series will converge uniformly if the scalar

L]
series 2 |¥nr1 — ¥all converges uniformly. From the recurrence
n=0

relation of (3) we obtain

(6) yn+l — Yn = /) ‘4(tl)(yﬂ - yn—l) dtl’ n 2 1
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and thus

M s — vl S [ 1A = il d, n 21
Let ¢; = max ||A@)| for 0 < ¢ < . Then (7) yields
®) [Waes = vall < 1 ] llyn = yaall dt

Since [ly1 — yol < ﬁ) “IAE vl dt, < cillel|t, we obtain, inductively,

(9) - ”yn+1 - yn” “C“ (7(,:1_? 1)‘ n = 0) 1’ 2:

The uniform convergence of the exponential series in any finite interval
ensures the uniform convergence of Z|yn+1 — yal and therefore that
of the sequence {y.}.

Notice that we make no attempt to prove that the sequence {dy./dt}
converges to dy/dt, but circumvent this difficulty by use of the integral
equation of (4). This equation shows that the limit function is dif-

ferentiable (which is not immediately obvious)
FAORN and has the required derivative.
C The use of integral equations to establish
)//.fa; ® existence theorems is a standard device in the
5 . theory of differential equations, both ordinary
and partial. It owes its efficiency to the
Fia. 1. . . . .

smoothing properties of integration, as con-
trasted with coarsening properties of differentiation. If two functions
are close (see Fig. 1), their integrals must be close, whereas their deriva-

tives may be far apart and may not even exist.

Throughout the remaining chapters, we try wherever possible to
convert the differential equations under consideration into integral
equations. Very often, the key to the solution lies in the conversion
to the proper integral equation.

Proof of Uniqueness. It is very important to prove uniqueness, since
it 18 easy to construct equations which have multiple solutions. Natu-
rally, in the latter case, A(f) cannot be continuous.

Let z be another solution of (1), so that

(10 LA 2(0) =

for 0 < ¢ < f. Integration yields
(11) z2=c+ ﬁ)‘ Atz dty
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Combining this with (3), we obtain

(12) . 2= Ynis = [[AW) G ~ ya) dt
and hence
(13) lz = ol < [ 1142 = yall dta

Since [z — yoll < [lzll + [lgoll < 2 + [lcll, where ¢z = max [lz]] in 0 <
t < to, we obtain, via iteration,

(14) lz — yall < (ea + llelext

“pmmsmﬂwgg%

Letting n — <, we obtain ||z — y|| < 0, whence z = .

Ezxercises

1. Show that the requirement that A4 (f) be continuous may be replaced
by the condition that 4(f) be Riemann-integrable.

2. What happens if A(f) has an improper Riemann Integral? Does
there exist a solution? Is it unique? Consider du/dt = u/2 Vi,
u(0) = 0.

3. Show directly that the sequence {dy./dt} converges uniformly, and
then that the limit must be dy/dt.

4, The Matrix Equation, dY/dt = A(f)Y. TUsing precisely the same
methods as above, we can prove that the matrix equation

0 .‘ifg = A()Z, Z(0) =C

has a unique solution for 0 < ¢ < #5. The details are left as an exercise.
In what follows, Y will be used to represent the solution of

2) ‘%’ =AY, Y0O) =1

where I is the identity matriz.

Ezxercise

1. Prove that Z = YC.
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We shall occasionally make use of the following result:
Theorem 2. Y (i) is not singular in the interval [0,t0). More preciscly,

3) . |Y| = exp {ﬁ)’[ i a,-,-(tl)] dtl}
=1

[The quantity 2 a; occurs frequently in matrix theory and is therefore
i=1
dignified by a special name, frace, written tr (4).]
Proof. The proof depends upon the following two facts:

4) (@) d|Y|/dt = sum of the determinants formed by replacing the
elements of one row of |Y| by their derivatives
(b) The columns of ¥ are solutions of the vector equation

dy — AQ)y

Simplifying the determinants obtained in (a) by use of (b), we obtain

5) 41yl = (z aﬁ@) 7|

Since | Y (0)| = 1, (3) follows,
The fact that Y is nonsingular will play an important role in the solu-
tion of the inhomogeneous equation dy/dt = A()y + w.

Ezxercises

2. Prove that the solution of dy/dt = AQ)y, y(0) = ¢, isy = Ye.

3. (Alternative proof of the nonsingularity of Y.} Let y: denote the
1th column of Y. If |Y| =0 at ¢t = {;, there exist nontrivial scalar
constants €1, €2, . . ., Cn such that cys+coyz2+ - * * +cayn =0,
the null vector, at ¢ = ¢;,. Using the uniqueness theorem, show that
this implies that ew: -+ coya+ * * * + €ayn =0 for 0 Lt L by, and
that this is a contradiction at { = 0.

4, Let uy,us . . ., u. be a set of n solutions of the nth order linear
differential equation u™ al(t)u("‘l) 4+ - 4+ a.()u =0. Show that
the Wronskian

221 Uz c Un
u, W ol

6) w(t) =
Up=D D e e gD

is equal to w(0) exp [ - /: ai(t1) dt;].
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B. Prove that, if the coefficients are continuous in [0,f], the linear
differential equation in the above exercise has » solutions uy, %z, . . . , Uns
with nonvanishing Wronskian in [0,{]. Hence show that no relation
of the type cius + coue + * + + + catt, = 0, where the ¢; are constants,
can hold in [0,4,], and that any other solution in this interval may be
expressed in the form u = cyuys + cous + - ¢+ + ¢,u,, where the ¢;
are constants.

6. Y~! satisfies the equation dZ/dt = —ZA(t). This is called the
adjoint equation.

5. The Linear Inhomogeneous Equation dy/dt = A(f)y + w. Let us
now consider the inhomogeneous equation

1) &A@z +u),  2(0) =

Let y denote the solution of the corresponding homogeneous equation,

©) Yo awy, v =c

and Y, as above, the solution of the matrix equation

@) % =A®)Y, YO =1I

To solve (1), we employ a method due to Lagrange, a variation of
parameters. Let z = Yu. Substituting in (1),

@ %y B W=y %+ 40T 0u
= AQ)Y)u + w(t)
Hence
du
whence
(6) U ==c + ﬁ)t Y*‘l(tl)U)(tl) dtl

[since ¢ = 2(0) = Y (0)u(0) = »(0)]. This yields for z the formula

(7 2

Y(t)e + fa LY ) Y- (t)w(t) diy
v+ fd LY (@) Y1)t diy

f

This result is important enough to distinguish as
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Theorem 3. The solution of (1) 28 given by

@®) 2=y+ ﬁ) LY Y- () w(t) ds

Ezxercises
1. Explain why our proof of Theorem 3 automatically implies the
uniqueness of the solution of (1).
2. Use the Lagrange variation-of-parameters method to solve the
inhomogeneous nth-order differential equation

u™ 4 ay(u + - - -+ a(u = f(f)
(a) By converting it into an inhomogeneous system

(b) Directly by setting u = 2 ar(®ur(t), where {uy(f)} is a set of
k=1
solutions of the homogeneous equation with nonvanishing Wron-
skian, and the {a,(f)} are unknowns

8. Prove directly that z as given by (8) is a solution of (1).

6. The Equation with Constant Coefficients. We now turn to the
extremely important case where A4 is a constant matrix,

dy _ _
() D=4y, YO =c
We shall show that this equation may be solved explicitly in terms of
exponentials and polynomials. Before turning to this, let us derive
some general properties of the solution of the matrix equation

@) -= =AY, YO) =1

Since y = Ye, it is ¥ which plays the important role. This representa-
tion shows very clearly the influence of initial condition upon the solution.

By analogy with the scalar equation %' = au, we are tempted to
envisage a solution of (2) of the form ¥ = e4. To give this formalism
a meaning, we introduce the matrix series

@

' Artr
® wm ) A

n=0 .
where A° = I, which defines the matrix function on the left. Since
A~ < ll4]l", » = 1,2, . . ., the m? series occurring on the right, where

m is the order of A, are each majorized by 2 |4 ||*=/n). Hence these

n=0
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series converge uniformly in any finite interval, and the sum function
is a continuous function of ¢ for all finite {. Since the differentiated
series converges uniformly, we have

An n—1
(4) — eAt = z (n _t 1)' eAt

That e4* = I for { = 0 is clear. Invoking the uniqueness theorem, we
have that Y (f) = e4’. In exactly the same manner as we derive from
the series for ¢ the scalar functional equation er*t = e¢%t, we derive from
the series representation for e4t that

(5) phtgts — (z Anf> ( E Ams)

= n=

= z An (ij-_l)_n = eA(stD)
n!

n=0

The necessary rearrangements may be justified by the absolute con-
vergence-of the multiple series.

The following proof of the above functional equation for e4, which
depends upon the uniqueness theorem, is much more illuminating.
Consider the two matrices Y ()Y (s) and Y (s + ¢), where s is fixed and ¢
is variable. Both satisfy the differential equation

dZ

(6) o = 4% Z(0) =Y(s)

since A is a constant matrix. Uniqueness requires that

(7 Y+ =YOY(s)
Ezxercises

1. Prove that, if Y(t + s) = V()Y (s) for all s and ¢ and if Y (f) is con-
tinuous in an interval, then d¥/dt = AY, where 4 is a constant matrix.
(P6lya.)

2. Prove that e4+®t = g4teBt for all ¢ if and only if AB = BA.

8. Prove that |e4| = e'**4, and hence that e is never singular.

4. Prove that (e4)~! = ¢4,
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The functional equation (7) permits us to simplify (8) of Sec. 5 in the
following important way:
Theorem 4. If A 1s constant, the solution of

(8) % = Az 4+ w, z(0) =c¢
is given by
©) e=y+ [ Y-t ds

where y is the solution of dy/dt = Ay, y(0) = ¢, and Y ts the solution of
dy/dt = AY, Y(0) = I,

7. The Behavior of the Solutions of dy/dt = Ay as t— «. Now
that we have established some general properties of Y (), we shall focus
our attention upon the individual elements of ¥ in order to determine
the behavior of ¥ ast— . Let us note once and for all that when we
write { — © we mean{— 4.

There are several ways of determining the behavior of the individual
terms. We shall begin with one fundamental procedure and then discuss
the others subsequently.

Imitating the technique used for the nth-order linear differential
equation, we set y = e*c, where \ is a scalar constant and c is a constant
vector which depends upon A and which we desire to be nontrivial, that
is, not equal to 0, the null vector. Substituting, we obtain

1 AeMe = AeMe
or
2) Ae = Ac

This vector equation is equivalent to n linear homogeneous equations

®@)

aii¢; = NG, t1=12...,n

12

J

The necessary and sufficient condition that these equations possess a
nontrivial solution for the ¢; is the determinantal equation

a1 — A A12 e G1n
Aa1 a2 — A - A2p

(4) o = ) =0

Qny 7% tt Qan A
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This may be written simply as
(5) [A —=AIl =0

This equation is called the characteristic equation of A, and its n roots
Ay, A2, . . ., An, in general complex, are called the characteristic roots of A.

Ezxercises

1. Prove that A and T—'AT have the same characteristic equation.
2. Prove that tr (4) is the sum of the characteristic roots of A.

For the next few sections we make the simplifying assumption that the
characteristic roots of A are distinct.

This assumption permits us to establish the principal results in a very
simple and elegant fashion. Subsequently we shall show how we may
force most of our applications to depend only upon this simple case. In
a later section we shall discuss the results corresponding to multiple
roots.

To find the components ¢, ¢z, . . . , ¢» connected with a specific
characteristic root \;, we take the cofactors of the element in any row of
|4 — N[, For example, taking the cofactors of the elements in the first

row, we would have as possible choices for ¢i, ¢, . . . , Ca,
ags — N\ Qa3 vt Qan
A3z sz — Nyt Q3n
(6) ¢y =
[22% 1 [0 2% et Apn ~— )\i
(1231 Qg3 cott A2n
G311 Gz — N vt ot A3n
Co — —
An1 (¢ 2% c e App .— >\i
Q21 Qa2 — Nyttt Qopt
A31 Q32 R / P |
= %
Ay An2 vt App—1
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If, by mishap, all these cofactors vanish, we must try another set of
cofactors. All tries cannot fail, since at least one of the cofactors of the
elentents, a; — A, along the main diagonal must be distinet from zero.
This is easily seen using the rule for differentiating a determinant. We
have

(M) f'(\) = —leofactor of (a1 — A)] — [cofactor of (@es — N)] — -
— [cofactor of (@n, — )]

If all these cofactors were zero for some A, then A would be a root of
/() = 0, which would imply that A was a multiple root, in contradiction
to our simplifying assumption above.

Let us note for future reference that the components ¢i, cs, . . . , ¢a
of ¢, which we shall call a characteristic vector of 4, can always be chosen
to be polynomials in the characteristic roots, as above.

Let ¢® be a characteristic vector associated with A;. We shall show in
a moment that there can only be one such, apart from scalar multiples.
To each characteristic root A\;, there corresponds at least one solution,
yi = eMe®, of our differential equation dy/dt = 4y. Let us now demon-
strate that these n solutions, corresponding to n distinet values of A; are
linearly independent over any interval. Assume that there exists a
relation

8) a1+ oy + -+ aya=0

where a1, as, . . . , a. are scalar constants and 0 is the null vector.
Differentiating k times, we obtain

(9) aNerte® + ¢ - 4 auhEerte™® = 0, k=012 ...,n—1

Considering only the first components of the ¢, we obtain the equations
(10) 2 aMeeP =0, k=012 ...,n—1

i=1
In order that there may exist a nontrivial solution for the n quantities
a;c{, it 1s necessary that the determinant

e)\lt e)\gt PPN e)\nt
AeMt gt N P
an
)\’1‘_16)‘“ >\12L—16)\zt PP )\z—le)\nt
be equal to zero. This, however, is impossible since the determinant is
[exp (A1 + Az 4+ - - - 4+ A)fv(N), where v()) is the Vandermonde deter-

minant of Ay, A, . . . , As, Wwhich is nonzero under our assumption con-
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cerning the distinctness of the A;. Therefore we must have acf® = 0
for each 7. If a, 0, we have ¢{? = 0. Continuing in this way, con-
sidering the other components of the ¢'?, we see that if a; > 0, then ¢®
must be the null vector. This cannot be, since ¢ is a characteristic
vector which by construction is nontrivial.

A solution of the matrix equation dZ/dt = AZ may now be obtained
by forming the matrix Z whose columns are the y;. That Z is non-
singular is a consequence of the linear independence demonstrated above.
This is not immediately seen but proceeds from the following reasoning,
which we have used before: If |Z| = 0 at { = {;, we must have a relation
of the form ayy: + asys + - - * + aayyn = 0 at ¢ = ¢;, where 0 is again
the null vector and the quantities ai, a2, . . ., a, are scalars not all
equal to zero. Since yi, ¥2, . . . , Y. are solutions of dy/dt = Ay, the
linear combination aw; + aayz + * * * + a.y. is also a solution. It
equals 0 at ¢ = {;, and consequently, by virtue of the uniqueness theorem,
it must be identically equal to 0. From what has preceded, we see that
actually each a; is equal to zero, which is a contradiction. Thus|Z| > 0.

Since Z(t)Z~1(0) is a solution of dY /dt = AY, Y(0) = I, we must have
Y(@) = Z(t)Z~1(0). Notice how useful the uniqueness theorem is for
establishing identities between solutions.

This last relation shows very clearly the structure of Y (f) and hence
the structure of every solution of dy/dt = Ay, on the assumption of dis-
tinet characteristic roots. If A has multiple characteristic roots, the
general solution may be more complicated, perhaps with polynomials in
{ appearing as coefficients.

Ezxercises

3. On the basis of the assumption that A has distinct characteristic
roots, derive the necessary and sufficient condition that all the solutions
of dy/di = Ay approach zeroast— .

4. Solve t dy/dt = Ay, where A is constant.

8. An Alternative Approach. In the preceding section we showed that
the solutions y; were linearly independent. Let us now show that the
characteristic vectors ¢® are linearly independent. This is an immediate
consequence of the previous independence result, since a relation of the
type

(N | za,.c(i) =0

i=1 :

is equivalent to z ay; = 0att =0.
i=1
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This may also be proved by multiplying (1) by A repeatedly and using
the fact that Ac® = Ac®. In this way we obtain the relations

@) -Emmw=o, k=012, ..

i=1

and the argument now proceeds as above.

Ezxercises

1. Show that every solution of dy/dt = Ay is a linear combination of
the solutions y1, 2, . . . , Yn.

2. Use this result to show that each \; possesses only one character-
istic vector, apart from constant multiples, under our assumption of
distinet characteristic roots.

Consider the matrix T' formed by using the ¢® as columns. The linear
independence of the ¢® is equivalent to |T| = 0. Since Ac® = \ie®,
we have

®3) AT =T| '
0 0 A
whence
MO0 0
0 X 0
(4) T-AT = )

0 0 -+ A\,
A matrix of the type appearing on the right is called a diagonal matrix.
This last result is important enough to state as a theorem:
Theorem b. If the characteristic roots Ny, N2, . . . , \a of A are distinct,
there exists a matrix T such that

>\10... 0
0)\2... 0

(5) T-IAT =

0 0 T xn
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Furthermore, the components of T’ can be chosen to be polynomials in the \;.
An application of this result is immediate. In the equation

(6) %—tlZ=AY, Y0) =1

set ¥ = TZ, with T as above. Then

) W poarz, 20 =10
or
0 )\2 PR 0
dZ _ . . . _ -
(8) vl Nz, zZo=T
0 0 « e )\n
The solution is clearly
e)\lt 0 e 0
0 e)\gt v . 0
0 0 e)\nt
whence
et 0 0
0 e)\zt 0
(10) Y=17 -1
0 0 e)\nt
Exercise

3. Derive (10) by using the relation e4t = 2 Ann/nl.
n=0

9. The Jordan Canonical Form for Matrices with Multiple Character-
istic Roots. In the previous section we showed how a matrix with
distinet characteristic roots may be reduced to diagonal form. If 4 has
multiple characteristic roots, it is not true, in general, that it may be
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transformed in this fashion. For example, it is easy to show that there
exists no 7" such that

® (0 3)7-6 )

There is, however, an elegant canonical form for arbitrary matrices,
with or without multiple characteristic roots, due to Jordan. Let

AN10 ---0
0O N1 -+ 0
@) Loy =| = )

If k = 1, we call this a simple factor.
The result of Jordan is that there exists a matrix 7" such that

L, (M) 0 coee 0
0 Lg,(Ne) -+ - ¢ 0

@) T-IAT =

0 0 - oo L (M)

where ky + k2 + - - - + k., = n, and the \; are not necessarily distinct.
For example, three possible types of 3 X 3 matrices with triple roots are

A 000 M000 M1 0
(4) A1 =10 M\ O 3 A2 = |0 M\ 1 » A3 = |0 A1 1
0 0 N 0 0 N 0 0 N

We shall not prove this classical result since, as mentioned above, we
can reduce our problems to the case where A has distinct characteristic
roots.

Ezxercises

1, Determine the form of -e4t for general A.
2. Use this result to obtain the necessary and sufficient condition that
ett—0asf— o,

3. By considering the solution of dy/dt = Ay, where 4 = <(1) i),

show that A cannot be diagonalized.
4. Prove in the same way that A, 4., and A; are distinet in the sense
that there exists no T for which T-1A,T = A; for 7 # j.
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6. Show that- Ly(\) — N, when raised to the kth power, yields the
null matrix.

6. If A has distinet characteristic roots Ay, Ay, . . . , Ay, We may write
n solutions of dy/dt = Ay in the form y = c(\)ed, X = A, Ag, . . ., An
If X and u are two distinct characteristic roots of A4, then

c(N)eM — c(u)ert _

N — w)
is also a solution of dy/df = Ay. Is it true that, if A is a multiple char-
acteristic root, then the limit lim z = d(c(\)e*)/IN = ¢’ (N)eM + c(\)teM

pN
is also a solution of dy/dt = Ay? Generalize.

10. Another General Diagonalization Theorem. In the preceding
section we discussed the Jordan canonical form of a matrix and its appli-
cation to the representation of the general solution of the linear differ-
ential equation dy/di = Ay. We have seen that a matrix may have a
complicated canonical form if it possesses multiple characteristic roots.
Let us now establish a result which is relatively easy to prove, which is
useful, and which makes possible a semblance of order in this chaos.

Theorem 6. There exists a matrixz T having the property that

AN bz s b
0 )\2 PP b2n
(1) ) T-1AT = | '
0 0 o o e )\n

In the matrix on the right-hand side all the elements below the main
diagonal are zero. '

Proof. The proof proceeds by induction. Consider first 2 X 2
matrices. Let A; be a characteristic root of A and ¢/ be an associated
characteristic vector. Let I’ be a matrix whose first column is ¢ and
whose second column is chosen so that 7 is nonsingular. Then it follows
that

M by
—IAT =
(2) 4 <0 bzz)
where we evaluate T—!AT most easily by taking it to be T-1(4T).
Furthermore, bs2 must equal Ay, since 7147 has the same characteristic
roots as A.

Let us now demonstrate that the result for nth-order matrices may be
used to establish the theorem for matrices of order n + 1. As before,



22 STABILITY THEORY OF DIFFERENTIAL EQUATIONS

let ¢ be a characteristic vector associated with A;, and let n other

vectors a‘?, a®, ., ., a™ be chosen so that the matrix 7y, whose
columns are ¢, aV, a®, ., ., a™, is nonsingular. As in the case of
n = 2, we have
4 . .. ’ ? e ’
M bm b1. nt1 M b12 bl,n+1
’ Ce ’
0 b, b2, n1 0
TIAT, = =
(3) 1 1 . . . B,
’ Y
0 by Vo1, mi 0

where B, is an n X n matrix.
Since the characteristic equation of the right-hand side is

M\ = N|B.—\| =0

it follows that the characteristic roots of B, are Az, As, . . . , Any1, the
remaining n characteristic roots of A. We know via the inductive
hypothesis that there exists a nonsingular 7, such that

Az €12 ' Cim
0 )\3 .« o Con
(4) T:B,T, = ) )

0.0 -*° Ay
Let Tpi1, an (n + 1) X (n 4+ 1) matrix, be formed as follows:

10 -0
0

1 0 :
®) Towr = (o T,) Bk T,

0

Ty is clearly nonsingular. We assert that

N bz 0t byan
0 Xy o byan

®) Tt (T AT Ty =

0 0 e An-{-l
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Since C~Y(B-1AB)C = (BC)~'A(BC(), it follows that T = T:T,., is the
required matrix of order n 4+ 1. This completes the proof. Note
again that the elements of 7 may be chosen to be polynomials in the
characteristic roots.

Exercises
1. If A has k simple roots Ay, Az, . . . , A, there exists a matrix T
such that

)\1 0 R 0 bl‘k+1 MR bl,n

0 N -+ 0 bogyr - bya

T-'AT =0 0 e bk, 1 bk,n
) 0 0 0 MNevr * 00 bigis

LO 0O --- 0 0 e An

2. Is the T of Theorem 6 unique?

11. Corollary of the Above. We shall use below the following conse-
quence of Theorem 6:

Corollary. 7T may be chosen so that z |bi;] may be made less than any
4.5

preassigned positive constant.

At first sight this seems to contradict the result that not every matrix
with multiple roots may be transformed into diagonal form. The point
is that the 7' above depends upon the bound for Z|b;|. If we attempt
to choose a sequence of 7”s for which this bound goes to zero, we find
that the sequence either approaches a singular matrix or has no limit.

Let 7y be a matrix which reduces A to the semidiagonal form of
Theorem 6. The change of variable y = T2 converts dy/di = Ay into

(1) % = N2y + brege + ¢ * -+ binka
d
== Nazo + * ¢+ Dowza
dzy _ AnZn

dt
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It is now easy to see how to choose T s0 as to satisfy the conditions

of the corollary. Set 2, = €%, 21 = €72, _;, . . ., 2, = e]. The

new system has the form
dz ’ ’ n—1

(2) 'Ei- )\121 + €b1222 + ¢t + € b1nz/n
dz)
dt

Aze + * ¢ ¢ 4 €72,

dz,

m = )\nz’n

By suitable choice of ¢ the sum of the absolute values of the off-diagonal
terms may be made as small as desired. This last transformation is
equivalent to z = E2/, where E is nonsingular. The required matrix is
now T = T,E.

12. Application of the Previous Result. This last result may be used
to obtain the form of the general solution of dy/di = Ay, a result we had
previously obtained on the basis of the unproved Jordan canonical form.
Let T be a matrix which reduces A to semidiagonal form, and set y = T'z.
The equation for z is

Mo bz o+t b
0 Ny -+ by
dz . .

M m= N

0 . “ e )\n
Expressed in its components, this yields (1) of the previous section.
Solving for the z; one at a time, starting with z,, we see that, if the \;
are distinct, each z; is a linear combination of exponentials. If, however,
multiple characteristic roots appear, then these exponentials may have

polynomials in ¢ as coefficients. For example, if A.—; and \, are equal,
the solution of

dzn_l dzn
(2) di = )\n—lzn—l "}' bn—l. n&n, _dT

yields terms of the form 2, = cie*, 2.1 = (¢2 + cat)ert, if bu_y, » 2 0.
In general, we see that a characteristic root of multiplicity &k gives rise
to solutions with components of the form Pi_;(¢)e*t, where Pr_.(f) is a
polynomial of degree ¥ — 1 at most.

= An2n
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From this follows the important result:
Theorem 7. The necessary and sufficient condition that all solutions of

dy _
3) i Ay
tend to zero at t— o« 1s that the real parts of the characteristic roots be
negative.

Ezercise

Show that the condition that the real parts of the characteristic roots
be nonpositive is not sufficient to ensure that all the solutions of (3) be
bounded as t — «. What additional condition suffices?

13. An Approximation Theorem. The result which enables us to
by-pass matrices with multiple characteristic roots is the following:

Theorem 8. Given any matrix A, we can find a matric B with distinct
characteristic roots and such that ||A — B| < ¢, where ¢ is any positive
quantity.

Proof. Consider the matrix A 4 E, where E = (e;;) and the e; are
independent real variables. If A + E has a multiple characteristic
root, then f(A) = |4 + E — AI| and f'(\) have a root in common. If
fO\) and f’(A) have a root in common, their resultant B(E) must vanish.
We wish to show that we can find arbitrarily small values of ¢; for which
R(E) # 0. If this is not true, R(E) as a polynomial in the e; must
vanish identically. This is impossible, since for the values e; = —ay,
1 #j,and ey =1 — ay, A + E does not have multiple roots. Hence
R(E) # 0, identically.

We therefore can find e; for which E le;| is as small as desired and

%)

such that 4 + E = B has distinct characteristic roots.

Exercises

1. Using this last result and the diagonalization theorem, find all con-
tinuous solutions of the functional equation f(4AB) = f(A)f(B), where f is
a scalar function of A,

2. Prove Theorem 8 using the corollary in See. 11.

14. The Diagonalization of Variable Matrices. In Chap. 2, devoted
to the asymptotic behavior of solutions of linear equations of the form

M W -4+ BOW
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where A is é)\\constant matrix and B(f) — 0 as{ — o, it will be important
to diagonalize A + B(f). If the characteristic roots of A are distinet,
it is plausible that, for ¢ large enough, those of 4 4+ B(?) will also be
distinct.

In order to prove this result as well as some further results we shall
require concerning the dependence of the characteristic roots of A + B(t)
upon i, we shall use a small amount of complex-variable theory. These
results can certainly be proved without using this advanced analytic
tool. However, the procedure we follow seems to be simultaneously
the most natural, most elegant, and most informative, so that it would
only be yielding to inverse snobbishness not to employ it.

Let f(\,t) be the characteristic polynomial of A + B(f), .

@) N = |4 + B(t) — M| =

and let f(\) be the characteristic polynomial of 4, f(\) = f(A,0). If
the characteristic roots A\i, Ag, . . . , A, of A are distinct, we may, in
the complex A plane, draw circles ¢; having the A; as centers, with the
property that no two ¢; have a point in common. The number of roots
of f(\f) = 0 within ¢ is given by
1 af()\ t) /AN

As t— o, f(\E) = fO\) + g\D), Where g()\,t) — 0, uniformly on any
¢;. Hence for ¢ > t;, f(\{) has no roots on a ¢;. Since, also,

AD =70 + o

we have
_ 1 ') + g
@) Nidt) = ’zTn/ [f(x) ¥ gx] i
e jorts Fg
o D+ am | oo

Since [f(A)f(A,D)] is umformly bounded away from zero on ¢; and sinece
g and g\ go to zero as ¢ goes to infinity, we have, for £ > ¢,

(5) Ni(t) =1+ o(1)

Since N;(t) is an integer, it follows that Ni(f) = 1 for ¢ > ¢,. This
establishes the distinctness of the characteristic roots of A + B(t) for
large t.

Let us now establish some further properties of the \:(¢), the character-
istic roots of A + B(¢). We have, fort > ¢;,

(6) MO = 5 / 5@;}%@—"]@
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From the representation we see that, if B(t) is continuous for ¢ > i,
then \;(¢) is continuous for ¢ > ¢, and that M) > N ast— «. If B(f)
is differentiable, the same must be true of the \;(f).

Finally, if B(f) — 0 ast— o and if f * |l[dB/dt]] dt < =, then
This last follows readily from the fact that the coefficients of the various
powers of \ in the polynomial f()\{) are polynomials in the elements of
B(¥).

For further reference, let us state these last results as

Theorem 9. If B(f) — 0 as t— « and if the characteristic roots of A
are distinct, then, for t > &, the characteristic roots of A + B(t) are distinct

and approach those of A ast— «. If, in addition, fw ldB/dt|| dt < e,
then f *ldh()/dt) dt < oo.

Using this result, we can derive the following important tool:
Theorem 10. Let
(7 (a) The characteristic roots of A be distinct
() Bf) > 0ast— =
© [” |dB/dt]| dt <

Then there exists a matriz T(t) having the property that the change of variable
y = Tz converts

d)\i(t)
ST dt < «

®) W 4+ By
tnio
® % _ @ + c)e
where
() 0 0
0 Na(2) 0
(10) L =| ° ' ]
0 0 <o (D)
and

(11 [ llcol e < =
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Proof. A + B(f), as noted above, has distinct characteristic roots for
t > t..\ This fact permits us to find a matrix T'(¢) which diagonalizes
A + B(Y) for every sufficiently large {. Furthermore, we know that the
elements of T'(f) can be chosen to be polynomials in the A\;(f). Since
M) — N as t— o, T(?) can be chosen so that 7'(f) — 7', a nonsingular
matrix. By virtue of our hypothesis concerning B(?), every element #;

of T(f), has the property that f * |dty/dt) d¢ < . The substitution

y = Tz converts (8) into

dz
dat

dT(t)

(12) = TOIA + BOIT@®z —~ T'() ——

Since T*(¢) is uniformly bounded for ¢ >. ¢,, we have

o J Jeze)

This completes the proof.
16. Linear Systems with Periodic Coefficients. In this section we
consider systems of the form

ar (t)

1) 23 @t < ey di < o

) W~ Pay

where P(f) is a periodic matrix, which is to say that Pt 4+ r) = P(2),
where 7 is a nonzero, real constant.

Although these systems cannot be solved explicitly, as in the case where
P is a constant matrix, we can find a representation for the general solu-~

tion of (1) which is occasionally useful.
Theorem 11. The solution of the matrix equation

) ooy, YO -

where P(t) is periodic with period v and continuous for all t, has the form
@) Y = Qe

where B 1is a constant mairiz and Q(f) has period 7.
Proof. If Y has the stated form, then

4) Y4 = Q@)eBe = Y(§)e?r

Thus, it must be true that Y-1({)Y (¢ + 7) = e?r. Since Y(t 4 7), as
another solution of (2), is equal to Y ({)C, where C is a constant matrix, we
must have C' = ¢?. For B to exist, it is necessary that C be nonsingular.
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This condition is satisfied, since C = Y-1()Y (¢t + 7). We now show
that this condition is sufficient.
Lemma. If C ¢s nonsingular, there exists a matriz B such that e? = C.
Proof of Lemma. If we use the Jordan normal form, the proof is
quite simple. If C has the Jordan form

L, (M) 0
(5) cC="T ML -1

0 Ly, (\)

it is sufficient. to show that each L,(A) has a logarithm. For if B; is a
logarithm of Lz, (A;), then

B, 0
(6) B=T

is a logarithm of C.
We utilize the result noted previously in Sec. 9, Exercise 5, that

™ Le(N) = N)* =

the null matrix. From this it follows that the formal logarithm of
LkO‘))

(8) B = log Li(A) = log (\ I 4 L,(\) — \I)
(= 1)
= Jlog \ + (L ) — A=
k—1
(=)
= Ilog\ -+ ————(LO\)—AI)”

exists and is actually a logarithm, as may be verified directly.

When B is determined so that Y (¢ 4+ ) Y1) = C = e, Q is deter-
mined by the relation @ = Y (¢)e=?. It is easily seen that @ is periodic
of period .

Since we have not proved the validity of the Jordan normal form
because of the long and tiresome argumentation required, let us present
an independent proof of the above lemma.

We use first the result we have demonstrated above that any square
matrix may be converted into triangular form; that is, there exists a T
such that

A

) A=T1| M
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where the notation signifies that all elements below the main diagonal
are zero. If no multiple roots occur, we know that this triangular
matrix may be taken to be diagonal, and it is clear that any nonsingular
diagonal matrix has a logarithm. Consequently it is only the occur-
rence of multiple roots which provides any difficulty. Let us henceforth
take 4 to be triangular.

The proof we present is inductive. The result is clearly true for
1 X 1 matrices. ILet us assume that it holds for n X n matrices, with
n=1,2,..., N, and show that it holds for (N + 1) X (N + 1)
matrices. Write 4y, in the form

_ AN ay
(10) AN+1 = <.O >\N+1)
where
A1
(11) AN = )\2 .
0 Ay

Here ay is an N-dimensional column vector and 0 is an N-dimensional
row vector with all zero elements.

Let By be a logarithm of Ay, the existence of By being given by the
inductive hypothesis, and let

(12) Byyi = (% ”5)

where 0 is as before, I = log Ayy1, and z is an unknown N-dimensional
column vector. All logarithms of scalars that appear will be principal
values, and thus any equation of the form e*s® = ¢los® will imply

loga = logb

It remains to be shown that z may be determined so that e®v+ = 4 5.y,
It is not difficult to verify by induction that

(13) Blzir+1 — (Ig& (va‘l -+ B’z:r—zl "!Zk R lk—lI):l:) k= 1; 27 ...
Hence
(1) e o [ D BT BENE - Bk

k=0
0 Avel
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The first two terms in the above sum are taken to be 1 and x. If ] is
not a characteristic root of By, we have

Bt-1 4 B2 - o . 1]
(15) ¢ = = X 5]
k=0
— — —1 s
- (B’If, lkI)kE‘BN ZI) - (eBN _ e’I)(BN - lI)"'l
k=0 )
Hence
e — a1
(16) IcO| = m
_ e — el

where r;, r2, . . ., rx are the characteristic roots of Byx. From the
definition of C(l) we see that |C(l)| is a continuous function of I. The
right-hand side of (16) is also entire if we define (e — ¢)/(rx — I) in
the obvious fashion at [ = r,. Consequently (16), which was proved
under the hypothesis that [ 5% ry, holds for all I. It follows that C(7)
is never singular. Consequently we may determine z so that C(D)x = ax,
namely, £ = C(D)"lay.

Finally we observe that By will be real if the characteristic roots of
Ay are positive.

Exercise

Find a representation for the solution of %'’ + p(f)u = 0, where

p(t + 2r) = p(0).
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CHAPTER 2

STABILITY, BOUNDEDNESS, AND ASYMPTOTIC BEHAVIOR
OF SOLUTIONS OF LINEAR SYSTEMS

1. Introduction. In this chapter we propose to consider the behavior
of the solutions of the differential equation

1) % — (4 + BW):

where 4 is a constant matrix and B(¢) is small, in some sense, as t —
Two particularly important cases are those where {|B(t)|| — 0 or where

f ° IB@®)| dt < «. Included in (1) are nth-order linear equations of
the type

n. dn—l
@ Tt @t p®) Gy + e @ pa®)u = 0
and, in particular, the second-order equation
d*u
3) Si @+ pOu =0

Because of its special form, many more results can be obtained concern-
ing the solutions of (3) than for the solutions of (2) or (1). For that
reason, we reserve a later chapter, Chap. 6, for a more complete discussion
of (3), and in this chapter consider only those properties which are com-
mon to systems of all orders.

Intuitively, it seems reasonable to expect that the solutions of (1)
should share many properties with the solutions of

dy
€y 5 = Ay

so far as their behavior as t — « is concerned. This expectation will
be borne out to a great extent by many of the results we shall derive
below. However, we shall also show, by means of counterexamples,
that the behavior of the solutions of (1) is a good deal more complicated

than one might suppose.
32
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The problem arises as to the meaning of the word “small” as applied
to B(f) as t — ., A first, and obvious, definition is that B(f) is small
if ||B(#)|| — 0 as £ — «. This condition yields many interesting results.
However, occasionally we shall require the stronger conditions

(5) f IB@®) dt <
or
(5% /’* (—i—%g—t) dit < o

Essentially we see that the problem is that of imposing a suitable metric
upon the space of variable matrices. Once this viewpoint has been
taken, it becomes clear that the same procedure is advantageous in
discussing the behavior of the solutions of (1) as {— . We shall
investigate, variously,

© T ]
or
®) Jim 2]

or, if these are infinite,

oy . iy 108 Jz]

i— t

or, occasionally,
6™ [ 7 Izl ae

Each of these functionals has an important role to play in the study of the
properties of the solutions of (1) for large values of ¢.

The point of the preceding discussion is that, in comparing the solutions
of (1) with solutions of (4), we must agree to fasten our attention upon
the class of perturbing matrices B(f) we are admitting and upon the
property of the solution in which we are interested. We may expect
that some properties will be preserved under one class of perturbations
and not under another, and this is indeed the case.

These preliminary remarks lead to a rigorous concept of stability for
linear equations:

Definition. The solutions of

@) W = a0y
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are stable with respect to a property P and perturbations B(t) of type T if
the solutions of

®) %~ 0 + Bo)

also possess property P. If this is not true, the solutions of (7) are said
to be unstable with respect to property P under perturbations of type T.
Toillustrate this concept, consider the two simple differential equations

©) % - —a, %’% = (—a -+ b(D)

where @ > 0 and where b(f) — 0 as t — «. Both solutions have the
properties
(10) (@) lim % = lim v = 0, a finite quantity

— ® — ®

log v

®) tim 2% _ lim

{— t . = t

= —a

If, however, ¢ = 0 and b(f) = 1/¢, (10b) is preserved, but (10a) is not,
since v is unbounded although w is bounded. Consequently, there is
stability with respect to the property of (10b), but instability with
respect to the property of boundedness. If we replace 1/¢ by a function
which is integrable over (f, ), then boundedness will be preserved.

‘Perhaps the most important property of the solutions is that of bound-
edness. If a solution is bounded, we are interested in knowing whether
or not it approaches zero as { — o« and, in general, in examining the
possible set of values it assumes as ¢ — . If the solution is unbounded,
we may wish to examine the ratio (log ||y|)/¢ and perhaps other measures
of its unboundedness.

2. Almost-constant Coefficients. We shall call the coefficient matrix
A(?) of the differential equation dz/dt = A(f)z almost constant if

lim A@¢) =4

— 0
a constant matrix. Our first results will concern the boundedness of
solutions of equations of this. type. Throughout the chapter we shall
assume that the matrices that appear satisfy, in addition to the properties
explicitly stated, the properties assumed for the existence and uniqueness
of solutions.

Theorem 1. If all solutions of

ay _
¢y a Ay
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where A is o constant matriz, are bounded as t— «, the same is true of
the solutions of

@) %‘; = (4 + B()z

provided that f” [[B@| dt < .
Proof. We write equation (2) in the form

3) %f = Az + B(i)z

Identifying B(t)z as an inhomogeneous term, we see, applying Theorem 4
of Chap. 1, that every solution of (3) satisfies a linear integral equation

4 2=y + [/ Y — t)B)e(t) di

where y is the solution of (1) for which y(0) = 2(0) and where Y is the
matrix solution of

(5 % =AY, Y(0) =1 |

We note that y = Yy(0) = Y2(0). Let ¢; = max (531>1£) Iy, ég(})) rmn.
Then from (4) we obtain N -
(©) el < ol + [ 17 = D]IBEI)]

<ot [JIB@IEG] db

We now require the following lemma, of such utility throughout the
remainder of the book that we call it the fundamental lemma:
Lemma 1. If uw > 0, if ¢1 45 a positive constant, and if

(7 uém—{—ﬁuvdtl
then
(8) u < ¢ exp (ﬁ:v dt1>

Proof. From (7) we obtain

9) <
¢ -+ ﬁ) uv diy
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Integrating both sides between 0 and i,

(10) log (c1 + ﬁ: uy dtl) —log e £ /:v dity

or

11 ugcl—I—ﬁ:uvthclexp(ﬁ:vdtl)
Ezxercise

1. Show that (8) is the best possible consequence of (7).

- Applying (11) to (6), we obtain
(12) el S evexp (o1 [/ 1Bl dn) < exexp (ex [[7 1B dtr)

Since, by assumption, f " |IB| dt: < =, we see that ||z]| is bounded.

Using the same technique, we may demonstrate

Theorem 2. If all solutions of (1) approach zero as t — o, the same
holds for the solutions of (2), provided that |B(t)|| < ¢1 for t > to, where ¢,
s a constant which depends upon A.

Proof. We have, as before,

(13) z=y+ ﬁ) “Y(@ — t)B(t)2(t) di

From the explicit representation of the solutions of dy/dt = Ay, it
follows that, if ||Y||— 0 as t — o, there exists a positive constant a
such that ||y]] < e and ||[Y ()] < cee~ for ¢t > 0. Hence

(14) lell < exet o [}/ e Bt e dt
or
(15) lelle < 03 + exes [ ellaw)] da

Applying the fundamental lemma, we have
(16) lzlle®* < coenret

If cic; < @, we may conclude that ||zl — 0 as t — «. Since the con-
stants ¢; and a depend upon A, specifically upon the characteristic roots
of 4, it is clear that ¢; depends upon 4.

Ezxercises

2. Consider the inhomogeneous equation dz/dt = Az + w, where A is
a constant matrix and w = w(t) — w,, a constant vector, ast— «. Dis-
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cuss the boundedness of the solutions under the following alternate
hypotheses:

(a) All solutions of dy/dt = Ay approach zero as { — .

(b) All solutions of dy/dt = Ay are unbounded.

(¢) A has k characteristic roots with negative real parts.

3. What conditions on w(f) will ensure that all solutions of

2
T2t u = ()

are bounded ast— «©? Isw({) — w, as t — « sufficient? ,
3. Almost-constant Coefficients (Continued). We may improve upon
Theorem 1 as follows:
Theorem 3. Consider the system

M %= 4+ BO +

where

(2) (a) A 1s a constant matriz all of whose characteristic roots have non-
positive real parts, while those with zero real parts are stmple

(®) B() >0 ast— =, f” |dB/dt)| dt < oo

© [Tlcwld < ,
(d) The characteristic roots of A -4 B(t) have nonpositive real parts
fort >t
Under these conditions, all solutions of (1) are bounded ast — .
Proof. Let the simple characteristic roots of A which possess zero

real parts be denoted by Ay, N2, . . ., A. Then, as indicated in Exer-
cise 1 of Sec. 10, Chap. 1, there exists a matrix 7' such that
)\1 0 d1k+1 e dln
Az
3) T-AT = |0 Meldier1 * * ¢ din
Akt1
0
An

The notation signifies that the initial k X k submatrix is diagonal and
that all the elements beneath the main diagonal are zero. As usual, the
elements of T are chosen to be polynomials in the elements and char-
acteristic roots of A.

T.et us turn our attention now to the matrix A 4 B(f), whose char-
acteristic roots we designate by Ai(f), Aa(D), . . ., A(f). Let A\(D),
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Ao(t), . . ., M(f) be the characteristic roots of A + B(f), which approach
A, Az, . . ., A; and which we know to be simple for ¢ sufficiently large.
The remaining characteristic roots Apy1(f), . . ., A.(f) have negative
real parts for large ¢, and uniformly so as t — .

Let T(t) be the matrix corresponding to 7 above, formed so that
T-Y){A + B@)1T () has a form similar to (3) with A;(f) — A.. In this
way we have T'({) —» T as t — « and therefore are assured that 7(¢)
is uniformly bounded as t— . Furthermore the assumption that

f * |dB/dtl| dt <  yields the result that f *\dT/dt]| dt < ». Both

of these facts are important for what follows,
We now make the substitution z = T(#)w in (1), obtaining

(4) %’%’ — T-1(4 + B())Tw + (T—ICT — id%) w

By virtue of our hypothesis concerning C and of the results above
concerning 7', we see that the matrix 7-1CT — T-1d7T/dt, which we call
R, is absolutely integrable,

(5) [“’ |R|| dt = [“’ |T-1CT — T-1dT/di|| dt < o

Writing equation (4) out in terms of its components, we have

6) (o) % = N{Bw; + z dii(tw; + z rg®w;, 1 =1,2, ...,k
i=k+1 i=1
® G = N0t Y dOw+ ) rui= b4
i=i+1 i=1

where d;;(f) — d.;, a constant, as { — «, and where f N lre ()| dt < .

Note that the only difference between (6a) and (6b) resides in the sum-
mation over the terms d;w;, a difference which is a consequence of the
form of (3). ,

Let us now discuss the solution of (6b). Taking the case of 7 = n first,
we find that

() Wa = cn exp [ ﬁ) Nalty) dtl]

+ ./(')‘ exp [j: Ma(8) dS] (i rnj(tl)wj(tl)) dt,
i=1
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Since the real parts of the \;(f) for 2 =k + 1, . . ., n are uniformly
mennegative, we have, for some positive constant a,

®) [wa] < fenle 4+ [" e | B [lw]] dty
Considering the case ¢ = n — 1, we obtain the integral equation

(9)  Wn1 = a1 exp [/: An—ia(tr) dt1]
+ /(-]t exp [ﬁ: )\n—1(8) ds] dnn(tl)’wn(tl) dt,

e [ [an@ as] (3 renstn(®) d
i=1

This yields the inequality
(10) i < fenmalem 4 [ e 0ldun(t)lnn(t)| d
t
—a (tty
+ [ e Rl ]l di
If we employ the previous inequality, (8), we obtain
(D) oo < lewmsle + [ eel| Rl o] dty
+ Cni1 /;)t e—a(t—t)) [[cnle—at1 + /(‘)h e*a(tr—tz)”R”Hw“ dt2] dtl

where we have used the fact that |d..(t1)] < ¢ay1.  The first term in the
second integral yields c.,ilc.)te=®. The second term is

(12) e [ e ([ e ||Rllw] dis) di

= cope [ ([} e 1Bl o] dts) d
Integrated by parts, this becomes
(13) eu [} (¢ = te= Rl o]

Since te < bye* for t > 0 if a1 < a and if b, is suitably chosen, we
obtain

(14) [ons] < bt b [ e R ] dta

Since a; < a, we obtain the same inequality for |w,| by increasing the
values of b; and bs, if necessary.
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Continuing in this way step by step, we find that constants by, bs, and a;
exist such that

(15) ol < i s [ e R o] dts
fork+1<17<n.
Turning to the equations where 1 < ¢ < k, we obtain

(16) w; = c; exp [ /: () dtl]

+ [Jexp [ [IAut) dn ] ( \ dy(t)wy) dis

i=k+1

+ /;)t exp [/: A (t2) dtz] (S Tu'(tl)wf) dt,

Since the real parts of A(f) are nonpositive, we have, for 7 = 1, 2,
b b

n

an el <lel+q [ () wl)da+ [ IRI] o

i=k+1

From (15) we have

18) Yl < demt 4 [ e B] o] i

F=k+1

Since

asy ([ esmi an) a,

=~ L [ emenmig e + L [ R1l 2
we obtain, finally, from (17),
(20) ol <+ [MIR]llwlldn,  1<i<k
Combiﬁing this with (15), we derive
(21) o wl <6+ e [ RN ] by

Since. by assumption / TR dt < oo, it follows by application of the
fundamental lemma that [|w|| is bounded.,
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Exercises

1. Making use of the Jordan canonical form, show that the hypothesis
that the roots with zero real part are simple may be replaced by the con-
dition that they correspond to simple factors.

2. For what values of ¢;, o, and ¢; are all solutions of

d*u cldu Co C3 _
W+7az+<1+7+72>“—°

bounded?

4. Equations with Periodic Coefficients. We now consider equations
of the form

M L~ 40 + By

where A(t) is periodic and B(t) is small as ¢ — «. That the stability
properties derived for the case where A is constant carry over to this
case is a consequence of the canonical representation of solutions of the
unperturbed equation

2) o = Ay

furnished by Theorem 11 of Chap. 1, which tells us that the matrix
solution of

3) % —AQWY, YO =1
has the form
(4) Y () = P(t)e

where P(t) has the same period as A (¢} and where C is a constant matrix.
Using this representation, we may prove quite readily
Theorem 4. If all solutions of (2) are bounded, then all solutions of (1)
are also bounded, provided that

(5) (a) A(t) is periodic
® [TIBldt < =

If all solutions of (2) approach zero, as t — «, then the same holds for
all solutions of (1), under the same hypoiheses.
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Proof. If all solutions of (2) are bounded, we must have [|¢®!|| bounded
as t— oo if all solutions of (2) tend to zero, then |e¢t|| — 0 and does so
exponentially, which is to say, | < ;6% with a > 0. Since

v+ [ YOY-1(t)B@e(t) di
y+ [} PO 0P) Bt dy

(6) z

i

we have
@ el < Wyl + [ IPOllec= P~ 1B di
Serta [} 1B db

whence boundedness follows, as before. The second part of the state-
ment is also derived along previous lines.

6. Equations with General Variable Coefficients. We already know
that the boundedness of the solutions of

1) - = Aty

together with the condition || B(f)]| — 0 as ¢ —  is not sufficient to ensure
the boundedness of all solutions of

@) &~ (40 + By

[compare (10) of Sec. 1]. We might be tempted, in the light of preced-
ing results, to state that the result will be valid provided that we amend

the condition ||B(f)|| — 0 to read /“ IB®)|| dt < ». Letusshow by a

counterexample that no such general theorem can hold.
Theorem b. There is an equation of type (1) with the property that all

solutions approach zero as t — o, and a matriz B(t) for which f “IB@)| di

< o, such that all solutions of (2) are not bounded.
Proof. Consider the equation

dyy _ P

(3) dt - ayl
W2 _ (gin log ¢ logt — 2
T (sin log £ + cos log a)y2

whose general solution is

€y Y1 = cre®

y2 — C2et sin log t—26¢
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If ¢ > 14, every solution approaches zero as { — ». If we choose as
our perturbing matrix

5) 50 = (2% §)

the perturbed equation has the form

d21 .

(6) —dt = az;
d22 . —at
v i (sin log t 4+ cos log t — 2a)2, + z1e

The solution of this system is
(7) 21 = cle_""
2y = et sin log !—2(16(62 + €1 /(‘)t e—tl sin log £y dtl)

Let t = e?"*+97,  Since

t te—2am/3
—t; sin log £ —t1 sin log f1
(8) [ etmms ety > ot ot toets ity
0 te™ ™

€

> t(e7?/% — e ") exp (— 6_2 t)

we see that, if
9 1 <22 <1+ e

the solutions of (6) will be bounded only if ¢; = 0. This condition is
fulfilled only for those solutions for which 2,(0) = 0.

Let us now turn to the problem of seeing what we can salvage from
this. We can prove

Theorem 6. If all the solutions of (1) are bounded, then all the solutions
of (2) are bounded, provided that

(10) @ ["IB@|dt < =
() u_m]‘t'r (A) dt > — oo

e
or, in particular, that
@) tr(4) =0
Condition (b") is relevant to the important equation
(11) w4+ at)u =0

which is equivalent to a two-dimensional system satisfying (b’).
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Proof. Expressing z in terms of y, we have

(12) 2=y + [ YOY(@0)Bh)(w) i
whence

(13) el < Tl + [Ty @IT=@liBe e d
Since

(14) det ¥ = exp [ ﬁ) “tr (4) dt]

we see that, provided (10b) is satisfied, | Y~1(¢)|| is bounded as t — .
Hence from (13), we obtain

(15) el < &1 + e [ 1Bt dt

and application of the fundamental lemma yields the desired boundedness.
6. Almost-constant Coefficient : Asymptotic Behavior. We now return
to equations of the form

) %~ 4+ B

where |B(f)|| — 0 as t— o, and investigate the behavior of ||zl as
t— ». The simplest, and perhaps the most interesting, case is that
where A has simple characteristic roots., For the case of multiple roots
there are corresponding results which are more complicated to state and
prove. Consequently, we content ourselves with the following:
Theorem 7. If, in equation (1), the following conditions are satisfied:

(2) (a) A s a constant matrix with simple characteristic roots
®) [B —>0ast— o

then, corresponding to any characteristic root hx, there 1s a solution 2™ satis-
fying the inequalities

3) ez2exp [Re )t — de /t‘: 1B dt]"S_ [z ]|
< ¢ exp [Re O+ dy ﬁ: IB]| dt]

for t > ty, with ¢,, cq, dy, and ds being positive constants.
In particular,

4) lim 195—'-——

>

k)
220 < Re 0w
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Furthermore, if the characteristic roots are real and distinct, and if

fw |B|| dt < =, there are n solutions 2V, 2 . . . | 2™, such that

(5) 2 = (e, + o(1))

as t— o, where cx ts a constant vector.

Proof. Let C be a constant matrix reducing A to diagonal form,
C—'AC = L, where L is diagonal. The substitution z — Cz transforms
(1) into an equation of the same form where 4 is now diagonal, and where
the new B(t) — 0 as t —» «. Hence we start with the equation in this
form, since it is clear that, if the solutions of this new equation exist
having the desired property, then the original equation also possesses
solutions of the stated type.

A slight bit of complication is furnished by the fact that, even though
the A, are distinet, the real parts may coincide. Let A, be a character-
istic root satisfying - - - Re (Ae—1) < Re (Ax) < Re (Aes1) < Re (Niy2)

-+, and let y; be the column vector whose components are 0,0, . . . ,

e 0, ..., 0, the & occurring in the kth position. Any solution of
(1) satisfies the integral equation
(6) e=y+ [ ¥~ Bt dty

where, as usual, Y(f) = exp Lt; and conversely any solution of (6) is a
solution of the differential equation. To obtain a solution to (6) satis-
fying (4), we must somehow eliminate the terms involving ¢ for [ > I
(which is, of course, not necessary if A\ = A,). This we do as follows:
Decompose Y into the sum ¥ = Y, + Y,, where

e)\lt 0
e)\:t
(7) Y1 = BMt
0
0 0
(0 0)
0
Y2 o e)\k+lt
e+t
0 ) e\nt
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Using thi’s/ decomposition, (6) takes the form

Q) z=y+ ﬁ) "Yit ~ t)B(t)e(t) dt + ﬁ) LYot — ) B(t)2(ty) dts

The undesirable terms are now united in the second integral. To
eliminate these terms, we use the fact that Y.(t — t1)B(t1)2(¢1) is a solu-
tion of dy/dt = Ay, for any fixed ¢,, and consequently, provided that the

integral converges, so also is /; ® Vit — t)B(ty)2(t) dty. Hence, by
changing our choice of a particular y, but still regarding it as a generic
solution of dy/dt = Ay, we may write (8) in the form

9 z=y+ ﬁ) "Vt — t)B(t)a(ty) dt, — ﬁ Yyt — t)B(t)2(t) da

It is, of course, no longer immediate that a solution of (9) exists. To
obtain a solution, we have recourse to the method of successive approxi-
mations. We shall show that, with a suitable choice of y, a solution of
(9) exists satisfying the right-hand inequality of (3). To obtain the
left inequality, another device is required.
Choose y to be the vector y; defined above, and define

(10) 2o = y .

. e = yp+ /; Yi(t — t) B(t)za(ty) dts — ﬁ Yot — £)B(t)za(ts) dty
The point #, is chosen in place of zero, since we shall require subsequently

that |B(#}|| be uniformly small for ¢ > #.
Let us first show by induction that

(11) lzall < 1 exp [Re (At +da [ |1B]]

for a suitable ¢; > 1, d; > 0.
The result clearly holds for n = 0. Let us assume that it is valid for n,
and show that this implies its truth for » + 1. We have

(12 Newsall < sl + [/ 1736 = ) NIBG leall dta

> + [T 1¥ 2 — DBzl dta
The first integral is bounded by

13) e [ 1720 = 1B exp (o [ 1B ar) exeovn a
< ke, /t gRe () (-t gRe 011 || B(ty) | exp [d, fh 1Bl dtz] dt,
t b

<k oo oxp [0, [ 15l au

1
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Now consider the second integral in (12). It is bounded by

(14) ex(n— k) / " gne 0w | B(t) | exp [Re Mt + da ﬁ "1 dtz] dty

To obtain an upper bound, we use the following lemma:
Lemma 2. Let a, b, and ¢(t) be positive quantities satisfying the condition

¢'(t)

(18) FaEL <e
Then

R e ¢(1)
(16) ﬁ e (t) dt < R

Proof
(17) acP(t) — e/ (t) = ae~*¢(t) (1 — ¢'/ag)
2 a (1 - 9) et
a

Thus,' .

(18) e—oto(f) = ﬁ * [ae—to(f) — e—sig’(1)] dt > (a — b) ﬁ * oatg(f) dt

To put (14) into a form suitable for application of the lemma, we
integrate by parts, obtaining
ci(n — k) N
d

(19) gRe )t / [Re ()\n — )\k)]e_R" (An—Xg)t1
t

6
to

oo [a [ 1201 ]

©

gl(id—ﬁ e Ot [exp (_ Re (\n — M)ty + dy fl 1B(@®)]| dt)]

In applying Lemma 2, we set a = Re (\» — ) > 0, and

+

t

o'() _
¢>(t) - dlnB(t)H

Since ||B]l — 0 as t — o, for ¢ sufficiently large, and ¢ > ¢, we will have
disup |Bl| £ Y4a = b. Hence, using the lemma, we see that the
t>to

integral in (19) is less than

e—Re (n—M)¢

¢
(20) 2 Re O = 70 &P [d1 L 1Bl dt,]
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Collecting terms, we obtain as a bound for the second integral in (12),
the expression

exp [Re )t + dy 4/: IIB|| dt]

Combining the bounds for the first and second integrals, we see that, if
we choose ¢; = 2 and d, large enough so that

6(n——k)<2

2n

then (11) will be satisfied. Once d; has been chosen, ¢ is chosen to satisfy
di sup |Bj| < b. Thus the induction holds.
t >t

To show the convergence of z,, we consider, as customary, the series

z (2n+1 — 2n). There is no difficulty in showing that
n=0

(23) ”zn+1 —_ zn” S (cl sup ”B“)n+le(Re()\k)+c)t
t >t
with ¢; = ¢i1(e). Thus, if {, is sufficiently large, the series converges.
Let 2, 2 | | . | 2™ be the solutions corresponding to the different
characteristic roots A, A, . . . , M. If two roots A\x and Ax.1 have the

same real parts, we leave Y; and Y, unchanged and merely use the
appropriate yx.

Let us show that these n solutions are linearly independent. If
these solutions were dependent, there would exist a relationship of the
form

-
n

(24) 0= i ue® = kZI pey® + ﬁ:[ Z weY 1t — tl)B(tl)zk] dty

k=1

n

— [ Yt - B

k=1

Replacing Y1, by ¥ — Y, this becomes

(25) 0= Zuky"‘) - /;ow [ i ey on(t — t1)B(t1)zk] dty

k k=1

Now the matrix Yo, with £ = 1, 2, . . . , n, contains no term in e*t;
or if there are several \;, with 7 = 1,2, . . . , [, for which

Re (\) < Re (\)



STABILITY—LINEAR SYSTEMS 49

it contains no term with Re (\) < Re (A1). Therefore, since the A; are
distinct, the terms involving exponentials with Re (\) < Re (A;) must
vanish identically. Hence u; = us = -+ - = 4, = 0. This condition
eliminates Yy, and we are then led to the same conclusion concerning
the terms involving A;y1, and so on. Thus all the y; = 0, and we have
linear independence.

We come now to the proof of the left-hand inequality of (3). Let Z
be the matrix whose columns are the 2®, Z is nonsingular and satisfies
the differential equation of (1), and in consequence its inverse W = Z—t
satisfies the adjoint matrix equation

(26) %»;_f — —W(A + B)

Consider the corresponding vector equation for a row of W

dw

(27) i

= —w(4 + B)

The same method used for the original equation shows that, for each
characteristic root —\. of —A, there is a solution w® satisfying the
inequality

(28) [w®]| < esexp [ — Re ()t + da [ |1B]l dta |

We can readily choose the ¢, to be the same ag in the previous case.

Let V be the matrix whose rows are the w®. V is nonsingular, and
from the uniqueness theorem it follows that V = DW, where D is a
constant matrix D = (d;;). Wehave VZ = DWZ = D. Let the vector
inner product of the row vector ¥ by the column vector z be defined to be
121 + Y22 + © * © 4 yaz, and be denoted by y -2. We have

(29) w® - 2® = o

If dix # 0, we obtain, from |dw| < [|w®| [|2®]], the inequality

dkk

(30) ) > | %

exp [Re’ At — dg f; | Bt dtl]

If di. = 0, we proceed as follows. In place of 2® we consider

k+1
3B = B L 2 a®
=

With a change of constants, we obtain an upper bound for 2® of the
type (11). The matrix Z whose columns are the ® has the same
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determinant as Z and is thus nonsingular. Hence Z = ZE, where E is a

constant, nonsingular matrix. Similarly, in place of w®, we may con-
n

sider ©® = w® J- Bw®. Let W be the corresponding matrix,
1=Fk+1

W =FW. Thus WZ = FWZE = FE = G, where G = (g;). Consider

the linear manifold M, composed of solutions of the adjoint equation

(27) which have the property that the inner product

k—~1

(31) w (2 + S av) =0

(0 4 o)
for all ;. This is equivalent to the k independent conditions
32) weoz® = wez® =+« = g2 = (

Since the linear manifold M of all solutions of (27) is n-dimensional, M,

is an (n — k)-dimensional manifold.

The vectors w® - 2 Bw® cannot belong to an (n — k)-dimen-
1=k+1

sional manifold for all choices of B8, without contradicting the linear
independence of the w®. Consequently, for any particular k, gi. cannot
be zero for all choices of o; and 8;, and therefore for each k there exists a
solution of the requisite type. '

This completes the proof of the first part of the theorem. It requires
only minor modifications to prove the more precise result obtainable

when [ “||Blldt < . We shall not give the details, since we shall

derive a much more general result in the succeeding section.
7. Asymptotic Results. We shall now prove a more precise asymptotic
result:

Theorem 8. Let
M Lo 4+ 60 + B

where

(2) (a) A s a constant matrixz with simple characteristic roots N\
(®) ¢—0ast— o, and [ |dg/df dt < oo
© [ 1B®]d< =

(d) The characteristic roots \,(t) of A + &(t) either have distinct real
parts or satisfy one of the following conditions:
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3) (a) lim sup ) [n‘ Re (\() — M) dt[ <

(b) lim ﬁ: Re (M(f) — N() df = o,
A‘ Re (\(f) — M) dt > —e, witht > 1
() lim ["Re () — M) dt = =,
ﬁ“ Re (M) — (D)) dt < e, witht >

Then there exist n independent solutions of (1), x®(t), with 1 <k < n,
such that, as t — oo,

@) 2B (f) = (exp L‘ Ni(tr) dtl) (x + o(1))

where ¢ ts a constant, nonzero vector.
Proof. Applying Theorem 9 of Chap. 1, we know that for ¢ > #; there
exists a matrix S(¢) such that

(5) S(A+ ¢)S1=A

where A is a diagonal matrix with diagonal elements \;(¢), the charac-
teristic roots of A 4+ ¢(t). Furthermore

(6) (a) lim S@) = T, (det T = 0)
— o
(b) lim N\(l) = u;, a characteristic root of A
t—
() / * |dS/dt|| dt <
Let us perform the change of variable y = Sz, obtaining

4 ds
) =y + (SBS—l + = s—1> y

Since S approaches a constant nonsingular matrix, we have

®) f dtSclfw(||B|l+lj%LtS">dt<w

Let us introduce a new matrix R = SBS.Z}- (dS/dt)S—* and rewrite (7)
in terms of the individual components,

1y 98 o
SBS’-!—Et—Sl

n

(9) %‘%’ - MOy = z ri(Of, R(t) = (rs(1)

J=1
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For k fixed and ¢ variable, consider the difference Re (\:(f) — Ax(?)).
Let us denote as I the set of integers 7, where 0 < ¢ < n, for which this
difference satisfies (3a) or (3b); the remaining set of integers where the
difference satisfies (3c) we shall denote as II.

Each of the equations of (9) may be converted into an integral equa-
tion, and we do this, using two types, depending upon whether 7 belongs
tolorIl:If71 €1,

(10) %i(t) = o exp ([ Nt dtl)

— [ [exe ([ 00 as) (3 rutous) | an

(8;x is the Kronecker delta symbol; 8, equals 1 if ¢ = k£ and equals 0
otherwise.) If ¢ &1l

w(® = [[Texp ([ () ds) (.i ra(t)us(t)) | di

The procedure is similar to that followed in the previous proof, where
we were also attempting to single out solutions with a particular growth
ast— o, To show the existence of solutions and to obtain boundg for
the solutions, we use the method of successive approximations:

(11) y:l))(t) = 8z exp (/: >\k(tl) dtl), 7 = 1, 2, R L4
y§"’+”(t) = 6 exp [ Lt >\k(t1) dh]

- ﬁ” [exp (L‘ Ai(8) ds) (i 7‘4;’.‘/}"'))] dty, m>0,(¢EI
i=1
= ﬁ [exp ( ﬁ Ni(t) dt1) (}2 r,-,y;,m))] dt,, (CA=R 1)

Since the proof is simple conceptually, but complicated in detail, we
suggest that the reader first carry through the proof for a second-order
system where the technical foliage is a minimum.,

For convenience of notation, set

12) Re ( j “M(D) dt) = Ht)

a0 = [y )
Ayro(D) = [y @) — g @), m 20
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From the preceding equations we obtain, for m > 1,

(13) Ay < /t' eHi(O—Hi(tr) (Jz fﬁj(h)l)’A?{;f"D(hz) dts, A=3)
< Lt eH (O—Hi(t) (2 [r(t0) }%Agi(m—l)(t]} dty, (G € 1)
; ¥

and
(14) Ay () < e?r®

Let us now show by induction that @ may be chosen large enough so
that

(15) Ay (t) < 2-meHr®

The resulv 18 certainly true for m = 0. From (13), we obtain, using the
inductive hypothesis, for 7 & I,

(16)  Ay+d(t) < 2-mer® /t' M (O He(O+ Halt)—Hi(t) (2 |r,~,-(t1)|) dis
F

and, for ¢ & II,
AyrD(f) < 2 / b eHiO—Hu (O + Hae0— Bt (z [rij(tl)l) dty
a
J

From the definition of the set I, it follows that, for 1 € 1,

(17) . exp {— ﬁ“ Re [\(s) — Au(s)] ds} <e, t2>1
for some fixed constant ¢;. Hence for z & 1,
(18) Ay£m+1)<t) < 2 meHr® ‘Aw (z 'Tfj(tl)l) diy
b
Similarly, since for ¢ & IT we have
(19) exp { L‘ Re [M(s) — Me(8)] ds} <ey, t>h

where we may use the same constant ¢; in each case, we derive
(20) syro(®) < ezmemo [1(Y [ru(e)]) dt
J

If a is chosen so that

n
0

(21) / z Ira(t)] dts < 36
=1

the inequality of (15) will be satisfied with m replaced by m + 1.
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o

Consequently the series 2 (yfm+v — ym) converges for each <,
m=0
uniformly in any fixed ¢ interval, and thus y™ — y;, where 1 < ¢ < n,
which constitutes a solution to (10). Furthermore, for each ¢,

(22) ()] < 2ex®
" Returning to (10), we see that, for 7 & 1,

(23) ] ﬁ ® exp ( f Ai(s) ds) (2 rij(tl)yj(tl)) dtl‘

S 2016”"’(‘) /;” lE 7'1']'<t1)
5

dty = o(e#+®)

ast-— o, Hence for: & 1,
(24) vi(®) = (u + o(1)) exp [ Mu(tr) dts)
If : €11, we have

(25) | fa *exp ( ﬁ: Ai(s) ds) (2 Tij(tl)?/j(tl)) dtl] < ‘ /;t* /;:

for a < t* < t, where we shall choose a convenient {* in a moment.
The second integral is bounded by

(26) 20105 [7(3 Irs(t)]) dt
)

+

Since by hypothesis ¢ & II, we have
27) / " du(s) ds = f “Re [\i(s) — M(s)] ds — — oo

as {— », Hence we may determine ¢* == £*(f) such that t* — « as
t— o, and

(28) [ da(s) ds— — o0
For example, if
(29) F@) = — f b din(s) ds
choose t* satisfying F(t*) = WF(t), F(t;) < 14F(1), for a < &1 < %

With this choice of £*, the second integral is clearly o(e#*®), The first
integral is bounded by
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(30)  Zeers® / " exp { L‘ Re [Mi(s) — Au(s)] ds} (Z [rij(tl)l) dt
z

which again is o(e#*®),
Thus for each k& we have a solution y®(f) whose components satisfy
the asymptotic relations

(31) y ) = G + o(1) exp ([ Mels) ds)

From this it follows that the y® constitute an independent set of vectors.
Since z = S~'y and since S tends to a constant, nonzero matrix, we have
the set of vector solutions whose existence was claimed in the theorem.

8. Asymptotic Series. Frequently, far more is known about the
coefficient matrix than the few properties required in the hypotheses
of the preceding theorems. It is reasonable to suspect that in these
cases we can learn correspondingly more about the solutions.

The impetus to our study is given by the important subclass of equa-
tions whose coefficient matrices have rational functions as elements.
In this introductory discussion we assume that each of the elements
in the matrix approaches a constant as { — «. FEach element then
has, for large enough ¢, a convergent power-series expansion of the form

M a®=co+ T+ FE e, (=)
We may then write the matrix A in the form
(2) AO = A+

where the A, are constant matrices, for ¢t > .
Going one step further, let us consider the class of equations

3) | W~ a0y

where A(f) has an expansion of this above type for ¢ sufficiently large.
If (2) holds, we have

(4) im A(f) = 4o
t— =
lim £(A(f) — 4o) = A
t— »

lim t"+1(A(t) —dp =5 - —-) = Anpr

o 4 A
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Note that the relations of (4) in no way presuppose the convergence
of (2). As a matter of fact, it is very easy to present an example of a
function satisfying (4) for which the series on the right (2) is divergent
for all . Consider the scalar function

®) o) = ﬁ i A

It is easily verified that
6) limg(t) =0

tl—;ﬁ: tg(t) = 1

— o

lim g+ [g(t) SF SRR b e 1)!] = (~1)m!
— w©

and that the series

1
£
diverges for all values of . Notice that the series is what one obtains
formally by writing

_ |7 e®dx
® 0~ [ w5 em
S B T SRR Gond i TR

and integrating term by term—most of which is illegal.
It follows from (6) that, despite the fact that the series diverges for
all ¢, we have, for ¢ > fo(e),

Yl s =314 g,

1

g(t) — _t. B (_l)n—l (n 1)' < ’n'(l + e)

i - tn+1

(9)

Since n!(1 + €)/t»*1--» 0 as t — «, we observe the startling fact that,
although S(¢) diverges, suitable partial sums yield excellent approxi-
mations to g(t) as { — . If, for example, { = 10, we obtain our best
approximation by taking n» = 10. From Stirling’s formula,

(10) 10! = 101%-10 /20

whence we see that the error term is & ¢~1° /7 /5.

Series of this nature, possessing the property of furnishing good approxi-
mations to a given function if cut off at a proper stage, even if divergent
as a whole, are called asymplotic series. Let us now give a precise
definition.
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Definition. If the infinite sequence {az}, k =0, 1, 2, . . ., is deter-
mined as follows:
(11) lim f(t) = a,
t— =

lim ((f(t) — a0) = as
—

Lim tn+1(f(t) - — %1 e e e %’:) = Qny1

t— =
then f(t) is said to possess an asymptotic development as t— «, and we
write

Qan

(12) m~2~

n=0

The sertes 18 not assumed convergent, and it may or may not converge.
Let us now investigate the algebra of this new correspondence we have

defined between a function and a formal infinite series. We have
Theorem 9. If

(13 fO~ Y atn g~ Y bt

n=0 n=0
then, for any two constants ¢, and c,, we have

(14) erf + cog ~ 2 (c1an + cobn)t™
n=0
Furthermore,
(15) fg~ E Cal ™™
n=0
where
(16) cn = akbz
k+l=n

Moreover, if aq 0,

c” e ¢ 9
(17) f(t) ~ Co + 5 SIS SR
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where
(18) @eco =1, a1 +aico =0, . . ., 2 arc; = 0, n>0
ktl=n
Finally, if
(19) O~y i
n=2

then dp = —(n — Da,—1. If @y = a1 = 0, then

® {—(n—1
20 Hde~ Yy &
(20) f O @~ ) o=

The proofs follow immediately from the definition, and we leave them
as exercises.

We may summarize the above by noting that asymptotic series may
be handled, as far as algebraic properties are concerned, like ordinary
power series. The same holds for the operations of differentiation and
integration, provided that the resultant functions possess asymptotic
developments. Hence, if f, f’, . . . , f™ all possess asymptotic develop-
ments, then P(f, f/, . . ., f®), where P is any polynomial, possesses
the asymptotic development that one computes formally.

To show that it is not generally true that f” has an asymptotic develop-
ment if f has, consider the funetion

(21) /= lt + et sin e
According to our definition, f ~ 1/{. However,
(22) fl=- 215 — et sin % 4~ 2¢! cos e

is not asymptotic to —¢72%

This example also illustrates the fact that, although a function possesses
a unique asymptotic development, many functions may possess the
same asymptotic development.

Let us now turn to the application of the preceding ideas to the theory
of differential equations. Taking a simple equation, such as

(23) W — (1 1 -1-> w=0

we see, according to Theorem 8, that the solutions are linear combinations
of functions asymptotic to ¢! and e~* ast— ». Let us try a solution of
the form
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(24) u=et<1+9t_1+§_22++tc_:+)

Substituting into (23) and equating coefficients, we obtain
2 _ g —

(25) C1 = %’ Cn = gn____.z_:l_..._%) cn—-l, n Z 2

Consequently the series in (24) diverges for all &. We shall show below,
however, that this series we have found formally is actually an asymptotic
series for a solution of (23). In view of the form of (24), it will be useful
to liberalize slightly our definition of an asymptotic development and
write

©

(26) )~ ¢® ) at
n=0
if
@) [f) = () ) o < [$Olont ", m=0,1,2, .. .,
n=0
with ¢, a constant, ast — . If ¢(f) > b > 0 for ¢ > t,, we may write
J@® z _
28 s~ Al ™
(28) o0~ L °

Let us observe that, once we know that we have an asymptotic series
for a solution of (23), it is easy to compute the coeflicients a4, as, . . . ,
a., . . . recursively by equating coefficients. The main problem in con-
nection with the application of asymptotic series to differential equations
is the following:

Given an infinite series of the form E at=, divergent for all t, formally

: n=0
satisfying the differential equation P(u, u', ', .. ., u™) =0, under
what conditions ts the series the asymptotic series of a solution of the differ-
ential equation?

We shall give a partial answer to the problem for the case where Pis a

linear homogeneous form in %, «/, 4®, . . . , 4™, in which case P = 0
is a linear differential equation
(29) u™ + a;(BuD + - - - +a.HDu=0

As we know, the theory of equations of this type can be made part of
the theory of linear systems,
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dy _
(30) qU AQ)y
and it is in this form that we shall treat it.
9. The Asymptotic Behavior of the Solution of dy/di = A(f)y. The
problem has been solved completely of determining the asymptotic
behavior of the solutions of

dy _
(1 5 = 4@y
where the elements of A(#) are rational functions of ¢, or more generally,
possess asymptotic developments of the form

@) ai®) ~pO + ) o =Py on = aliy])
n=1

where p(f) is a polynomial in . However, the solution is quite compli-
cated in detail, although not in principle, and for that reason we shall
discuss only the simple case where A(¢) has the asymptotic expansion

(3) A(t) NA() + Alt_l + vt + Ant_" + .

Furthermore, we shall assume that the characteristic roots of 4 are
distinet. It is easy to give examples illustrating the complicated nature
of the solutions in the case where A, has multiple characteristic roots,
For example, as we shall see in Chap. 6, there are two solutions of

1 2

having asymptotic developments of the form
®) u~(exp £ 2Vhts(l + et 1+ - - - F et - 0)

Ezxercise

1. Determine ¢, by equating coeflicients.

There are many special techniques particularly applicable to the
second-order equation; hence a complete discussion of the nature of the
solution is much easier than for the general nth-order equation.

QOur principal result is

Theorem 10. Consider (1), where

6) (@) AQ) ~Ao+ A+ -+ - + At 00
(b) The characteristic ro0ts X1, Ag, . . . , Aa Of Ao are simple
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Then, corresponding to any particular characteristic root i, there 1s ¢ solu-
tion yx of (1) possessing the asymptotic development

(7) ykr\./e)\kltl‘k(co_l_%_i_..-+&‘+.co>

where ¢y 18 a nontrivial vector.
Proof. We require first the following

Lemma 3. If each coefficient of the algebraic equation
(8) f@ =2+ a®)e 4 - -« Fau(t) =0

possesses an asymptotic expansion

©) a() ~ Y ot
k=0
and if the equation

(10) gle) =z + Pzt - -+ =0

possesses simple characteristic roots ry, rs, . . . , Ty, then each root of (8)
has the asymptotic expansion

11) rit) ~ i E btk
k=1
Proof of Lemma. It is convenient, as before, to carry through the
proof using complex-variable methods. Since (10) has simple roots, the
same will be true of (8) for ¢ large. For ¢ > ¢, then, we may draw small
circles C; around each root r; in the complex plane, which are noninter-
secting. Applying Cauchy’s residue theorem, it follows that

(12 n) =g [ T i-12 0 0@ = fe)

For each z on C; we have, ast —
b ?

#f' (&) _ 29'(2) | ei?) L. en(®) (D)
Integrating term by term, and noting that the O(~*+D) estimate holds
uniformly in 2z, on each C;, we obtain the required asymptotic expansion
for r,(2).

Let us now turn to the proof of our theorem. The system has the
form

(14) Z—: = (Ao + ‘4‘-1 + As(t)) 2
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where ||A2(t)|| < eit~?ast— . Since the characteristic roots of 4, are
distinet and / " 42| dt < =, our system satisfies the conditions of

Theorem 8. We know then that there exist n solutions 21, 22, . . . , 2
with the asymptotic forms
(15) 2k ~ ey, + o0(1)]
where c; is a constant, nonzero vector. By means of a change of variable,
we may always assume that the A; are distinet from zero. This is not
essential, but it simplifies some of the details.

The proof is inductive, starting from the known result of (15), using

the same integral equations as before. Assuming that we have shown
that ' ~

(16) 2% =»e)xkttuk[ck -+ c;él)t~l + cee 4 c;cn)t—n + O(t—n)]
forn=20,1, ..., mand for each k, the integral equation is used to

show that the same expressions are valid for m + 1.

This exercise in repeated integration by parts we leave to the reader.
We suggest that, before the general proof is attempted, the exercises
below be worked.

Exercises

2. Derive the asymptotic expansions of the solution of

17) vt (14g))u=0
where
(18) g ~L+ 84

3. Use the asymptotic expansions derived above to find asymptotic
expansions for the zeros of the solutions of v’ + (1 + g(®))u = 0.

Miscellaneous Exercises

1. All solutions of d2%/di2 = (A + B(t) + C(f))z are bounded, pro-
vided that

(a) A is a constant, negative definite matrix

(b) B(t) is symmetric

&) 0+ ¢y

z bl-,-(t)xi-x,-! < l z a,-,-xml for ¢t > t, and some ¢; > 0
Q=1 - ij=1

@ [T laB/at @t < =, [ |C@ldt < =
2 It dy/dt = A@®)y, y©) = yo, then [lyl| < |lyoll exp [ A [ZICS N
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3. If / " |A@)) dt < «, lim y exists. (Trjitzinsky.)
t—> ©

4, If E ﬁ)w la;; + a;] dt < «, all solutions of dy/dt = A()y are
=1
bounded as { — .

b. There exists an orthogonal matrix B({) such that if y = B(f)z, the
equation dy/dt = A(t)y is transformed into dz/dt = A*(t)z, where A*(f)
is semidiagonal. (Diliberto.)

6. There exists a bounded nonsingular matrix B(¢), such that A*(¢)
is diagonal. (Diliberto.)
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CHAPTER 3

THE EXISTENCE AND UNIQUENESS OF SOLUTIONS
OF NONLINEAR SYSTEMS

1. Introduction. In previous chapters we have discussed the proper-
ties of linear systems of the form dz/dt = Az. We now turn to a pre-
liminary discussion of nonlinear systems of the form

dZ,'
(1) i = ey o t)

z(0) = ¢, 1=1,2,...,n

Introducing the new dependent variable z,.; = ¢, we may write (1) in
the form

dz; .
(2) 7Zt=f,<(z1,Z2, e e oy Zny Zata), t=12...,n
dzn+1 _
@ !
‘Z.‘(O)=ci, i=1)2:'°‘)n
Zn+1(0) =0

where the right-hand side is now free of any explicit dependence upon ¢.
This in turn may be written in the simpler form

dz
3) | Z-j, O =c
where f(z) denotes the vector whose ¢th component is fi(zy, 25, . . . ,
2n+l)-

We wish to derive some simple conditions which ensure that (3) has a
unique solution. More important, however, is the opportunity to dis-
play two fundamental methods, one of extreme theoretical importance,
the other of extreme practical importance in connection with the numer-
ical solution of differential equations, ordinary and partial. The first
is the method of successive approximations, which we encountered
previously, and the second is the method of finite differences. This last
consists in replacing (3) by the difference equation

(4) 2t +h) —2() = h@), 20) =c

where ¢ takes only the values 0, h, 2k, and so on.
65
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A third powerful method for providing existence theorems, the Birk-
hoff-Kellogg technique of fixed points in function space, will not be
discussed in this volume because of its dependence upon advanced
concepts.

Since we are not primarily interested in questions of existence and
uniqueness in the small, we shall content ourselves with stating and
proving only the basic results.

2. Method of Successive Approximations. The natural extension of
the method we employed for linear systems is to define inductively the
sequence {z,} as follows:

(1) 20 = C

dzn
E = f), @0 = m=0,1,...

This is equivalent to the integral definition
(2) Zg = C
¢
Znp1 = ¢ + ﬁ) f(zn) dty

Let us assume that f(2) is a continuous function of z in some neighbor-
hood of ¢, say the region R defined by |z — ¢|| £ ¢;. The definition
given in (2) is inductive and hence gives rise to the question of the actual
existence of the z, for n > 2, since f(z,) may fail to be defined for some 7.
Let us show that by restricting ¢ to a suitable interval we can ensure the
existence of each z,. From (2) we obtain

®) lenss = el < [ 1) dts < ca

where we let ¢c; = max ||f(z)]| for zin B. Hence if cof < €1, 2,41 Will also
be in R. Henceforth we restrict ¢ to lie in the interval 0 < ¢ < ¢,/cs.
Note carefully the strict inequality, which implies that 2, is always inside
R.

We must now consider the question of convergence of the sequence
{z,}. As before, this is equivalent to the convergence of the series

(2r41 — 2n). In place of this series, we consider the majorant
n=0

Zll2ns1 — 24]]. From (2) we obtain for n > 1, the inequality

4) lenss = 2all < [} 156en) ~ fen-)] dt

To continue the proof along the lines of Sec. 3 of Chap. 1, we require
some relation between || f(2,) — f(2.—1)|| and ||z, — 2a—||. Let us assume
that for any two vectors  and y in R we have the relation
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(5) 1£@) — fW)II < esllz — yll

where ¢; is a constant depending only upon the region R and not upon
the vectors x and y. A condition of this type is called a Lipschitz condi-
tion. It automatically implies continuity.

Returning to (4), and using (5), there results

© lenrs = zall Ses [[llen ~ 2o dy,  m 21

Since ||z; — 2o < fot lf(zo) || dtr = || f(c)||t = cut, iteration of (6) yields

cachtnt!

) l|2n41 — z,,H < m

whence Z|z.41 — 2.]| converges uniformly for 0 < ¢ < ¢ <erfes. It
follows then that z, converges uniformly to a function z(¢) which satisfies
the integral equation

(8) z=c+£f(z)dt

and thus the differential equation.

Let us, before turning to the treatment of the uniqueness problem,
mention a simple condition on f(2) which will yield the Lipschitz condi-
tion. The mean-value theorem shows that, if f(2) has uniformly bounded
partial derivatives with respect to the z; in R, it will satisfy a Lipschitz
condition in R.

3. Uniqueness. We now wish to show that the solution found by the
method of successive approximations is, under the assumptions we have
made, the only solution of

(1) | Lo, w0 =c

in the interval 0 <t <, < c¢1/cs. Assume that there exists another
solution y. Since y is continuous and in R at time ¢ = 0, it is in R for
0 £t <L t, where ¢, is a positive quantity. Let { = min [t,t]. For
0 < ¢ £ty we have, combining

(2) y=c+ [/ du

and (2) of the previous section, the inequality

3 lenes =yl < [} 150 = S| dt
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and thence

@ lewis = yll < ea [ llzn =yl dts

Using the fact that [[zo — | < ﬁ 7l dts < cat, we obtain by iteration

cochtrt!

(5) ||z,.+1 - y|| < m

Letting n — «, we see that |z — y|| <0, which means that z = y in
[0,t2). If £2 = o, our proof is finished. If not, we can begin at { = ¢,
and obtain a larger interval within which y = z. If, however, we con-
tinue in this direct fashion, we have no guarantee that we can ever fill up
the entire interval [0,{,]. Hence we proceed as follows: We know that
we can find a nonzero interval [0,7] within which z = 5. Since y and 2
are continuous, this interval must be closed. Let [0,7] be the largest
such interval. If 7 < t;, we may employ the method above to increase
the interval. Hence r = {.

We have now completed the proof of the following result:

Theorem 1. If, for any two vectors x and y in the region R defined by
llz — ¢|| < e1, we have

(6) /@) — Wl < el — yll

where c; 1s a constant depending only upon R, there exists a unique solution
to

o Lo, 0 =c
for 0 <t < ¢y/eq, where c2 = max If@ 1.

Exercises »

1. Consider the sequence defined by

(8) zo = w(t)
Zn+1=0+/;tf(2n) dty, n=01,...

where w(0) = ¢. Does this sequence converge to the solution of the
differential equation, under the above conditions on f(z) and under suitable
restrictions on w(f)?

2. Do there exist functions f(z), apart from linear functions, which
satisfy Lipschitz conditions for all real 2?
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3. Is it necessary for the existence and uniqueness of the solution that
f(2) be continuous? Consider, for example, the scalar equation

(9) (a) du/dt = f(u), u(0) = 14, where
@) flw) =0, — <u<lg =142

What generalization of Theorem 1 is valid?

4. An Example Illustrating Lack of Uniqueness. We have seen that

the Lipschitz condition yields the existence and uniqueness of the solution
of

) R OO

Let us now assume only that f(y) is continuous. As we shall see below,
this condition is sufficient to guarantee the existence of at least one
solution of (1). However, we cannot establish uniqueness on this
hypothesis, since it is not true in general.

Let us consider a simple example. The scalar equation

@) eV, w® =0
has two solutions
3) . u =0
t2
“=17

fort > 0. Of course, v/ u does not satisfy the Lipschitz condition in the
vicinity of u = 0.
Ezxercises

1. Show that the equation du/dt = u®, uw = 0 at { = 0, possesses two
solutions for 0 < a < 1, but not for « = 0 or 1.

2. Consider the equation du/di = u(log w)?, v = 0 for { = 0. For
what values of ¢ is there a unique solution?

3. Consider du/dt = f(u), where u = 0 at { = 0, ﬁ) du/|f(u)| = .

Is the solution unique in this case?

6. Method of Finite Differences. Let us replace the differential equa-
tion we have been treating by the difference equation

n WEM ZV0 oy, 1m0, b2, . ..
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The solution of (1) may be continued up to ¢ = nk, provided that y(kh)
liesin Rfork=0,1,...,n— 1. As above, this is true for nh <
¢1/¢s, where ¢; and ¢, have their previous meaning.

The geometric significance of this approximation may be illustrated
very simply for the case of scalar equations. Suppose that u is a solution
of du/dt = f(u), w(0) = ¢1, and we wish to find u at the point {;. Let us
set {; = 3h and subdivide the interval [0,{;] into three equal parts of
length h, as in Fig. 1. Assuming that the solution curve is a straight
line over the interval [0,h], we find that its equation is

(2) u = ¢ -+ {f(0), 0<t<Lh

since its slope is determined by means of the differential equation. At
t=h,u=c-+ hf(c). From P to @ we again assume that the curve is
a straight line, determining the new slope by means of the differential
equation. The equation of PQ is then

®3) u=ul) + fu®@)E —h), ~r<t<2R

where u(h) = ¢ 4+ Af(c). Continuing in this fashion, we determine the
line @R and thus u(3k). If we wish a better approximation, we repeat
the procedure, using six intervals instead
of three, and then twelve intervals, and
SO on.

We shall show that, under the sole
assumption that f(u) is continuous, it is
possible to obtain a sequence of solutions

‘ ) of the difference equation for different

0 h__, 2h.  3h=t; values of h, which approach a solution

Fic. 1. of the differential equation. This proof

will be only an existence proof, noncon-

structive in the sense that we cannot in this way with certainty actually

compute solutions. If we wish to obtain numerical solutions, we must

impose our former condition, the Lipschitz condition. We shall leave this

last as an exercise and consider in detail only the case where we assume
continuity alone.

For simplicity, let us set hy = h, hny1 = hn/2 = h/2%, For each h;
we have another difference equation (a vector-matrix equation)

4) "Mfg_—y@ =fly®), t=0, h, 2k, ...

o
r———

For each hi, we may compute, using the difference equation, the set of
values y(0), y(hs), . . . , y(nhy), where n is the largest integer satisfying
nhy < ¢1/cs. Clearly, we shall have a different n for each k. Let us
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now construct the function which assumes the values y(0), y(h), . . .

att =0, hz, . . . , respectively, and is linear in between. This function
is shown schematically, in Fig. 2.

Weshalldemonstrate that the sequence
{ye()} satisfies a uniform Lipschitz /
condition, PPR0)

(B) ye® — ya(9)| < calt — 4|

rhy, (r+1)hy

()St,s<9 Fic 2.
C2

where ¢; = max ||f(y)| is clearly independent of k.
This we sgee Zs follows: If s and £ are within one interval, then
(6) ye(®) — yu(8) = (¢ — 9)f(ya(rhs))
since within each interval [rhy, (r + 1)y, we have
ye() = ye(rhi) + (¢ — rh)f(ye(rhe)

If s and ¢ are in adjacent intervals, s < rh, < i, we write

(7N ye(®) — y(s) = ye(® — yr(rha) + ya(rhe) — ya(s)
and obtain
® g — ye(D < lyel®) — yelrh) | + lye(rhe) ~ yi(s)]]

< ef(t — rhe) + (rhe — 8)] = ¢t — 8)
Quite generally then, if s and { are any two points in [0,¢;], by writing
@ t—s=(—rh)+ (h— (- — Dh) + -+ + (rhe —5)
we derive the general inequality

(10) lyx@® — ye(®) || < ealt — 4

From this inequality it follows that, whenever [t — s| < & in [0,¢1],
we have Jlyp(f) — yi(s)|| < ¢ for all k, provided only that & = §(¢),
independent of k. A sequence {y:({)} satisfying this condition is said
to be equiconfinuous.

We now wish to establish a general result:

Lemma (Arzela Selection Theorem). Let {y.(f)} be an infinite sequence
of uniformly bounded, equicontinuous functions in a bounded interval
[a,b]. Then there exists a subsequence which converges uniformly in [a,b].

Proof. Let ¢4, {2, . . . be the rational points in [a,b], enumerated in
some order. The sequence {y,(t1)} is uniformly bounded and hence
possesses 8 convergent subsequence {y.i(f1)}. ILet us now consider the
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sequence {y.i({z)}. In turn, as a uniformly bounded sequence, it
possesses a convergent subsequence {y,2(f;)}. Continuing in this faghion,

we obtain a sequence {y..(!)} which converges for t = f;, &, . . ., &.
Consider now the sequence {yx:(f)}. By virtue of our construction, this
sequence converges at each of the points &, &, . . ., &, . ... Let
y(D) be the limit function, defined as yet only for ¢ = ¢, ¢, . . ., s,

Since the orlglnal sequence {y,(t)] was taken to be equicon-
tlnuous, we have [|ym(t) — yue(t)|| < e for |t — t;] < 8 = (), & being
independent of k. This property, then, is preserved by the limit function
y(®), that is, ||[y(t) — y@)| < e When [t: — ;| < 8, which means that
y(f) is continuous over the set {{;}. We now define y(f) for all ¢ in
{a,b] by means of the relation y(¢{) = lim y(t) as & — ¢ through a sequence
of rational values.

It remains to show that yux(f) — y(¢) uniformly for ¢ in [e,b]. Divide
{a,b] into N equal parts, where N will be specified in a moment, and let
the end points be @ = sp, a1, . . . , sy =b. If s, <t < 5,41, we have

(11)  yu®) — y(@) = () — yre(sr)) + @arlsr) — y(sr))
+ (y(sr) — y(®)

Choose N so that |yu() — yw(s,)|| < e whenever s, < ¢ < s41, for
all k. This may be done by virtue of the equicontinuity. This also
implies ||y(s;) — y@| < e

Then choose n > n,, depending upon N so that [|ywm(s)) — y(s)|| < ¢,
forl=0,1,2, ..., N. It follows that for n > n,, depending only
upon ¢, we have [[yu(f) — y()l| < 3¢, which demonstrates the uniform
convergence.

Ezercise
1. Show by means of counterexamples that the above theorem is not

valid if we omit any one of the three conditions ‘‘equicontinuous,”
“bounded,” ““finite interval.”

Having established this result, we apply it to the sequence {y.(f)}
obtained from the difference equations. We must now show that the
limit function satisfies the differential equation. This may be shown
directly, but it is easier, as usual, to show that y satisfies the integral
equation, For any ! and k£ we have

(12) Yl (1 + D] = yi(lhe) + Riflys(The)]
Summing over 1 =0, 1,2, . . ., L, we have

L
a3 YL+ Dhil = ¢ + ) heflye(th)]
1=0 '



EXISTENCE AND UNIQUENESS—NONLINEAR SYSTEMS * 73

since yx(0) = ¢ for each k. Let L be chosen so that Lhy —>f as k— =
and h—0; for example, L = [2,¢/h]. Then y[(L 4 1Dk — y(0).
Since the right-hand sum in (13) looks like the approximating sum to a

Riemann integral, we should expect this expression to approach j; fy) dt

as k- «, We have

(o

(14)

]

L L
Il ] = Y hfly@l + Y hel @] — fly@hol}
1=0 1

1<0 '

The first sum is a Riemann sum and approaches A ! f(y) dt. Since the

sequence {y.(t)} is uniformly convergent and since f(y) is continuous,
we have |flyx(the)] — fly(lhe)]]| < € for all l and for & > ko. Hence

(15) Hi he{flunha)] = Sly@hoT} || < ehel. < o
1=0

This completes the proof.
Exercises

2. Prove directly that y(f) is differentiable and satisfies the differential
equation ¥y’ = f(y).

3. Under the hypothesis of Theorem 1, show that z is a continuous
function of the initial vector ¢ in some region about c.

4. Let 2(t,c) be the solution of dz/di = f(z), 2(0) = ¢, where f satisfies
the above conditions. Show that for s and ¢ > 0 and sufficiently small,
we have z(s + ¢, ¢) = z(s, 2(i,c)).

5. Consider the scalar equation du/dt = au + u* (the Bernoulli equa-
tion). It may be solved in elementary terms by letting v = 1/ur1
Show directly that the above functional equation is satisfied.

6. In the fixed interval [0,a], find an expression for the difference
between the solutions of the two vector systems

y = fy), y(0) = ¢
7 = g(2), g(0) = c2

7. (Generalization of Newton’s method.) Compare the rapidity of
convergence of the successive approximations obtained from

(16) y:.+1 = f(¥n), Ynt1(0) = ¢

with those obtained from

(17) Varr = JWn) + Wnr1 — yn)' (W), Yn4a(0) = ¢



74 ' STABILITY THEORY OF DIFFERENTIAL EQUATIONS
8. Consider the system dy,/dt = fi(y1, y2, . - -, Yn, t), 1 =1, 2,

.., m, where |fi,0) — fiz)]| < z Llye — 2| for all s, and 2. Let
k=1

1, Y2 - -+, Yn) and (21, 22, . . . , 2,) be any two solutions of the equa-
tion such that y«(tx) = 2:(t), £ = 1, 2, . . . , n, where the {; are any n

points of the interval [¢,b]. Then b —a > 1 / z I;. Hence if
k=1

£i(0,8) = 0

no nonidentically vanishing solution of the equation can have its com-
ponents vanishing, respectively, at points inside an interval of length
b — aif b — a satisfies the above inequality. (Fite.)

9. Use the nonlinear integral equation

u = exp[— ﬁ: (t — t1)2u(ty) dtl], u =’

to establish the existence of the solution of w'’’ 4 2ww’’ = 0 determined
by w(0) = w'(0), w''(0) = 1, for allt > 0. (Weyl.)
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CHAPTER 4

THE STABILITY OF SOLUTIONS
OF NONLINEAR DIFFERENTIAL EQUATIONS

1. Introduction. In this chapter we begin the study of the stability
of the solutions of nonlinear differential equations. We shall consider
only systems of the form

n

(1 i z ez + fi(z,), =12 ...,n

i=1,
where the f;(2,t) are nonlinear functions of the z, The most important
case is that where the f; are independent of £ and are power series in the
components of z with no zero- or first-order terms. Employing vector-
matrix notation, we may write (1) as

d,
) % =AWz + 1)
The nonlinearity condition we shall impose is
(3) | ”ﬂfﬁ” 0as |2l >0

If we wish to present results of any comprehensiveness, we are forced
to particularize still further and demand that either

(4) (a) A(Y) be constant, or
(b) A(t) be periodic, or
(¢) A(t) be asymptotic to a matrix of either of the above two types

An important eategory not included above is that of almost-periodic
matrices. Despite the obvious importance of equations of this type
and the attention that has been paid to the problem, the results are still
incomplete. Consequently, we shall not discuss any of the known
results here,

From the nonlinearity property of f(z), as expressed by (3), we see
that z = 0 is a solution of (2). We shall call this the null, or trivial,
solution and shall be interested in solutions of (2) which remain close to
z = 0. This intuitive notion of closeness will be made precise below.

75
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Our discussion of nonlinear equations will be notably incomplete in its
lack of reference to periodic solutions. Despite the apparent simplicity
of the concept, the theory of periodic solutions is one of the most difficult
of present-day analytical theories and relies upon many deep and compli-
cated theorems of topology. Consequently, we feel that its treatment
would be out of place in the introductory volume.

2. Stability. Let us begin by giving a definition of the way we shall
employ the overworked word ‘‘stability.”

Definition. A solution z = (2y, 22, . . . , 2.) of (2) of Sec. 1 is said to
be stable if for every € > 0, there is a & = 8(e) such that any other solution of
),y = (Y, Y2, - -+, Yn), for which ||z — y|| < & at t = to, salisfies the

further tnequality ||z — yll < efor t > i,

Geometrically put, one thinks of the solution 2z as a curve in n-dimen-
sional space surrounded by a tubing which has the property that any
solution which once penetrates this tubing must thereafter remain within
a slightly larger tubing.

Let us now show how the question of the stability of any solution can
always be made to depend upon the stability of the null solution w = 0
of a related equation. Let z be a solution of dz/dt = f(z) whose stability
is to be investigated. Set y = z 4 w, where y is another solution of the
equation. Then

® WL W o tw) = s+ I

where J(f,2) is the Jacobian matrix of f with respect to z. The resulting
equation for w is
d

) G =Gt
an equation of the type of (2) of Sec. 1.

It is reasonable to suspect that the stability of the null solution w = 0
of (2) is strongly dependent upon the stability of the null solution of the
linear approximation

® B = I

We shall demonstrate, with the aid of some additional assumptions
concerning the linear equation, that this dependence is almost equivalence
in the cases where J is a constant or periodic matrix. And then we shall
show, by means of a counterexample, that the natural conjecture that
the stability of the solution w = Q of the linear equation (3) always
implies the same for (2) is not true.
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In many interesting cases, a change of variable will transform an
equation of general type into one of the special types which may be
handled by the methods we present here. In a later chapter, we shall
have examples of this when discussing

4) %1—1: —a(u =0
and
5) %(k(t) %it‘) + U = 0

3. A Preliminary Result. A further motivation for the study of the
stability of trivial solutions is furnished by the following result:
Lemma 1, Consider the system

dz; .
(1) W=fi(21,Z2,...,2”), z=1,2,...,n
each f; being independent of t and continuous in the z; for — o <z, < ®,
If 2 = (21, 22, . . ., 2s) 18 G solution of equation (1) which approaches a
constant vector ¢ = (€1, €2y . . . , Cn) G8 L — ®, then
(2) f;(01,02,...,0”)=0, ’I:=1,2,...,n

Proof. There are two possibilities for each component z;. Either it
approaches ¢; monotonically as {— o, or it oscillates infinitely often
about ¢;. In the first case dz;/df— 0 as {— o ; in the second case
dz;/dt = 0 infinitely often. In both cases, it follows that

filey, ey o o o ,C0) =0

The change of variable z; = ¢; 4 w; converts (1) into an equation which
has the null vector w = 0 as a solution.

Suppose now that we have a mechanical system S, specified by n
parameters 21, 22, . . . , 2, Whose behavior as functions of time is deter-
mined by a set of equations of the type of (1). If we consider an equi-
librium position to exist when the z; are constants independent of time,
equation (2) furnishes all possible such states. The question now arises
as to what happens to the system when we disturb it slightly, that is,
when we change the parameters ¢i, €3, . . ., ¢, into a nearby set of
values ¢\, ¢, . . . , Ch

The following possibilities exist:

1. As t— », the solution of (1) subject to the initial conditions
z(0) =¢,1=1,2, ...,n, approaches the stationary solution z; = ¢,
the original equilibrium state.
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2. As{— o, the solution approaches another equilibrium state.

3. Ast— o, the solution approaches no equilibrium state in the above
sense. It may approach a periodic solution or have a more complicated
type of behavior.

Let us give some simple examples of the above. Consider the equation

du
3) ?i?+u=0

A stationary solution is w = 0. If this solution is perturbed, giving rise
to another solution with an initial condition u(fy) = ¢; # 0 at some time
to, as t— o, this new solution will approach the stationary solution. In
this case we would say that the system is in stable equilibrium,
Consider the equation
(4) %—7: = 9y — y?
There are two equilibrium states, u = 0 and u = 1 (see Fig. 1). If
u0) >0, imu =1last— . Ifu0) <0, u— —w ast— «. The
state u = 0 is an unstable state, while the state u = 1 is stable, with
regard to small perturbations.
Finally consider the equation

d*u
(5) E‘ﬁ"r‘u:o

The solution 4 = 0 is a stationary one. In one sense it is stable; in
another sense it is unstable. If we consider the solution

U = ¢ 008t -+ ca8in ¢

corresponding to u(0) = ¢1, u'(0) = ¢, u will not approach zero as
t— «. However, u will remain as close as desired to the stationary
solution if we take |ci| -+ |co| sufficiently small. According to our defi-
nition of stability given in Sec. 2, the stationary solution is stable.

4. Fundamental Stability Theorem, First Proof. In this section we
present the fundamental result connecting the stability of the null solu-
tion of the nonlinear equation with the behavior of the solutions of the
linear equation.

We write our equation in the form

dz
1) 5= At @), (0 =c
where A is a constant matrix and f(2) satisfies the nonlinearity condition
7@ /llell — 0 as ||z — 0.
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Heuristically, we might argue as follows: If ||2(0)|| is small, then, by
virtue of the nonlinearity condition, Az -+ f(2) is very nearly Az. If all
the solutions of dy/dt = Ay approach zero as t — «, 2z should have no
opportunity ever to become large. Hence, for all {, 2z should act like a
solution of dy/dt = Ay.

This “proof” happens to be correct if A4 is a constant matrix. As we
shall see by means of a specific example, it is not true in general if the
coefficient matrix is variable,

Let us now prove

Theorem 1. If

(2) (a) Every solution of dy/dt = Ay approaches zero as t — «
) f(2) 2s continuous tn some region about z = 0

(@ [lF@N/llzll = 0 as Jlz]| - 0

then z = 0 1s a stable solution of (1).

Furthermore, every solution of (1) for which ||2(0)]| s sufficiently small
approaches zero as t — .

Three proofs of this fundamental theorem will be given in this chapter.
Each proof has its own special interest and its own range of generalization.

Note that nothing is said concerning the uniqueness of solution. In
general, we may expect nonuniqueness, and the interesting point is that
the theorem asserts that no continuation can deviate too far from the
trivial solution if the initial value is close enough to the origin.

First Proof. It is a consequence of our fundamental existence theorem
that (1) possesses a solution in some neighborhood of £ = 0, say 0 < ¢ < .
We wish to show that any such solution can be continued over the entire
positive ¢ interval. To do this, it is sufficient to show that ||z] is uni-
formly bounded for ¢ > 0, and that the bound thus obtained lies within
the region where f(z) is continuous.

The first part of our hypothesis tells us that the solution of

3) %I; —AY, Y(©0) =1

approaches zero as { — «, which, in turn, implies that
) [TlIrold < e
Since the solution of

dy _ _
) ¥ i Ay, y(0) =c¢

is given by y = Ye¢, we see that ||y]| < [IY|lllell £ aill¢]l.
Applying Theorem 4 of Chap. 1, we conclude that the nonlinear
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differential equation (1) may be converted into the nonlinear integral
equation

® 2=y + [ Y(t ~ )fw) du

We now derive a uniform bound for any solution of (6), namely,
llzll < 2aillell, provided that [lc|| is sufficiently small. This will prove
the desired stability. The proof is by contradiction. Let f; be the
first point at which |lz]| = 2aill¢|| in the interval (0,¢). That 2 > 0
follows from the condition 2(0) = y(0). At the point ¢, we have

M 2aiel =l < Iyl + 717~ o)) d

If |l¢|| is small enough, we have, by virtue of the second part of our
hypothesis, ||f(z@®))] < ellz(®)] for 0 < ¢ £ ¢, where € can be made as
small as desired by suitable choice of |l¢]. Thus

®  2ellell < aiel + exaallel) [1¥t ~ )]l dt
< ailldl + a@aillel) [[7 1Y @) dix < 2aie]

if |le|| is sufficiently small. Consequently there is no point ¢,. The
solution may now be continued, interval by interval, preserving the
uniform bound, until we have covered the positive ¢ axis.

To show that 2] — 0 ast— o if ||z(0)|| is sufficiently small, we make
the change of variable, z = ze*, where X\ is a fixed quantity less that
zero and greater than the real part of any characteristic root of A. Once
we fix this value of A, the upper bound on ||z|| will depend upon \. The
new variable = satisfies the equation

9) -Z—f = (A — M)z 4 eMf(xe)

Although the form of the nonlinear term is slightly different from that
treated before, there is no trouble in verifying that the same argument
suffices, because of the assumption (2b). Since « is uniformly bounded,
it follows that [z]| — 0.

Ezxercise

Show that the condition that f(2) be continuous may be relaxed
considerably.

6. Fundamental Stability Theorem, Second Proof. Our principal tool,
which will be used again subsequently, is the matrix-transformation
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theorem of Sec. 8 of Chap. 1, according to which we may find a constant
matrix 7 having the property that
Mobi s bug
0 Xz - b
(1) T-UAT = | '
0 \ 0 . o hn
where the elements of the main diagonal are the characteristic roots of 4,

and where [b;;| < ¢, where € is any prescribed positive quantity.
The substitution z = Tz yields
@) g T-1ATz + T-(Tx)

Let fi(x) = T-Y(Tx). It is easily seen that fi(x) satisfies the same
condition as f(x). Turning to the individual components of z, we have

3) %? = Ay + z byx; + fu(x)
i>1
d
—d—xtg = oo + 2 b2j$j + f12(33)
>
dz.,
"gt“ = knxn + fln(‘t)

Consider the sum z |zx|2.  Since
k=1

dZ,

dt

da: k

) dtlxkl =&t o

(where by %, we mean the complex conjugate of zx),

= Mal* + ) b + Zuful)
i>k
+ Xklka + z Ekjfjxk + ilikwaCE.)
>k
we obtain

) 14 2m;)<Re <x>(2 [2af2) + ellzl + Izl @]

where ) is the characteristic root with least negative real part.
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At ¢t = 0, we have, since Re (A\) < 0, and ||z(0)| is sufficiently small,
that

® R 00 (3 1) + el + =l A <0

Thus z |zx|? is decreasing in the immediate neighborhood of ¢ = 0,
k=1

and the argument may now be repeated, so as to obtain the following

inequality for all {:

™ § < (3 ln@F) e

for some a > 0.
Ezxercise

Does this proof require that f(2) be continuous?

6. Fundamental Stability Theorem, Third Proof. Let us now present
a third proof depending upon the method of successive approximations.
Since our hypothesis and conclusions are now slightly different, we state
the results in detail.

Theorem 1. If

(1) (a) Every solution of dy/dt = Ay approaches zero ast—
®) [If@I/lzll = 0 as ||z — 0
(© f(z1) — fz)|l € ealler — 2af| for |lz1]] and ||zo|l less than cs,
where ¢1— 0 asc:— 0

then z = 0 s a stable solution of dz/dt = Az 4 f(2).
Every solution z for which |2(0)|| is sufficiently small may be computed
by the following method of successive approximations:

(2) %z—to = Az, 2(0) =¢
dzn+1 )
di = Azay1 + f(2a), 2.41(0) = ¢, n=01,.

and approaches zero as t — ©,
Proof. We start from the integral equation

® e=y+ [ Y~ 0iGw) d

and apply the method of successive approximations, as above in (2).
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There are two steps to the proof of convergence, which we shall show
to be uniform in ¢ over the infinite ¢ interval 0 < ¢ < », The first step
is to show the uniform boundedness of ||2.]| over 0 € ¢ € », provided
as always that [|2(0)] is sufficiently small. The second step is to establish

the uniform convergence of z (Zagy1 — 2n).
n=0
We have [zl = [lyll = [Yel < [|¥[lllel| < aillel] < 2alel|, where
¢ = 2(0) = y(0). Let us now show that |z.|| < 2a:ll¢| implies that
l2asa]| < 2aiflcfl. From (2),

@ lemsall < Il + 17 = o)l dta
S afldl + e [ 1VE = )]zl dt
provided that ||c|| is small enough, and thus
(5) lenall < asllell + ex@arllel) [1¥(¢ — ) da
< aiflell + e@aile]) [ 1Y@ di < 2aie]
if |lc/, and consequently e, are small enough. Since the inequality

holds for n = 0, it holds for all n > 0.

Now let us show the convergence of z (Zny1 — 2,). We have

n=0
(©) tnir = 20 = [V~ D) — Jenar)] d
e = 2all < [T1¥C = )l = Sz dt
S [IYE = t)llen — 2o de

using (1¢). The constant ¢; ecan be made arbitrarily small by taking
the norm of ||¢||, which determines the norm of ||z, sufficiently small.
From (6) we have

(7) lzars — 2all < er(max [z, — 2pal]) /: 1Y — )] di
0t <t

and thus,

®  max Jzan — 2l < (o [T 1Y@ dt) max [z, — 20l
0t 0<t<h

Since ¢1 [) " |I¥ (1) || dts = ¢; will be less than 1 for c; chosen small enough,
the series
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©) ), max v = &

0<t<

converges by comparison with the series z ct. 'This convergence is
n=]1

uniform over the positive half of the real axis. Thus 2, converges uni-

formly over this interval to a limit functlon 2, which by virtue of (2)

satisfies the equation

(10) e=y+ ﬁ) LY@~ 1)) dia

and thus satisfies our original differential equation,
Since || f(2)|| < ez, we obtain

() el <l + & [ 1Y@ = )zl dos
Leae™ +a /(: et |zl di,

for some positive constants ¢, and @ > 0. Hence

(12) lelle < 0+ e [ ezl ey

whence the fundamental lemma yields ||z]|e* < cie®. If ¢ is sufficiently
small, we see that [2]| - 0ast— .

Ezxercises
1. Show that the above result holds for the equation

= (4 + B@®)z + f(2)

provided that ||B(f)| is sufficiently small, or that f "Bl dt < .

Show how this result may be used to reduce problems of this type to the
case where A has distinct characteristic roots.
2. Show that the above result holds for the equation

provided that f(z, dz/dt) satisfies suitable conditions.

3. If [u(0)] is sufficiently small, is the solution of du/dt = —2u + etu?
bounded? Generalize.

4 If v + u = u"? is it true that, f |u(0)| is sufficiently small and if
%/(0) is chosen properly, there is a solution which approaches zero as
t— «?
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6. Consider the nonlinear system

n

n
dy; ,
"d%"*'yizaﬁyj:zbijkyjyk, t=12 ...,n
i=1 ik=1
where b > 0, and where the above equations imply a relation of the
form z ay; = ¢1. Show that under these assumptions every solution
t=1
for which »(0) > 0 may be continued throughout 0 < ¢ < « and the
solutions will remain nonnegative and uniformly bounded. (Carleman.)

7. Asymptotic Behavior of the Solutions. We know that the solutions
of

(1) & - 42+ 1)

under the hypotheses of Theorem 1 or 1’ approach zero and are actually
majorized by exponentials of the form e, with @ > 0. The question
arises as to the precise asymptotic behavior of the solutions,

Let us consider the most important case where the hypotheses are
satisfied, the case where the components of f(z) are power series, in the
components of z, lacking constant or first-degree terms.

We may then write (1) in the form

@) o 4+ 6

where G(z) is a matrix.whose elements are power series, in the components
of z, lacking constant terms. Since ||z]| — 0 as {— o, (2) has the form

@3) &+ B)z

where B(t) — 0 as { — «, and where actually |B@)|| < ¢, a > 0, for
t 2 0, together with similar conditions on the derivative.

If A has simple characteristic roots, the asymptotic behavior of the
solutions of (3) may be immediately deduced from the results of Chap. 2.
If A has multiple roots, the same techniques, aided by the strong bounds
on B(t) and B'(¢), will readily yield the asymptotic behavior. We leave
arrival at the precise results as exercises for the reader.

8. Periodic Coeficients. We have seen in Chap. 2 that the analogues
of the boundedness, stability, and asymptotic-behavior theorems for
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linear differential equations with almost-constant coefficients flow easily
from the representation theorem for solutions of linear equations with
periodic coefficients; in the same way we shall show now, using the same
weapon, that the analogue of Theorem 1 holds in the case where A(?)
is periodie.

Theorem 2. Consider the equation

) & A0z + 10

where A(t) is a periodic matrix of period r.
The trivial solution z = 0 is stable provided that

(2) (a) Every solution of dy/di = A(t)y approaches zero ast— o
(b) f(2) 2s continuous in some region about z = 0

@ Ilf@1/lzll = 0 as 2] — 0
Proof. Let Y be the solution of

ay
@3) 5 =AQY, YO =1
and let y be the solution of

d
@ L= Ay, O =20

Then 2 satisfies the familiar integral equation

5) 2=y + [[ YOY @) di
Employing the representation theorem Y = P(¢)e?, (5) becomes
®) 2=y + [ POSOPE) ) db
The hypotheses of (2) imply that ||e?]| — 0 as t— «, and that
@ [ el dt <
From (6) we derive
®) lell <yl + et [ el dt
and the proof now proceeds as in Sec. 4.

The device used in that section permits us to conclude that z — 0 as
I— o,
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Exercise

Carry through the proof using the technique of Sec. 5.

9. Counterexample to a Proposed General Stability Theorem. It
might be expected on the basis of previous results that for stability of
the trivial solution z = 0 of a system of nonlinear equations, it would be
sufficient to have the solutions of the linear approximation possess the
property of tending to zero as t— ., We shall show by anexample
that no such general result can hold.

The solution of

d
(1) _(%1 = —ay, y1(0) = ¢
d .
—dl; = [(sin log ¢ 4+ cos log &) — 2alys,, y2(0) = ¢2
is
(2) Y1 = e~
Yo = c2e(¢sinlog t—2at)
which approaches zero as t — « for a > 14.
On the other hand the solution of the nonlinear system
dz
(3) _d_; = —ozy, 21(0) = &
%?t_ﬂ = (sin log ¢t + cos log § — 2a)zs + 2, 22(0) = ¢,
is
(4) 21 = C1e™

2y = etsinlogt—?a,t (C2 + C% /‘ e——t;sinlogtl dt])
0

which, we we shall show, approaches zero as {— « only if ¢; = 0, pro-
vided that we choose 1 4 ¢*/2 > 2a > 1. Therefore, choosing [z(0)||
sufficiently small does not suffice to have the solution of the nonlinear
equation also approach zero. Furthermore, we shall show that the solu-
tion is actually unbounded as { — «. We have

(5) '/: g teinlogty gff, > /;:_T : g hsinlogt gf, > exp (te""ﬂ) t:f:r/s dt,

= t(e-—2r/3 — e—r) exp (te~1r/2)

e 2T/

for t = ent¥9*, Thus at this point,
(6) gt sin logf—2at L’ e~tvinloxti df > cqof exp [(1 + e 72 — 2q)t]

Consequently, z;— 0 a8t — « only if ¢; = 0.
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10. Instability. We have seen in the previous sections that z = 0 is
a stable solution of

&) = At 10

provided that we have imposed the proper conditions upon 4 and f(2).
Let us show by a simple example that some restriction on the magnitude
of ||2(0)}| is necessary to ensure the boundedness of the solution, even
when the characteristic roots of A have negative real parts and when the
nonlinear terms satisfy the usual conditions. Consider
du

2 Ei=—u+u2, u0) =a>1

whose solution is given by

a

) u=m

Ast—log (a/a — 1), u evidently becomes unbounded.
Conversely, a positive characteristic root does not necessitate un-
bounded solutions. For example, if

) %=u—u2, 0 <u(0) < «

we see that u » 1l as{— o,

We can state the following result:
Theorem 3. If

u=1
; (5) (a) A possesses at least one characteristic root

“= ? =0 | with positive real part

' Fic. 1. ®) f@/llzl — 0 as |l2] — 0

then z = 0 ts unsiable,
Proof. We use a method of Sec. 5. Let T be a transformation such
that

)\1 b12 MR bln
0 )‘2 PRI b2n
(6) T-1AT = | )
0 0 “« . e %n

where |bj] < ¢, € being a positive quantity to be prescribed. Let z = Tz.
Then
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) %ft—l = M1 + buats + ¢ ¢ 0+ biazn + g1(2)
%‘? - Nezs + + * 4 banta + ga()
dz, _

i AnZn + ga()

Since the order in which we take the characteristic roots is immaterial,
let us assume that Re (A1) > 0, . . . , Re (\x) > 0, where k > 1. Mul-
tiplying the kth equation by Z: if Ax has a positive real part, and by —Z;
if it has a nonpositive real part, we obtain, using the condition

@l ,
T

as ||zl — 0,

® L(alt+ Lol + - k= ol = - = Jal)

= Re (\)[z:]* + Re (M)leo|* + - - - + Re (\)|aaf?
= Re (egn)l@eal’ = - - — Re (\a)|aal® 4 =«

where the additional terms are of smaller order of magnitude.

Again we argue by contradiction. If the trivial solution is stable, by
choosing ||z(0)| sufficiently small we can ensure |z| < e for ¢ > 0.
From (8) we then conclude that

© Slnr+ k=l el
2 erljwl* + |2 + -+ - -+ |2l?)

Zoe(lml®+ - 0wl = ol = e = (2]
with ¢; > 0, and thus
(10) faal* + = - - @l = el — - 00— |z
2 (|2 + -+ - + [#2(0)]* — [2e2(0)f* = + = = — |2a(0)])e*

1f we now choose
[210)[* + -+ * + |2(0)|* — [2es1(0)]2 — - - - — |2.(0)]2 > O

we see that (10) contradicts the inequality ||z| < e for ¢ sufficiently
large.

11. Conditional Stability. Despite the negative character of the result
of the previous section, we shall show that if there are any characteristic
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roots of A with negative real parts, then the solution z = 0 possesses a
certain conditional stability.
Theorem 4. If

(1) (a) k of the characteristic roots of A have negative real parts, where
E<n
®) [|f@)]/lizll — 0 as ||zl — 0
©) ||f(z1) — f(z2)|l < eillzr = 24| for ||21]| and ||ze]| < ¢o, where ey — 0
ascz— 0

there ts a k-parameter family of solutions of

dz
@ = Az + 1)
which approach zero ast — .,
Proof. Let y and Y have their previous connotation and consider the

integral equation
@) z=y+ [[ Y-t d

To obtain solutions of (3) which approach zero as {— «, we must
somehow weed out the elements of Y (t) which do not tend to zero as
t— =, To this end we consider the following decomposition:

(4) Y= Y1+ Yz

with ¥; = (u;) and Y, = (v;), where y;; = w; + v;;, here w; is the part
of y; which tends to zero as {— <, and v; is the remaining part, cor-
responding to the characteristic roots of A which have zero or positive
real parts. It is easy to see that A

dy,
(5) S =AY,

ar,

@~ AY

Using (4), (3) may be written

6) =

v+ [J Vil — ) dt + [[Ya(t — f() dt
=y + [ Vit~ wfe) dts ~ [7 Yot — 0f(e) i
+ [)7 Yalt — f(@) dts
At the moment, these operations are purely formal, since we do not

know whether the integrals from 0 to « and from ¢ to « exist. If,
however, the last integral exists, it is a solution of dy/df = Ay. We may



STABILITY—NONLINEAR SYSTEMS 91

then combine it with the first term to form a new y, and consider the
integral equation

) 2=y + L LYt — t)f(2) dt — ﬂ Yot ~ t)f(2) dta

To obtain a solution of (7), we employ the method of successive approxi-
mations. Reversing the operations above, we see that any solution of
(7) is a solution of the integral equation (3), with a different y, and con-
sequently is a solution of (2).

Choose the y in (7) to be any element of the k-parameter family of
solutions of dy/dt = Ay which tend to zero as {— o, and let {y(0)]
be a small constant whose precise magnitude will be specified sub-
sequently. Since y — 0 as{— oo, [ly[| < ce7 for £ > 0 and for some
a > 0, and ¢;3 can be made as small as desired by an appropriate choice
of |ly(0)l. Furthermore, there exists an a; > @ such that |V,(8)]] <
cie™¢, and finally || Y2(6)]] < cset for some constant b. We now proceed
by induction. Set

(8) o=y
Zap1 = Y + L LYt — t)f(zn) dby — ﬁ Yot — t)f(2,) dty

From the inequality for y, it follows that [|zo] < cse~*. Let us show
that ||z.]| < 2¢3¢™% for n > 0. From (8),

¢ 0
) Mensall < cse™t + 2¢504e [) e~mt—tg=et by + 2eycqe [t bt gat gt

using the condition (1b). If € is sufficiently small, we obtain ||z,.| <
2cqe7,

0

The uniform convergence of z l2ns1 — 2a|| now follows as in Seec. 6,
n=0
and the remainder of the proof proceeds similarly.

12. A Particular Case of Zero Characteristic Roots. Any discussion of
the case where A has characteristic roots with zero real parts is extremely
difficult, and for that reason we shall not go into it here. There are,
however, a few special cases where the behavior of the solutions as
t — « may be determined. One is the following:

Theorem b. Constder the differential equation

(1 LTS )

where
(2) (a) Al solutions of dy/dt = Ay are bounded

® IfEDI/ Nzl < eg(t) for |2l < ca, where [ ") dt <
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Under these conditions, z = 0 is a stable solution.

We leave the proof as an exercise.

13. Difference Equations. It is possible to extend many of the results
of this chapter and of previous chapters to difference equations of the
form

(1) z(t + h) = Az(t) + fz(t)), t=20,h,2h, ...
The method used to establish these analogues is abstractly equivalent
to that used for differential equations. Consequently, we shall present

the various steps as exercises.
Exercises

1. What is a necessary and sufficient condition that all solutions of
y(t + h) = Ay(i) approach zero as t — o ?

2. Find the formula expressing the solutions of 2(f + k) = Az(t) + w()
in terms of the solution of y(t + h) = Ay(t), that is, the analogue of
Theorem 3 of Chap. 1.

3. Find the nonlinear sum equation equivalent to (1). Use this equa-
tion to prove the analogue of Theorem 1.

4. Use this result to prove Theorem 1, by means of a limiting process.

©

5. Show that, if 2 |B(nk)|| <  and if all solutions of

n=1

y(¢ + h) = Ay(®)

are bounded, then all solutions of 2(t + k) = (A + B(f))z(¢) are Bounded.
Note: In the above exercises { takes on only the values ¢t = 0, A,
2h, . .
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CHAPTER 5

THE ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS
OF SOME NONLINEAR EQUATIONS OF THE FIRST ORDER

1. Introduction. In this chapter we shall consider the question of the
asymptotic behavior of solutions of polynomial equations of the type
(1) Pltuu') = Zammatum™(uw)» = 0

with I,m,n > 0 and [ + m + n < N, with emphasis upon the important
particular case

2 w =

where P and @ are polynomials.
In addition, some corresponding results for the equation

v _ P
Qb

will be indicated. Since the results and methods of proof for this second
case are very similar to those for (2), but very much more detailed, we
shall content ourselves with stating the results and omitting the proofs.

The general problem of existence, continuation, and analytic nature
of the solutions of (1) and (2) is one to which the theory of functions of a
complex variable has been applied with some success. Nevertheless,
there exists at the present time no general theory of the real solutions of
real differential equations, and the problem remains one of great difficulty.
To avoid the inherent difficulties, we make a simplifying restriction which
enables us to treat many interesting and important cases. We shall
study only those solutions of (1) which exist for all sufficiently large f.
This focusing of the spotlight of our attention results in a compensating
illumination of the subject.

2. Upper Bounds for the Solutions of P(f,u,u’) = 0. We shall call a
solution of (1) of Sec. 1 a proper solution if it exists and if it has a con-
tinuous derivative for £ > ¢,. Henceforth we shall confine ourselves to
the study of proper solutions and so, for convenience, shall occasionally
drop the adjective.

We begin with the question of upper bounds and demonstrate

94

®3)
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Theorem 1. If u(t) is a proper solution of P(t,u,u’) = 0, there exists a
constant k for which

1 < exp b >4 >
¢h) [u eka-l—l t>th >

If m is the exponent of the highest power of t appearing in P(t,u,u’), then k
may be chosen to be m + e for any ¢ > 0.

Proof. The proof will be by contradiction. If the result is false, one
of the following must occur:

(2) (a) |u| = exp (t**'/k 4 1) has roots as large as desired
(b) For some t; > to, |u| > exp (¢*+1/k + 1) for ¢t > ¢,

Let us first show that case (2¢) leads to a contradiction. Let ¢, £,

s bny - , taken in increasing order, with ¢, — «, be the roots of

u(t) = w(t), where we shall set w(f) = exp (t*+1/k + 1). It is sufficient

to consider this case, since the case where —wu(f) = w has infinitely

many roots may be transformed

into the first by the transformation
u——u.

Assume first that there are an
infinity of consecutive roots occur-
ring as consequences of intersections
of u(t) and w(t) of the type shown
in Fig. 1.7 Att,, v’ > v = thw = tru;
while at {n41, &' < t*u. Hence there
is a point s, in between, ¢, < s, < tui1, at which 4’ = t*u.

Define a principle term 7T = tewb(uw')e of P(f,u,u’) by means of the
inequalities

3) @b+c=bi+a

®) Ifb+ ¢ =by+ ¢y, thene > ¢;
(¢) If b +¢ =by+crand if ¢ = ¢, thena > a,

w(t)

I

[

1
ta

+
S}

n4-3

Clearly, there is only one principal term.
Now consider the ratio R of any other term in P({,u,u’) to the prin-
cipal term at the point s.. We have

@ |B| = teopes(u)ome = foreun-a(tey)ers
= jor—atk{a—c) yybrter—(b+c)

since w’ = t*u. If b+ ¢ > b; + ¢, then |R| — 0 as { — o« through the
sequence 8,, since u > exp (t*+'/k 4+ 1), which contradicts the existence
of the equation P(t,u,u’) = 0. If b + ¢ = by + ¢; and if ¢ > ¢;, then
¢ —¢; > 1, and from the choice of k, we again see that lim |R| =
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ast— oo, Finallyif b = b; and if ¢ = ¢y, then @ > a4, and lim |R| = 0
once more. T

If the intersections are not as pictured in Fig. 1, there must be an
infinity of double roots of u(t) — w(f) = 0, at which points v = w’,
and the same contradiction is reached.

This disposes of case-(2a), and we turn to case (2b). It is again
sufficient to consider v > w(t). Fort > t; > {, one of the two inequali-
ties, v — (w'u/w) > 0 or ' — (w'u/w) <0, must be valid, for

w = wu
w
infinitely often leads to the same contradiction as above.

Ifvw — (wu/w) <0fort > t;, we set p(f) = v — (w'u/w) and obtain,

upon integrating,

t
_ P(tl) dtl
(5) u(t) = w(t) [cx + A () ]
By assumption p(f) is negative for ¢ > ¢;. Since u > w > 0, the
integral ﬂ ‘ [p(t1) /w(t))] dt; must converge; otherwise, from (5), u would

be eventually negative. Consequently there are infinitely many { for
which |p(t) /w(f)] < ¢ for any € > 0. At these points, we have

(6) | — tul < ew < eu

Consider the expression for |R| given in (4). If ¢; > ¢, we use the
fact that v’ < uw’/w = t*u and obtain

(7) IR‘ S t“‘_a"'k(cl"c) ybrta—(d+eo

As before, it follows that lim |R| = 0. If ¢; < ¢, we use the inequality
t— ®

in (6), W — t*u > —eu or u' > (I* — ¢)u for infinitely many points.

At these points,

(8) |IR| < tormo(tk — ¢)aoybrta—to

and the proof proceeds along the same lines.
This leaves the subcase w > w, w > t*u, for £ > ;. Once again,
consider the ratio

) |R| = fer—subrb(y)er—e

If ¢ > ¢y, |R] < tooubb(tu)—°. Considering the various cases b + ¢ >
bi+c¢, b+ec=bi+c, c>c, b=by, ¢ =c1, a > a;, we see that
|R| —0ast— o.

To treat the case where ¢ < ¢, we require the following:
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Lemma 1. If u— «, and if ' >0 as t— o, then w' < ulte for
1 >t for any € > 0, excepl perhaps in a set of intervals of finite total length
which depends upon e.

Proof. Let (., 7.) be the nth interval in which 4’ > w!te, Then

"udt 1 1 1
fundihcd QP [ SR [, —_
1o J = 2
whence it follows that 2 (1h — ) < oo,
n=1

Now choose ¢ to be a point outside these intervals. Then

(1 1) IRI S tul"aubl—bu(ﬂ—(ﬁ) (1+€) — tal—aubl+01—(b+c) +e(e1—o)

If b+ ¢ <b + ¢, then |R| -0 as { — «, provided that e is chosen
small enough. If b; + ¢; = b 4 ¢, we must have ¢ > ¢;, which is the
previous case.

This concludes the proof of Theorem 1. After a thorough discussion
of v = P(u,t)/Q(u,t), we shall return to P(t,u,u’) = 0 and obtain a
much more precise result, using the methods developed treating the
more special equation.

3. Counterexample. One might suspect that the methods used in the
proof of Theorem 1 could be utilized to obtain corresponding bounds
for the solutions of equations of the form P(t,u,u/,u’") = 0, and so on.
We shall show by a simple counterexample that no such general bound
can exist for second-order polynomial equations.

Theorem 2. Let ¢(t) be an arbitrary monotone increasing function of &,
There exists an irrational number o such that the function

1
2 — cost — cos at

1) u(t) =
which is real and continuous for all ¢ and _.?gtisﬁes an equation of the form
P(tauw' W' = 0, satisfies the inequality Lm w(f)/¢(t) 2 1.

]

Proof. Choose « as follows: Let (d.) be a sequence of positive integers
greater than one for which

2) d >4re(rg—y), r=2,3,...,¢=dds...dyr>21,g=1

and set

AN
3) a—ZQr
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We see that

n
1 Pn .
4 — = = » an integer
4) Z:l - P g
Also
(5) Qni1 > drgnd(2mqn)

Qny2 > 47rqn+1¢(27rqn+1) > 447Gy > (4"")2qn¢(27rqn)
whence gnir = (47)"¢ud(27gs). Thus

Dn 1 1
6 Py o 1
(6) o n 2+1 gr  27Qnd(27g,)

r=n

If o were rational and were equal to a/b, with a and b integers, we would
have ‘

@&  Pa  QGy — bpa 1
7 0<-—= = <
) b qn ban = 279, ¢(27q,)
or
(8) 1< ag. — bp b

" S g @)

This is a contradiction, since ¢(2rg,) — »© as n— ». Hence a is
irrational. This implies that 2 — cos { — cos «f is never zero and that
u(t) 1s continuous for all .

For n sufficiently large

o

(9) cos 2rag. = cos [21rqn %" + 2 —1—>] = COS <21rqn E l)
T Tt

Using (6), we see that

1

(10) 1 — cos 2raq, < *@rad)

Hence

1 1

(1) u(@mgn) = 2 — oS 2rgn — cOS 2rag, 1 — cos Zrags

> ¢ (2""Qn)

To show that u satisfies a second-order polynomial equation, we con-
sider the three equations

(12) v=2—cost — cosal
v = sin { + «sin af
v = cos t + a? cos ai
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Eliminating cos ¢, cos of, sin ¢, and sin «f from these equations and from
the two identities cos?{ - sin?¢ = 1, cos? af + sin? af = 1, we obtain
a polynomial equation in », ¢/, and v"’. The substitution » = 1/ yields
the required equation in w.

4. The Solutions of w' = P(u,t)/(Q(u,t). In this section, we discuss

some properties of the solutions of the first-order equation
du _ P(u,)

M @ = Qu)

where P and @ are polynomials.

Lemma 2. Every solution of (1) which is continuous for t > ty is
ulttmately strictly monotonic.

Proof. It is necessary to prove that «' cannot vanish for a series of
¢t values whose limit is «, unless 4 = ¢ is a solution. The proof will be
by contradiction. Let #' vanish at the points of the sequence {t},
t;— «. Then u(¢) and the curve defined by P(u,t) = 0 intersect at
these points. Since P is a polynomial in u and ¢, the algebraic curve
defined by P = 0 possesses only a finite number of branches, and con-
sequently u intersects one of these branches infinitely often.

P =0 and @ = 0 possess only a finite number of common roots,
assuming, as we clearly may, that P and @ have no common factor.
Consequently, for ¢ > i, we may suppose that Q(u,t) possesses constant
sign in the immediate neighborhood of a root u, of P(u,t) = 0.

The branches of P(u,t) = 0 which extend to infinity as { — « consist
of curves of the form
(2) (@) u=c¢,or

) u= ¢
along which % is ultimately monotonic.

Let us examine curves of type (2b) first and show that a solution u
of (1) cannot intersect any of these infinitely often. For ¢ sufficiently
large, the points of intersection cannot be maxima or minima and there-
fore must be points of inflection. [This is most easily seen geometrically
by drawing a graph of the monotone curve v = ¢(t) and the solution
curve u.] But it is easy to see that, if a solution u of (1) and a branch of
P(u,f) = 0 intersect at two successive points of inflection for u, they
must also intersect at another point between these two. At this point,
the slope of the solution is not zero, which contradicts the differential
cquation. We do not insist on filling in the rigorous details here, since we
shall prove more below using a more powerful and systematic technique.

Turning to curves of type (2a), let us consider the possible intersection
of u = u(f), a solution of (1), and u = ¢. These intersections again
must be points of inflection of «(¢) and have one of the four forms shown
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in Fig. 2. We can eliminate the forms of Fig. 2¢ and b immediately,
since %’'(f) changes sign as it passes through a point of inflection, but
P(u,t)/Q(u,t) does not change sign in the neighborhood of u = ¢ if
u<coru > c If the forms of Fig. 2¢ and d occur, they occur only a
finite number of times, for u can return to intersect w = ¢ only by inter-
secting one of the finite number of branches of P(u,t) = 0, a curve of the
type w = ¢(f), or a straight line 4 = ¢; in an intersection-of type (2a)
or (2b). This completes the proof of the lemma.

_¥_
N ' ‘
(2) (b) (c) {d
Fig. 2.

We now prove a stronger result, using a less elementary method.

Lemma 3. If u is a solution of (1), continuous for t > t,, then any
rational function of u and t, H(u,t) = K(u,t)/L{w,t) is ulitmately strictly
monotonic, unless L = 0 contains a solution of (1) or unless H is constant
along a solutton of (1). ~

Proof. We have

dH _ oH | HP(ut) _ T(up)
@) & "o T a0y - S

If dH/dt is not of constant sign as t — o, it either vanishes infinitely
often or becomes infinite infinitely often as { — <« , u traversing the curve
u = u(f), a solution to (1). Take first the case where it vanishes infi-
nitely often and where consequently one branch of T'(u,f) = 0 has an
infinite number of intersections with u(f). For ¢ > #,; this branch has
an expansion of the form

(4:) u=a0t°°+a1t"1+‘-°, Co>01>"‘,ao¢0

At the intersection with the solution

du —_— _P(u’t) —_ 0 dy “ s . « ..
(5) E—R—m—bofi*‘bﬂ:‘l‘ ’ do > dy >
replacing u by the series in (4). Along the branch of T'(u,t) given by (4),
(6) % = S = aocotco—l + alcltor—l + e

From the forms of R and 8, we see that there are now three possibilities
for large t: R > 8, R < 8, or R = 8. The two inequalities hold if R
and S are the slopes at the points at successive points of intersection,
as one easily sees geometrically. If, on the other hand, R = 8§ for
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infinitely many ¢ as ¢t — «, we must have by = a¢o, b1 = ascy, . . . ,
do = ¢o — 1,d1 = ¢1 — 1, and so on, whence finally R = S. This means
that T(u,t) = 0 along a solution wu(t) of (1). Consequently, dH/di = 0
along u, and H is constant along u(2).

The case where dH/dt becomes infinite infinitely often requires that
L(u,t) = 0 infinitely often along u = u(?), since

) dH _ LdK/di — K dL/dt
di L2

This, as above, requires that L = 0 along u = u(?).

From the above it follows that any rational function of ¢, u, «/, . .
is ultimately strictly monotonic, apart from the trivial exceptions men-
tioned above.

6. Asymptotic Behavior of Solutions of u' = P(u,t)/Q(u,t). We are
now able to prove the following remarkable result:

Theorem 3. Any solution of the equation

du _ P(ul)
W) & = Q)
continuous for t 2> to, 18 ultimalely monotonic, together with all its deriva-
tives, and satisfies one or the other of the relations

(2) U ~ atbeP®, u ~ att(log £)¥e

where P(f) is a polynomial in t and ¢ is an integer.

Proof. Consider Q(u,t)u’ — P(u,t) = 0, the terms of which are of the
form at™u", or bitmu™w’. Since all rational functions in u, «/, and ¢ are
ultimately monotonic, the ratio of any two such terms approaches a limit
as t — «. This limit may be + «, 0, or a nonzero constant, but there
must be one quotient of two terms which approaches a nonzero constant.

If one of the two terms contains ', but not the other, we obtain

(3) wuntm ~ Cy
If both or neither contain «’, the result is
(4) U ~ CotP’e

where p/q is a rational fraction.
The first case presents different results according to the subcases:

5) (@) n# —1,m +1
) n=—-1,ms 41
) n=-1,m=+1
@ n—~1,m=+1
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Corresponding to the various cases in (5) we have the respective
asymptotic behaviors:
un+1 tl—m

(6) (a)n+1N611_m+dl

1—-m

+ dy

(®) log u ~c11‘_ —

(c) log u ~cilogt
un-H.
1

@

Cases (6a) and (6d) are in the form stated by the theorem; cases (6b)
and (6¢) are not, and a further discussion is required. We use the
method we have previously applied to derive more precise results, namely,
substitute the crude result in the differential equation, and use the equa-
tion again. Let us consider case (6b) first.

We write the equation in the form

(7) @=P0ur+P1ur_l+...+Pr
di Qo + Qe + - - - 4 Q,
where P, and Q; are polynomials in {. We may take 1 — m as positive,

since if it is negative, u ~ 1. If 1 — m > 0 and if ¢; > 0, we see that in
() r = s + 1. Hence dividing through by ¢, we obtain

~clogt

du _ Py te
® B re+o(Y)
for some a, or '
du/dt _ P, 1

for large ¢. Integrating,

(10) logu = P(t) + ¢cslogt+ O <%>

The case ¢ < 0 may be treated by replacing » by 1/u in the original
equation.

We turn now to the last case, case (6¢), which requires the considera-
tion of a great many subcases. There are two terms, af®ucu’ and dtt—1uctl,
of equal order. Further we may assume that there is no other term of
equal order, since the contrary assumption yields the relation u ~ ¢4,
If T is any third term, the quotient

(atPucu’ — dt—tuctl)

(11) T

tends to a limit as ¢ — «. There are now two possibilities:
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(a) There is a third term whose order is equal to that of the difference
between the two principal terms
(b) There is no such third term

Let us consider the first possibility. In this case we have a relation
either of the form

-(12) attucy’ — dfuctt ~ et/ug
or of the form
(13) attucu’ — dirluct! ~ etfusy’

Take the case (12) first. From (6¢) we obtain the crude result u = forte,
where ¢ = ¢(f) > 0 as {— «, and where ¢; = d/a. Set u = {¥%.
Substituting, (12) becomes

dg d(e+1)
(14) peoy’ ~ & tf+7¢__ a—b
a

Recalling that log u ~ (d log t)/a implies that logv = O(log?) as
t— «©, we see by an enumeration of cases that U has one or the other
of the forms in (2).

The case where (13) holds and the case where possibility (b) holds
we leave as exercises for the reader.

6. A Sharpening of Theorem 1. We are now able to prove a much
sharper form of Theorem 1, namely,

Theorem 4. Let u be any solution of the polynomial equation

Pluu’) =0
continuous for t > ty. Then either
(1) u = o(t?)
Jor some b, or
(2) u = exp [at®(1 + ()]

where @ and b are fixed constants and €(t) — 0 ast— .

All solutions of the latter class are monotonic, together with all their
derivatives.

Proof. Let us assume that no constant b exists for which u = o(#).
Then, however large we choose b, it is possible to find values of £ such that
u > . Choose an increasing sequence b, — ©, and a sequence £, such
that

(3) u(ty) > 6
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Let us now construct a curve u = #® = M1t = ¢#® pagsing through
the points (¢,, ), and possessing the following properties: N

(a) b'(?) is positive and continuous
(®) b@)/tc— 0as{— « for anyc >0
(¢) b'(t)/t**— 0 forany c > 0 '

This can always be done by taking b, = v ahd choosing the points i,
sufficiently far apart. In terms of ¢(¢), we have, for any ¢ > 0,

4) tp) — o, ti=e¢’ — 0

We shall now show that the statement u(f) > e*® for a solution of
P(tu,u’) = 0 for infinitely many ¢ > ¢ implies that the inequality holds
for all ¢. The proof is by contradiction.
~If the inequality does not hold for all
E t > to, there are infinitely many intersec-
tions of the two curves n» = u(f) and
u = ¢*®, as in Fig. 3. The argument
is considerably simplified if there are an
infinity of points of contact, so there is
Fic. 3. no loss of generality in considering the
above situation.

Asin previous discussions in Sec. 2, we see that there is a point between

P and @ for which

(3) u = ¢'u, u > et

Q T

u here representing the solution curve. Using the concept of “principal
term” in P(t,u,u’) developed above, we readily obtain a contradiction,
combining (4) and (5). Consequently, the inequality « > e*® must hold
for all sufficiently large .

In this case any expression of the type H = f*ub(w’)e, with ¢ # 0, is
ultimately monotonic. To show this, eliminate u’ between t*u?(u')* = H
and the relation P({,u,u’) = 0.

The result is F({,u,H) = 0. From this we obtain, upon differentiation,

oF oF
(6) ”a'i'f‘éau + o35 =0

If dH/dt = 0, we must have 8F/dt + (8F/du)u’ = 0. Substituting
this value for %’ in P(t,u,u’) = 0, we obtain a polynomial relation between
u, t, and H. Eliminating H between this relation and F(t,u,H) = 0, the
resulting relation is a polynomial equation between u and £, This, how-
ever, is a contradiction of the property u > ¢*® for ¢ > #.

Now choose two terms of equal order, as t — «, in P(¢,u,u’):

T, = trr (u’)"!
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and T, = t=ub2(u')2.  Since u > e*®, ¢; cannot equal ¢z; for if ¢; should
equal c,, the relation T'y/T: ~ d as t —» » would imply u ~ ¢st%, which
contradicts # > e*®, The relation T1/Ts ~ d then takes the form

(M wur ~ cytf, cs # 0

and the relation % > ¢*® forces @ to be —1. From this, integration
yields
(8) u = exp [c.tf(1 + €(8))]
where €(f) — 0 for { —> . More precise asymptotic expressions for u
may now be obtained using the type of argument presented in Sec. 5.

7. Some Results Concerning v’ = R(u,t)/Q(u,t). As we know from

the counterexample given in Sec. 3, any general theory of the asymptotic
behavior of proper solutions of polynomial equations of the form

Pituu' w'’) =0
will be extremely difficult. If, however, we restrict our attention to the
important class of equations having the form
P(u,t)
1 124 = 2
M) Q)
where P and @ are polynomials, we can obtain some interesting results.

The proofs of these results employ the same techniques as above, and
for this reason we shall leave them as exercises.

Ezxercises

1. If » is a proper solution of (1), then either there exists a constant &
such that uw = O(#*), or there exist two constants ¢ and b such that
u = exp al’*e, where e = ¢(f) > 0 ast— «.

2. If 4’ = P(u,f), where P is a polynomial of degree greater than one,
then w = O(#*) for some k if u is a proper solution.

3. If u is a proper solution of (1), then v = O(t*) if the degree of P
in 4 does not exceed the degree of @ in % by unity.

4. If » is a solution of (1) with the property that any rational function
of ¥, 4, and ¢ is ultimately monotonie, then as { — «, u has one of the
following forms:

(@) exp [(a + €)tter®)] (b) exp [(a + € (i log £)V/7]
(c) exp [(a + €)2¥] (d) exp [(a + €)(log t)wtn/7]
(e) a(log log t)v» () a(log t)r(log log t)v/e

(9) a(log ?)® (k) exp [(a + €)(log t)»~V77]

where, whenever ¢ appears, it is understood to be a function of ¢, which
approaches zero as t — «, and where p and ¢ are integers, a and b are
real numbers, and p(¢) in (a) is a polynomial.
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CHAPTER 6
THE SECOND-ORDER LINEAR DIFFERENTIAL EQUATION

1. Introduction. We now turn our attention to the second-order linear
differential equation

M %(k(t) %1;) S+ u =0

Since it is virtually impossible to present a complete account of all that
is known concerning the properties of the solutions of the above equation,
we have rather attempted to present a cross section of theorems and
techniques in such a fashion that the reader will have little difficulty in
following original papers or in deriving new results.

Although some of the results we state below are special cases of general
theorems valid for linear equations of any order, the results for the most
part depend very strongly upon the particularly simple form of (1).
Even where this duplication exists, we shall not hesitate to present a
proof applicable only to (1) if it illustrates an important and useful
technique.

The physical importance of equations of the above class can hardly
be overestimated, and this accounts for the vast amount of research
connected with (1). Mathematically, the equation presents a continual
challenge to the skill of the analyst to extract as many properties of the
solution as possible without the luxury of an explicit representation for u
in terms of the coefficients k and .

We shall begin our discussion with some preliminary lemmas required
in what follows. Then we shall turn to the questions of boundedness,
oscillation, and asymptotic behavior of the solutions.

2. Some Lemmas. In this section we gather together some results
we shall call upon repeatedly below. Lemma 1 has already been stated
and proved in Chap. 2, and Lemma 2 is a particularization of Theorem 3
of Chap. 1.

Lemma 1. Let up > 0, ¢c; > 0, and u satisfy the inequality

(1) uSc,+/;:nvdl, 1>0
167
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Then
(2) ugclexp(fo'vdt)

Lemma 2. Let uy and u; be two linearly independent solutions of
3) u’' —alt)u =0
for which the Wronskian

(4) w =

Uy Uz 1
/ T
Uy U

for all t. Then the general solution of the inhomogeneous equation
(5) W — a®u = w(t)

1s given by
(6) U = ¢yU; + CoUs + j: [ua @) ua(ty) — wa(t)ua(®)w(ty) dty

where ¢y and ¢, are constants delermined by the initial conditions.
Lemma 3. If uy is a solution of (3), then

at

(7) Ug = u} u%

s another, linearly independent, solution.

Proof. The result may be obtained by the standard variation-of-
parameters method, letting us = uw, or by observing that for any two
solutions of (3), %1 and u,, we have (compare Theorem 2, Chap. 1)

U U

® R P

=cl

This equation is a first-order equation for u;, which may be solved easily
to yield (7). \

3. Some Useful Transformations. In this section, we consider some
changes of independent and dependent variable which will be of great
service in obtaining properties of the solutions and in reducing the number
of distinct types of equations.

Let us begin by demonstrating two methods by means of which

d du
(1) 7 (k(t) -d—t) +lu =0
may be reduced to the simpler form

@) T2 + altyu = 0
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The first method depends upon a change of independent variable and
assumes that k(¢) is eventually positive and that

® dt
® [ -
For this case, set s = / ‘ dt/k(t). Equation (1) becomes

@ T kOltyu = 0

where k(1)I(t) is now a function of 5, Ast— o, s— .,
The second method depends upon a change of dependent variable.
Write (1) in its full expansion as

AU 1.,
(5) + 575 k(t) T k(t) =0
We now wish to transform (5) into an equation lacking a middle term.
That this may always be accomplished is the substance of the following:
Lemma 4. The substitution

(6) U = v exp (—-%ﬁpdt)
transforms
™o W+ pu + gt =
into

2
8 v”+(q——;—p'—%)v=0

An important feature of this transformation is that, provided A ‘ pdl

is finite for finite ¢, the zeros of v are the same as the zeros of u.
Applying Lemma 4 to (5), the substitution v = u 4/k(?) yields

o e[-E)- 4]

an equation of type (2).

‘We now wish to reduce (2) to a form which in many cases is easier to
treat.

Lemma b5 (The Liouville Transformation). 7The change of variable

(10) g = L b a(t) dt
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transforms

1y uw”’ * a?Qu =20

o

d*v | a'(t) du

(12) A ETEY

Using Lemma 4 and letting

k)

the resultant equatton for v s

d% 1d[fad) 1{a'(t) 2 _

(14) @‘*‘[il—E%(m)—z(a—z(B :|1)—0

In many cases, first-order equations are easier to discuss than second-
order equations, In general, we can always reduce an nth-order linear
differential equation to an (n — 1)st-order nonlinear differential equation
by means of the transformation w'/u = v. In the case n = 2, the result
is particularly simple,

Lemma 8. The substitution

(15) ‘ U = exp ftvdt
transforms (2) into
(16) v +ovi4alt) =0

Equations of type (16) are called Riccati equations. It is easy to
see that (15) establishes a connection between the general second-order
equation

(17) v’ + p(hu' + ¢()u =0

and the general Riccati equation

(18) v = a(tyu? + b(t)u + ¢c(?)
Ezxercise

Find the second-order linear equation equivalent to (18).

It should be pointed out that, in all cases where these changes of
variable are employed, care must be exercised in verifying the one-to-one
nature of the transformation.
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Finally we note that any second-order equation

(19) w4+ p)u + q)u =10
is equivalent to a second-order system, namely,
(20) w =

v’ = ~p(t) — ¢)u
It is sometimes convenient to introduce polar coordinates in place of
cartesian. Taking the general second-order system

(21) w = an()u + an(v
v o= an()u + an(t)r

we may state
Lemma 7. The change of variable

(22) % = pcos @
v = p sin 6, p>0

transforms (21) into

(23) o= TG 2D cos (20 + )
pooantan 1o gn @ty
p 2 2
where
(24) . r = 4{an — a:)? + (a2 + as)?
_ G+ Ga2
cosy = —
. _ O — G22
sin ¢ = —

4. Boundedness Theorems. Having disposed of these preliminaries,
let us now turn to the problem of determining when all solutions of a given
equation are bounded as t— ., We begin by considering the equation

(1 w4 (a2 + ¢®)u =0

where ¢(t) — 0 as t — . Without loss of generality, we may assume

that ¢ = 1.
The question naturally arises as to the connection between the solu-

tions of (1) and those of the easily soluble equation
(2) W +u=20

We shall show that in most “ordinary’ cases, there is a close cor-
respondence, but that the condition ¢(t) — 0 ag ¢ — « is by no means
sufficient to ensure the boundedness of all solutions of (1).
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Our first result is
Theorem 1. All solutions of

@ W+ (14 é@) +¥®)u =0
are bounded, provided that ‘

OO j” l6()] dt < w

® [T WOld< @, ¥@)—>0ast—
Proof. We show first that the equation

(5) w + (1 +¢@®)u =0

has all solutions bounded provided that (4b) is fulfilled. From (5),
multiptying by %' and integrating between 0 and ¢, we obtain

2 2 ¢
(6) LA / Y(tyu dty = ¢

2 2 0
Integrating by parts, this yields

w? o ou? wt 1t

(M 7+7+¢(t)—§—-2-ﬁ¢(t1)u dty = ¢z
Take t large enough so that 1 4 ¢(¢) > 4. Then for ¢ > iy,
(8) ut < 4log| + 2 L‘ [/ ()2 diy = ¢5 + 2 ﬁ‘ W/ (t0) |2 dty
Applying Lemma 1, the result is, for ¢ > ¢,
©  u? < esexp (z L‘ W ()] dtl) < ¢; exp (2 ﬁ 200 dtl)

Hence u is bounded. To finish the proof, we must demonstrate the

following:
Theorem 2. If all solutions of
(10) uw +al)u=20
are bounded, then all solutions of
(11) w4+ (a(®) + b(®)u =0

are also bounded, if
(12) /’“ Ib(t)| dt <

This, however, is a particular case of Theorem 6 of Chap. 2, as we
see upon transforming (11) into a system.
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Ezercise
Use Lemma 7 to show that all solutions of «” + (1 4 f(£))u = 0 are
bounded if [ "] dt < .

6. A Counterexample. We now show by an example how close Theo-~
rem 1 is to being best possible in one sense.

Theorem 3. If, ast— o,

(1) g)—0, g@®—0

then

(2) U = [exp ('/: g(s) cos s ds)] cos !

s a solution of the equation

(3) w4 (1 4+ ¢(t)u =

where

4) o) = 3g() sint — ¢’'(t) cos t — g*(t) cos® ¢

approaches zero as t — .

Choosing g(¢) = (cos t)/t, we see that we obtain unbounded solutions,
although ¢(f) and ¢'(f) are both O(1/¢) as t — .

6. v’ + a(®)u = 0, a(f) — «. In the previous sections we have exam-
ined the case where a(t) — a2 % 0 as t — «. Here we consider the case
where a(f) — «.

Theorem 4. If a(t) — « monotonically, all solutions of
1) W+ at)u =0

are bounded ast — o,
Proof. We have

(2) wu” + a(uw =0
Integrating between 0 and ¢, and then by parts,
u'? u? t oyl
3) 5 + a(?) 5~ /; 5 da(t) = ¢;
whence
2 t .2
@ 0% <ol + [ L aa)

u*a(t) da(t)
<wl+ [ 505
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Applying Lemma, 1,

®) " < e exp ([ 29D) < featy

Consequently u? < 2|¢.

7. v 4+ a)u =0, a(t) — 0. We have considered the cases where
a(t) — a* # 0 and where a(f) —» © as {— «, Let us now discuss the
case a(l) — 0 as {— «. Consideration of the equation

(];) ‘ u// Z_z — 0

which has two linearly independent solutions of the form tx and te,
where o1 and as are the roots of a* — a 4+ 1 = 0, shows that solutions
of equations of this type can be unbounded as t — «. It is reasonable
to expect that, if a(t) — 0 sufficiently rapidly as {— «, the solutions of
w’ + a(t)u = 0 will approach those of '’ = 0.

Theorem b. Consider the equaiton

(2) u’ 4+ al®)u =0
where
(3) [” tla(t)| dt <
Then lim v’ exists, and the general solution is asymptotic to dy + dif as
— w0
t— o, where diy may be zero, or dy may be zero, but not both simultaneously.
Proof. Write ' = —a(f)u. Integrating twice between 1 and ¢, we
obtain
(4) “ = ¢ + ¢t — /lt t — tn)a(ty)u(ty) diy
From this we obtain, for ¢t > 1,
5) ful < Clesl + lest + ¢ [ ate) | Jut)] db
or
t
®) < e 4 e + [ tlage] P4

Applying our fundamental lemma, we derive, for ¢ > 1,

| ‘

M = < (lea] + les]) exp [_/; tila(ty)] dtl] <es
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Returning to (4), differentiation yields

®8) W o=er— [ altyult) ds

Since /;t a(t)u(ty) dt, is majorized by

[l 1u)] di < s [ tlat)] dta

the infinite integral converges, and «’ has a limit ag ¢ — oo,
If this limit is not zero, we see that u ~ dif, with dy ## 0, as t — .

Using the fact that v = u ﬁ * dt/u? is another solution, we derive a

solution » which is asymptotic to 1 ag { — o,
To ensure that this limit is not zero, we choose ¢; = 1 and use as a
lower limit, instead of 1, a point &, where ¢, is chosen so that

1 — C3 /;:1 tlla(t1)| dtl >0

This theorem completes our preliminary discussion of the boundedness
of the solutions of #’ + a(f)u = 0. In later sections we shall obtain
more precise results.

Exercises

1. What is the related result for d*u/di* + a(t)u = 0?

2. Is there an analogous theorem for the vector equation

dy/dt = Ay
n—1
3. Show that, if d u/dt» + z tn_p(t) dbu/dtr = 0 and if

k=0
L” |ax(t) [t dt <

then lim dr—lu/di*! exists.

t— 0

8. L? Boundedness. In the previous sections we have been concerned
with the boundedness of the solutions of 4"/ + a(f)u = 0, using the norm
lull = Tim |u|l. In this section we consider a different norm, which is

0<t< =

of interest in connection with various problems of mathematical physics,
namely,

M lull = (f,” lu@)] de)”

If the norm is finite, we say that u belongs to L?(0, ), written u &
]’2(09 «° ) .
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Theorem 6. If all the solutions of v’ + a(f)u = 0 belong to L*(0,x),
then all the solutions of

(2) v’ + (a(®) +b()u =0
belong to L2(0,«), of [b(t)| < €1, > 0.
Proof. Let u; and u,; be two linearly independent solutions of
W +alt)u=0
such that

U1 Us
’ ’
Uy Uy

(3) » w = =1

for all t. Utilizing Lemma 2, any solution of (2) satisfies an integral
equation of the form

@) u= e+ ot — [ [Ouslt) — mE) @b u() di
From this we obtain
(5)  ul < leaf Jua] + les| Jua
+ /;t [ fua@)| 4+ [ua()] fuO1bE)] [u(ts)] dts

We now require the following lemma (Cauchy-Schwarz inequality):
Lemma 8. For all f and g for which the right side exists, we have

®) [raae< ([ i) ([ 1o ar)”

Proof of Lemma. Since (u — v)? > 0, we have

(7) 2uy < ut 4 v?

Set u = f/(ﬁb f? dt)% and » = g/(Lb g? dt)}é, integrate both sides of

(7) between a and b, and simplify.
Returning to (5), we have, applying the consequence of (u -+ v)2 <
2(u® + v?%), that

® v < 4{chut +cfud + [ [ () uateo)]
+ [us(®)| [ua) ()] [u(ta)] dta |’}

Using the inequality of (6) and then (u + v)2 < 2(u? 4 ¢?) on the last
integral, we obtain

9 w<8 {cguf + cui + [uf(t) /;t u(ty) dfy
+ ) [ ute) dnn ] [ [ orwee) du}
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which, by hypothesis, simplifies to

(10) ut* <8 [cguf + ctui + cs(u? + ud) L‘ u®(ty) dtl]
Integrating both sides between 0 and ¢, we derive
(1) [furdn <8 [furde+ 8 [ utde
+ 8¢, L “up + u) ( ﬁ) w2ty dtl) dt
<o+ 8o [t +up) ([T wie) dn) ] di

Applying our principal inequality, this becomes -

(12) L‘ u? dty < ¢5 exp [864 A‘ (u2 + ul) dt]

whence u € L*0, »).
Ezercises

1. Show, by comparing areas, that

for v and v > 0, where p > 1 and p’ = p/(p — 1).
2. (Hélder’s inequality.) Use the above inequality to show that

Juv dt < (fur dt)Ve(for dt)V*’

for w and v > 0, where p and p’ are as above.

3. Show that, if all solutions of ¥’* 4 a(t)u = 0 belong to L7 (0, =) and
L7 (0, «), then the same is true of the solutions of v + (a(t) + b(t))u = 0,
provided that |b(t)| < ¢, for ¢t > ¢,.

4. Can all solutions of w” 4 a(®)u = 0 belong to L(0,») and be
bounded?

6. Show that, if all solutions of v’/ + a(t)u = 0 belong to L(0,=) and
are bounded, the same is true of the solution of ¥’ + (a(?) + b(t))u = 0
if Ib(t)l S C1 for ¢ = lo.

9. Relations between ||u||, ||«/||, and ||w”’||. Let us now consider what
types of inequalities exist between the norms of various derivatives, con-
sidering only the two most common norms

(1 @ lul = F&_lu

<t<w

® lul = (f," war)”
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There has been a considerable amount of research on these equations,
and the method we present below is perhaps not the most efficient. It
is, however, interesting and applicable, equally, to many different types
of norms.

Theorem 7. Using either of the above norms, the boundedness of ||ull
and ||u’’|| implies that of ||v’|.

Proof. Let |lu]l and |[u”| be finite and let f({) be defined by the
equation

2) u” —u = f(0)

By hypothesis, then, ||f(¢)|| is finite. Considering u as a solution of the
second-order linear differential equation, v is given by

B) u=cie' + et + 15 ﬁ) (¢t — e =) f(th) dbs
= g (01 + % ﬁ: G_t‘f(tl) dtl + et (Cz —_ % ﬁ: e‘lf(tl) dtl)

With reference to either norm, j; ® euf(t)) dt, is convergent if I f]] is

finite. Furthermore, it is easy to verify that e—* ﬁ) ‘ ef(t,) dt; has bounded

norm if ||f|| is finite. Hence, if « is to have bounded norm, it is necessary
that

@) e+ 1% ﬁ) et dty, = 0

Using this relation, we may write

© -t t
(5) U = — g / e—tf(h) dty -+ coe™t — 22—- / etlf(h) dty
t 0
whence

et

© — t
(6) u = - 5 f e (81) dty — coe™ -+ % f e"f(ty) diy
t 0

So far we have not used any particular norm. We now use the norm
(1a). Then

@ Wl < S0+ e+ 1 = g el = 1+l

From this it is clear that, if ||| and ||| are bounded, so also is ||«’||.
Furthermore, it follows from (6) that, if |u| and |u’| — 0 as { — <, then
so also does |u/|.

A similar result may be obtained using the norm (1b). This requires
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a bit more manipulation and is left as an exercise. More precise reason-
ing yields the inequality

(8 ]2 < 4ful[lw”
for both norms.
Ezercise

Derive inequalities connecting u®, 4@, and v for k > 1 > 1.

10. Oscillatory Equations. In this section we consider the question
of determining when all solutions of

ey w4 ¢@u =0

have an infinite number of zeros in the interval [0,«]. Equations whose
solutions possess this property are called oscillatory, and the solutions are
also named oscillatory.

Taking our cue from the equation

2 v 4+ mu =0

we prove first
Theorem 8. If all solutions of

(3) '+ ¢(u =0
are oscillgtory and if

(4) ¥(@) = (0
then all solutions of

(8) v 4+ () = 0

are oscillatory.
Furthermore, the following converse holds: If ¢(t) > ¢() and some
solutions of (5) are nonoscillatory, then some solutions of (3) must be

nonoscillatory.
Proof. We have
) w’ = o’ + @) = $@)uw =0

Let ¢, and {; be two successive zeros of 4 and assume that u > 0 between
ty and &,. Integrate over [t;,f,], obtaining, since ws” — vu' is a perfect
derivative,

o (' — o) [+ [ WO ~ e dt = 0
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and hence
@®) W (8ot — w (t)vts) + L" W) — ¢(O))undt = 0

with %/(¢;) > 0 and w/(¢;) < 0. Consequently, it is impossible that any
solutions of (5) be positive in the interval [f1,t;], an even stronger result
than stated. -

To carry over this result to the equation

d du :
9 a (kl(t) m) + ¢1(u =0
we require a more recondite identity, due to Picone, namely,

(10) dit [g (kw'v — kguv’)] = (¢p1 — P2)u? + (k1 — ka)u’?

A\ 2
el =)

where v is the solution of the related equation with ks and ¢s. From this
we easily obtain
Theorem 9. If all solutions of

d du
(11) d_t (k1(t) %> + ¢1(t)u =0
are oscillatory as t — « and if
(12) $2 > ¢1
ks 2 k>0

then all solutions of

(13) d%(kz(t) %‘) + $a(Ou = 0

are oscillatory.

Fortified by these comparison theorems, so useful in the Sturm-
Liouville theory, we now seek some simple equations which are oscillatory.
The simplest is (2), from which we conclude that, if

(14) $(t) 2 m* >0

then all solutions of (3) are oscillatory. We shall give another proof
below, which contains a method that can be applied to more general
situations.

By means of a repeated change of variable, we can obtain some non-
trivial comparison equations from (2). We shall demonstrate
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Theorem 10. If

(15) 8) > (1+ 0 35

or if
PO SR (R :
T 442 442 log?t 4t log®t + - - log?t

where r =1, 2, . . ., for t 2 to and ¢ > 0, then all solutions of (3) are
oscillatory.
Here

(16) log; (¢) = log ¢
log. (¢) = log (log 1)
log, (¢) = log (log,_1t)

Proof. The proof follows by applying the substitutions

(17) t = eh, I = ef, e ey In = ein

in turn to (2). We know that the solutions of (2) are oscillatory only
when m? > 0. Letting { = ¢4, we obtain

(18) 1dt2+t1 zi+m2u=o

Eliminating the term in du/dt by means of the substitution

(19) u =

v
Vi
we obtain

dw  m? 4 14

(20) at B v =0

Therefore all the solutions of (20) are oscillatory, if m? > 0.
Let us now make the substitution £; = ¢*. The new equation is

+

(21) t2 dtz ) dt + 2 Tt t2 =0
Eliminating the term in dv/dt as above, we have

dw 1, m*4 3\
(22) tz +w <4—t§ + t_—_,’? Tog? I w =0

all of whose solutions are oscillatory., Continuing in this way, we obtain
the result stated above.
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The results are, in a sense, best possible, since each of the equations

1
(23) Wt e =0

1 1
144 . - —
w' <4¢t2 + 4t log? t) u=0
and so on, is nonoscillatory, and actually, as we see by retracing our steps

to (2) with m? = 0, all solutions are eventually monotone.

If

-] dt
(24) / lg()] T <
then we know from Theorem 5 that all solutions of

(25) w’ + g—t(zi) u=0
are nonoscillatory. Once again, then, we see that Theorem 2 is close to a
best possible result.

Let us now give another proof of the important and useful, albeit
simple, result that (14) is a sufficient condition for oscillatory solutions.
Let us assume that there exists a solution u > 0 for ¢ > &. Then

(26) W= —¢(tyu <0

Hence u’ is steadily decreasing. There are now two possibilities: 4’ > 0
for all t > £, or v’ <0 for £ > ¢. Consider the first possibility. If
u’ > 0, u is monotone increasing, and u > ¢, for ¢ > ¢;. Thus,

(27) w = —¢(tu < —a’a

whence, integrating, w’ < —a%c, 4 c2— — % as {— «, which con-
tradicts 4’ > 0. We are left with the second possibility, v’ < 0 for
¢ > t,.. Since v’ is decreasing and is less than zero for ¢ > ¢, ' < —cq
for ¢ > ¢;; hence u < —c4 + ¢5, a contradiction, as £ — o,

Returning to (27), we see that we may replace (14) by the weaker
condition

(28) 6020, [Te@di=

Theorems on oscillation may also be derived by using the Ricecati
equation. Asin (15) of Sec. 3, let »'/u = v, obtaining
(29) v+ v () =0

This equation is valid in an interval where u = 0. If ¢() > 0, we see
that /4 is monotone decreasing, in any interval in which it is co-
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tinuous, and this property of the solutions of (3) is valid whether the

solutions are oscillatory or not. Let v = —w, so that
(30) w o= w4 $(t)

If ¢(¢) > a* > 0, we have

(31) w 2> w? 4 a?

which shows, by comparison with ¥’ = w? + a?, that w — © at a finite
value of £ and furthermore that every solution of (3) has a zero between
two consecutive zeros of a solution of 4’ 4 a?» = 0; in other words, in
every interval of length, 2x/a.

11, "’ 4+ ¢(H)u = 0, ¢(t) Periodic of Period r. We now turn to the
important and difficult question of deciding the boundedness of the
solutions of the equation
1) w4+ ¢(Hu =0
where ¢(f) is a continuous periodic function of period .

The most important example of an equation of this type is the equation
of Mathieu,

(2) w' + (e + becos2)u =0
which occurs in several important investigations of mathematical physics.
The closely related equation

3) R u'’ -+ [ z (@n cos nt -+ b, sin nt)] u =20
n=0

was encountered by Hill in his treatment of the motion of the moon. We
shall not attempt to discuss these equations here, since (2) easily merits
a separate treatise. The whole problem is one of great difficulty, and
we shall content ourselves with proving an important general result due
to Liapounoff.

Although we know, from the general representation theorem 11 of
Sec. 15, Chap. 1, that every solution of (1) has the form
4 u = e”pi(f) + e”'p2(d)
where pi(f) and p:(?) are periodic of period w, there exists no simple
method for obtaining the constants p and ¢ explicitly, given ¢(¢).

There does exist, however, a simple criterion for boundedness:

Theorem 11. If ¢(t) 2s continuous, of period x, and if

(5) (@ [ o) d 20 () #0
® [ 16| di < 4/x

then all solutions of (1) are bounded as { — + =,
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Proof. Let u; and us; be a fundamental system of solutions of (1),
that is, ©,(0) = 1, 4{(0) = 0, u:(0) = 0, wi(0) = 1. Since u.(t + =),
and wus(f 4 *) are again solutions of (1), we must have

(6) it + 7)) = wil@ui(t) + w(r)ue(f)
Ualt + 1) = ua(m) () + u(w)uat)

Let A, and A be the characteristie roots of the matrix

_ i) uy(r)
@ U‘(mw ()

Applying (6) repeatedly we see that

ul(t + mr) _ " u1(1r)
® (e T ) = ot

Let us furthermore note that the determinant of U is equal to the
Wronskian of u; and us; at £ = ». Since the Wronskian is a constant for
this equation, its value must be 1, the value determined at ¢ = 0.

It follows from this that if (1) is to have unbounded solutions, U must
have either distinet characteristic roots which are real, or multiple roots
which are then either 1, 1 or —1, —1. If U has complex roots, which are
necessarily distinet and of absolute value 1, the matrices U” will be
uniformly bounded as n — + «, implying the boundedness of the solu-
tions of (1). Hence if unbounded solutions exist, we must have either

0 1
©) U= T‘(O M)T or U—T1<0 )\)T

where A1, A\; are real and A = =1 in the second representation. Return-
ing to (6) this implies

ui(t +mY _ (xl 0) (ul(t)>
(10) T (uz(t + ) 0 A T us(t)
or
, 'Lh(t + 1I') _ A1 ul(t)>
(197 r(ed 1) =6 ) (o
and, in consequence, the existence of a real, nontrivial solution satisfying
(11) us(t + 7) = Nus(t)

We now derive a contradiction from this fact. It follows from (11)
that us;(f) either is never zero or else is infinitely often zero. Let us
suppose that us(?) is never zero. Then, from (1),

12) ﬁ “Q'dt+ CEE
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Integrating by parts, we obtain

'+/3%¥m+/}mm=o
0 0 Ug 0

Since uw}(w)/us(m) = u5(0)/us(0), the above result contradicts (5a).

Now consider the case where u; has zeros. The distance between
adjacent zeros is always less than or equal to =, from (11). We now
derive a general inequality, from which we shall derive a contradiction
to (5b).

Lemma 9. Letf u(a) = u(d) = 0, where0 <b —a < mandu®) >0in
(a,b). Then

(14) / b

Proof of Lemma

b b

(15) / dt > (um,,)“/ [u”| dt > (Umex)™* max |u'(tz) — W (t1)]
a a a <<tz <b

Let tux = ula 4 1) =ud — L), i +1:=b—a Then by Rolla’s
theorem,

(16) W (ts) = [ty —uw () = I e

for some #1,f;, where a < <a-+IlLi=b—10; <t <b Hence from
(15)

(17) | [zb

since (I + 1)/2 > V/lila
Now since u; satisfies (1), with 0 < b — a < x, we have
4 b
(18) - < ﬁ ”

us
0
a contradiction.

12. The Asymptotic Behavior of the Solutions of the Equation '’ —
(L 4+ ¢(f))u = 0. Résumé of Results. Let us begin with the equation

(1) W — (14 ¢({)u =0

whose theory is simpler than that of v’ 4 (1 4 ¢(#))u = 0 and, in con-
sequence, more complete. Under the assumption that ¢(f) —> 0 as
t — », we know of the existence of two solutions u; and u,, for which

uj
(13) ™

w’
U

dt > 7

'’
U

u’
u

L1 4
L, b—a

at > It 4 I3t

17 1
YUs Ys

Us

w=ﬁﬂwnms§

3

(2) L 1’ -2 _'l
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Theorem 7 of Chap. 2 shows that there exist two solutions u; and wu,
such that

G)  exp [t — ¢ ﬁf l6(0)] dt] < up < exp [t + e ﬁ)‘ 16| dt]
exp[—t — e ﬁ: lp(8)] dt] <u < exp[—-t + ¢ j: (D] dt]
Ezxercise

Do solutions satisfying (3) automatically satisfy (2)?

If we now assume that f i |p(?)| dt < », we can assert the existence
of two solutions u; and u, for which, as{— o,
(4) Uy ~ et
Uy ~ et
as follows from Theorems 7 and 8 of Chap. 2.
The result of (4) can be considerably improved if we assume cor-

respondingly more about ¢(f). Thus, if ¢(f) possesses an asymptotic
expansion

©) BO~FHEE R
then there are two solutions u; and u, satisfying
(6) Uy~ ¢ at™®
2
g~ et ) bl*
2,
ast— o,
It follows from the general result of Theorem 8 of Chap. 2 that, if

(™) [T ls@ldt < =

there are two solutions u; and u. for which
(8) U1 ~ exp ﬁ) ' VIF @ dt
uz~exp[— ﬁ:\/l + ¢(®) dt]

asfi— o,
From this it follows that, if we assume in addition that

/” $2(t) dt < oo
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then there exist two solutions «; and . such that
© w~exp £+ 35 [ ot du]
Us ~ eXp [—t — 15 [)t o(t) dtl]

All the above theorems are special cases of more general theorems
valid for systems. Let us now turn to some methods particularly
applicable to second-order equations.

13. The Equation v’ — (1 + ¢(f))u = 0, where ¢({) — 0 as {— .
We have observed in the above résumé of results that, if ¢(f) — 0 as
t — o, there exist two solutions u; and u. for which

(D

4

U U
21, z
U

We propose to give another proof of this result, employing a very use-
ful and interesting method. First we shall show that a solution exists
for which u}/u; — 1, and then we shall use the result of Lemma, 3, stating
that

(2) Ug = ull &“%
is another solution, to obtain a solution satisfying the second condition
in (1).

Choose't; large enough so that 1 + ¢(¢) > 1 — e for £ 2 #.. Choose
u ag the solution of

(3) w — 1+ ¢))u=0

for which 4'(t) = 2 and u(f;) = 1, and set v = u'/u, so that v satisfies
the Riceati equation

4 v 0P = 1+ o) =0, o) =2

Consider Fig. 1. From the differential equation (3), we see that v’
is negative at fo, whence v decreases until v hits the curve w = /1 4+ ¢(¢).
At the point of intersection P, v has a
minimum, and » begins to increase until
it hits the curve again. At the next v
point of intersection, » has a maximum ¢ T -—\ ?0:_\/ 1400
and turns downward again, and so on. ] NS----"
Since the maxima and minima of » . \op
are contained between the maxima and
minima of w = /1 + ¢(!), it is clear ) t
that v—1 ag {— . We have con- Fia. 1,

v
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sidered the case where 1 + ¢(t) is oscillating as ¢t — «. The other case
is even simpler.

Since v = u'/u, we have proved the existence of a solution %, for which
w'/u— 1. Let us now use this solution to derive another solution for
which v’ /u— —1. Since u > et for { > o, the function

®dt
exists and, by virtue of Lemma 3, is another solution of (1), as noted
above.

From this, we obtain

w _ uw (ﬁ” dt/uz) — (1/u)

6) A VL
w u ﬁ * (dt/u?) U ﬁ * (dt/uw)
We now require the following lemma:
Lemma 10. Let
) lim o _ a, f),9(t) — 0 ast—

e g6
g being one-signed for t > to. Then

(8) lim 18 _ 4

Proof. Take ¢’(f) as positive without loss of generality. Then for
t> t,

9 a—e< 5'% <a-e

or

(10) (@ —eg'(®) < () < (a+ ¢g'()
Integrating between ¢ and «, we obtain, for £ > ¢y,
(11) (@ + g(t) < J(t) < (a — g(t)

Since this is true for any e > 0, with {, sufficiently large, (8) holds.
Applying this to the second term on the right-hand side of (6), we obtain

2 — 4 3
(12) lim /% — i 22/

u/
t— o ﬁw dt/u2 h — % —l/uz

=2 lim — =2
t— o U

Therefore, w’'/w-— —1 as t — .
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Ezxercise

Show that v = 1 is a stable limit of solutions of (4) and that v = —1
is an unstable limit.

14. The Liouville Transformation. In a previous section, Lemma 5 of
Sec. 3, we have shown how the Liouville transformation may be used to
transform the equation

€9 u’ £ ¢*(Hu =0
into the form
(2) '+ (14 ¢s(®))u =0

where ¢,(f) in general is a function which approaches zero as t — «, if
p(f) = .

We now wish to point out that a repetition of this transformation will
frequently transform (2) into an equation of the same form amenable
to the results of Sec. 12, Making the change of variable

¢
®) s= [ viTeod
(set ¢1 = ¢), (2) is transformed into
d>u o'(t) du

W @ T et O
’.I‘he further change of variable
(5) U = vexp[—% ﬁ: a(s) ds]
where
't

© ) = g gy
yields the equation

2
) v"(s)+[i1—%fi%—“f’)]v=o

which is again of the same form as (2).

This method is particularly applicable if ¢(f) = 1/¢%, 1/log ¢, and gen-
erally any rational function in ¢, ¢, log ¢, and so on. Sometimes, several
successive transformations are required to meet the conditions of Sec. 12,
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Ezxercises
1. Find the asymptotic form of the solutions of 4"’ — e‘u = 0,
w —tu=0
w’ — (log log H)u = 0.
2. Formulate a general criterion in terms of ¢, ¢, and ¢’ which may
be used to determine the asymptotic behavior of the solutions of

w’ o= ¢*t)u

Exhibit some equations which escape this criterion.

16. The Equation u” — (1 + ¢(t))u = 0, / "¢ ()] dt = o, / * S2(t) dt

< . There is an extensive class of equations of the form (2) of Sec. 14
which escape the previous analysis. A simple example is

) u”—<1+81;t>u=0, %<a£1
Here

® | sin ¢ “ldsint
(2) /- m dt = *®, /- a—t—tT dt = «©

Let us now present a method based upon the connection between the
equation

@) uw” — (14 ¢()u =0

and the Riccati equation

SR

(4) v+ - (1+¢) =0 v=
Setting » = 1 + w, we obtain for w the equation
(5) w = —2w — w? + ¢(f)

We know that there is a solution which approaches zero ast— «. Let
us obtain an upper bound for this solution in terms of ¢(f). We have

6) w= [ eg(t) du — Ji et dt

where for convenience of notation we represent the lower limit as zero.
It is no loss of generality to assume that |¢(f)] < efort > 0. Using the
method of successive approximations, we set
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(7) Wo = ﬁ)t 6—2(2_"'1)¢(t1) dty

¢
Wni1 = ﬁ) e e(ty) diy — ﬁ e mwi(t) diy

Employing the bound for ¢(f), we have |wo| < ¢/2. Hence, if |w,| < ¢
we have

(8) [nie] < [)t et (ty)| dby + € [)t e 2t gy

for e € 1. The inequality thus holds for all n.
From (7) we obtain

(9 [Wapa] < ﬁ: e 2@ (t1)] by + € [)t e~20= |, | dt,

Let us show, inductively, that |w.| < 2 /; ! e $(t1)] dty, if e is suffi-

ciently small. The inequality is certainly true for n = 0.
From (9) we obtain

(10)  |wnpa] < ﬁ)‘ e~ |@(ty)| diy + 2e ﬁ: e
(-/;tl e_z(h—tz)l¢(t2)l dtZ) dtl

S Lt 6_(t——ml¢(t1)] dt1 —+ 2¢ ﬁ)t e ([)h 62t’|¢0(t2)l dtz) dtl
The second term on the right is

(i1) 2ec ﬁ) ‘[ ﬁ) " 2| (1) dt2] dty = 2ee— [) Lt — t)e| (ts)| dia
S%L%“%Mmﬂ%

Consequently,

(12)  Jwand < [ e emlg] di + 2¢ [[et]g(w)] di
<2 ﬁ)t =) o(tr)| dta

if e <14,

It is easy to show, using the methods we have developed previously,
that w, converges to w, a solution of (6), which satisfies the inequality

¢
(13) w| < 2 [ e t]8(t)] dn
Using Schwarz’s inequality, we obtain
(14) we < 2 ([ e an) ([ eegr(t) dhr)

52ﬂrwwmmm
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Returning to (6), we obtain
(15) w = /ot e—2(t——h)¢(t1) dt; + O (ﬁ: 20—ty [ﬁ:‘ e—(h—ta)¢,2(t2) dtz:l dtl)
¢ ¢
= ﬁ) 2w () dty + O ( A =t g2(1,) dtl)

Since u'/u = 1 4+ w, we see that it is the behavior of /0 ! w dt which

determines the asymptotic behavior of u. Using (15), we have

(16) ﬁ) "wdiy = ﬁ) ‘[ ﬁ) " -2ttt (1) dtg] dts

+0 ( L ! [ ﬁ) " et g2 (1) dtg] dtl)

Interchanging the order of integration in both integrals, we obtain
an /Ot wdt; = f o(te) dts — 1g / et ¢ (15) dis
+0 ([ #°(t) dta)

Since ¢(f) — 0 ast— « and “ ¢%(t) dt < », we see that
0

(18) U = exp (t + 15 /ot o(t) dt; + 1 + 0(1))

ast— x,
The asymptotic behavior of a second linearly independent solution may

be determined, as usual, by using the second solution uy, = u ﬁ © di/ue,

Alternatively, one may consider the equation derived by setting v =
-1+ w,

(19) w = 2w — w? + ¢o(f)

The corresponding integral equation for solutions tending to zero is ’
(20) w = ﬁ ® e (1) dty — ﬁ ® e20—tog2(g) df,

The final result is
Theorem 12. If
(21) (a) ¢(t) > 0asl— =
®) [," @y dt < o

there are two solutions of u”" — (1 4 ¢(f))u = 0 possessing the asymplotie
forms
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t
(22) wi = exp (t+ 15 [ 6(0) dt + o(1))
U = exp <—t — 13 ﬁ)t o(t) dt + 0(1))

ast— o,
Exercise

Use (20) to derive the asymptotic form of u,.

16. The Equation «” — (1 + ¢(f))u = 0, / “ @) dt < . The

method employed in the preceding section is applicable to any equation
of the form

(1) v — (14 ¢()u=0
where ¢ — 0 as { — © and /w |¢p|* dt < « for some n > 0. In prac-

tice, however, the algebraic complexities become overwhelming. We
shall content ourselves with stating the result for » = 3 and leaving the
proof as an exercise.

Theorem 13. If

(2) (a) o) >0 ast— »
® [Tle@dt <
there are two solutions of
3) ‘ W~ (14 ¢(H)u =0

possesstng the asymplotic expansions

(4) w1 =exp (t + 14 Lt #(t1) diy
— 15 [ 9(ta) ﬁf’ Bt)ee+% dts by + o(1))
Uy = €xp <_t - 15 /ot (1) dty

+ 14 ﬁ) " o(ts) A " $(ta)e— 1t dty dity + 0(1))

It appears to be impossible to transform the double integral into any
simpler form involving single integrals. We would expect this term to

hehave like ﬁ) ! ¢2(t1) dt1/8, by analogy with the expansion

() [ VIF @) dh = t+35 [ o) ~ 36 [ ¢ dn+ - -

In any specific case, such as ¢ = (sin £)/4/7, integration by parts is
readily applicable.
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17. Extension to Higher-order Equations. The essence of the above
method lies in the fact that the substitution

w
(1) v = —1-;

transforms the linear equation

(2) u™ + g (Hurd 4+ - - 4 g, (Du=0
into a nonlinear equation of the (n — 1)st order, of Poincaré-Liapounoff
type.

As an example of how the method might be applied further, let us
consider the equation

3) u® 4+ a;(Hu® 4+ ax()u® + as(t)u = 0
where a;(f) — a; as t— . Setting v = v'/u, the equation for v is
4) v 4 3 + v® + a: (D) (¥ + v + a(D)v + as(t) =0
Let r1 be a root of the algebraic equation
(5) 4+ ar? 4+ ar +as =0

and set v = r; + w. The equation for w is
6) w' + 3w+ row + ¥ + 3w + a1(t) (W + 72 + 2rw + w?)
+ 37'11,02 + w? + ag(t)rl + az(t)’w + a3(t) =0
The approximating linear equation is
(7 w4 3rw’ 4 3riw + a:(t)w’ + 2ria(w + ax(w + 3 + a(t)r?
+ ag(t)r1 + aa(t) =0
The asymptotic behavior of the solution is determined by the algebraic
nature of the roots of

(8) a? + (37'1 + a1)a + (37'% + 27'1(11 + ag) =0

If the roots of this equation are distinct, with nonzero real part, the
familiar method of successive approximations may be used to obtain the
solutions of (6) and to ascertain their asymptotic behavior, provided that
various integrability conditions are satisfied, for example,

©) f” la; — a@)|rdt <

for some n > 1. If there are roots with zero real part, we must have
recourse to conditions of the type of Theorem 10 of Chap. 2.

18. The Equation "’ + (1 + ¢())u = 0. Résumé of Results. We!
now consider the equation ’

|
(1) WA+ A+ eE)u=0 ¢ —>0ast— o ]
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whose theory is far more difficult because of the oscillatory behavior of
the solutions. There is no analogue here of the theorems concerning the

asymptotic behavior of w'/u. However, if [ " o) dt < o, it féllows
from Theorem 10 of Chap. 2 that there are two solutions of (1),satisfying

(2 w1 = (sin £)(1 + o(1))
ue = (cos £)(1 + o(1))

as {-— o,
If we make the further assumption that ¢(f) has an asymptotic series

3) S ~FHm+

then two solutions exist, w; and us, having, respectively, the forms, as
t— o,

n

I — i —n—1
(4) %, = sin ¢ [kzo apt=* + O(t )]
Uy = COS ¢ [kzo bt + O(t‘"“l)]
From Theorem 10 of Chap. 2, it follows that, if
(5) ‘ f’” ¢/ (t)] dt <
there are two solutions for which
(6) u=[exp (i ['VIF () dtr) | (1 + o(1)

uy = [exp (—i ﬁ)‘ VI F o) dtl)] 1+ o(1))

as t— «. Consequently, if in addition

(7) [ o@adt <
we can refine this to
(8) Uy = [exp (it + % /: o(t1) dtl)] (1 + o(1))

Uy = [exp(—it — % /: é(t1) dtl)] (1 + o(1))

If both /w |#(t)| dt and /w |¢’(¢)| dt are infinite, the problem requires

more delicacy. In the next seetion we consider problems of this type.
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19. The Equation u” + (1 4+ ¢(t))u = 0 (Continuation). In the
previous sections we have discussed the asymptotic behavior of the solu-
tions of %’ + (1 + ¢(t))u = 0 under the assumptions either that

/w lp(t)] dt < = and /w |¢’(t)| dt < = or that ¢ was a sum of func-

tions satisfying these conditions. If we consider the equation

sin ¢

1) u”—<1+ta)u=0, 0<a<l

we see that these criteria fail and that more subtle techniques must be
employed.

To extend the range of our previous methods, we proceed as follows:
As before, the differential equation v’ + (1 4+ ¢(t))u = 0 is trans-
formed into the integral equation

@ w=yv— ﬁ) " sin (¢ — t)e(t)u(ty) dhy
where v = ¢; cost + ¢ sin t. We now iterate once, obtaining
®) w=0v— ['sin(t— et o) — ["sin (t — LS(tIu(t) dt | dt
=y — ﬁ sin (t — ) o (t)v(ty) dis
+ ‘[0 ‘[sin t — t)e(t)’ ﬁ) “sin (4 — L) é(t)ults) dtg] dts
Inverting the order of integration in the second integral, we obtain
4) w=10v— /Ot sin (¢ — t1) o) v(t) dix
+ ﬁ) ‘ot | ﬁ “sin (¢t — 1) sin (4 — L)$(t) dts | u(ty) dty

We now leave as an exercise the proof of the following theorem:
Theorem 14. Sufficient conditions that all solutions of the equatiom’
w’ + (1 + ¢()u = 0 be bounded are that

) (a) f o(ty) dis, ﬁ * $(t) sin 24, dt, and ﬁ * $(t) cos 2t dts be unde!
formly bounded for ty < t < «, and ’
®) ﬁ ‘l (1) Lt sin (¢ — &) sin (&2 — &) $(ts) dis ‘ dt, < k < 1 for alt

t > to for some to.

Ezxercises

1. Prove that all solutions of v + (1 4 sin at/t>)u = 0 are boundeﬂ
ifa2andb > 4.
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2. Prove that 4" 4 (1 + sin 2¢/f)u = 0 has unbounded solutions, and
determine their asymptotic behavior.

3. Prove that all solutions of " 4+ (1 + sin #?*)u = 0 are bdunded
ifa > 1.

4. Prove the analogue of Theorem 14 for the general equation

w4+ (alt) + ¢())u =0
and for the vector-matrix equation 2/ = (4 + B(t))z-.

20. The Equations e(t)u’”’ + 4 + u =0 and v’ + a(t)u’ + v = 0.
Let us turn our attention to the two equations

1) ey’ +v +u=20
and
(2) v+ alt)u’ +u=0

where e(f) > 0ast— © and a(t) » © ast— ».

Comparing (2) with the corresponding equation where a(f) is a positive
constant, we should expect that every solution of (2) would approach
zero as {—> «, and the more rapidly the larger a(t). We might also
expect to find a solution of (1) asymptotic to et ast— o, if €(t) — 0 as
{— o,

It is rather interesting to observe that the problems are equivalent,
since the substitution u = ve~* transforms (1) into

3) v”+<;%—2)v’+v=0

Consequently, if every solution of (2) approaches zero as ¢t — « when-
ever a(t) — « as t— oo, there are no solutions of (1) asymptotic to e~;
and conversely, if there is always a solution of (1) which is asymptotic
to ¢ as t— « for every e(t) which approaches zero as t— «, then
all solutions of (2) cannot approach zero ast{— «. An interesting clash
of intuitions!

Of course, using our intuition in a different way, we might suspect
that (2), for large a(¢), would have solutions corresponding to the two
approximations

(4) W+ at)w =0

alu’ +u =0
Hence, if a(t) — < rapidly enough so that / 7 dt/a(t) < «, we should
look for a bounded solution, not approaching zero.
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The reader will find it interesting to apply the methods of the preceding
sections, in particular the Liouville transformation, to (1) and (2) to
determine conditions under which the various situations occur.

Ezxercises
1. Prove that, if a(¥) > O for all £ > 0, then any solution of
w4+ al)u =0
satisfies the inequality

2 C1 t|a,(t)|
% <mexp< o o dt)

fort > 0.
2. If fw la(®)| dt < o, all solutions of u”’ 4+ a(t)u = 0 cannot be

bounded.
3. All solutions of d(¢(t)du/di)/dt + a(t)u = 0 are bounded pro-
vided that a(f) > 0, ¢(¢) > 0, d(a(t)¢())/dt > 0, fort > f,. (Butlewski.)

4. All solutions of d(¢(t)du/dt)/dt + z @2i+1(f)u%+! = 0 are bounded,
i=0
provided that ¢(t) > 0, awui1(t) > 0, d(as1¢)/dt > 0fort > t,. (But-
lewski.)

6. The equation %"’ — ¢(f)u = 0 can have no nontrivial solution
bounded for — <t < » if ¢({f) > a >0 for —w <{ < . (Mur-
ray.)

6. If 0 <b?® <o) <a®for —w <t < » and if Y{)| < e; for
— o <t < o, there is one and only one solution of " — ¢(H)u = Y(f)
which is bounded for —» <t < «, (Murray.)

7. Consider the equation u” + (a® + ¢(t))u = 0. Let a(t) be any
monotone increasing function such that a’(t) = O(1) as t — «. Then

there exists a ¢(f) such that, for large t, /(; ‘6@t dt < a(t), and Tm (log
t— =

lul/a()) > 1/7. (Levinson.)

8. If |a(t)] < ¢ for t > t,, all solutions of »” 4 a(tyu = 0 cannot
belong to L2(0, ).

9. If |a(t)| < ¢y, with ¢ > o, then, if u belongs to L*(0, =), du/dt also
belongs to L2(0,«). The result holds if we require only a(f) < ei.
(Wintner.)

10. Consider the equation w’ = f(u,f), where f(u,t) has the same sign
as u and 1s continuous for all u for ¢ > t,, and where a solution is deter-
mined by the values of w and %' at any point in the ¢ interval (¢, ).
Then only one of the functions % or %’ can vanish for ¢ > ¢, and only
once. As{— o, two cases are possible:
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(a) 4— £ « monotonically
(6) v and ¥’ — 0, both monotonically, one increasing, the other
decreasing

(Kneser.)

11. If 0 < 1 < f(t) < cq, there is one and only one solution of v’ =
Sf(@&)u which remains finite as t — o, and this approaches zero as { — .
(Osgood.)

12. If f(w,t) is monotone increasing in w for u > 0, if f(0,) = 0, if
fu(u,t) decreases as w increases for 4 > 0, and if —f(—w,t) has the same
properties as f(u,t), then every solution of w”’ + f(u,t) = 0 is oscillatory.
(Picard.) .

13. Consider the equation w” + d(f)f(u) = 0, where d(t) is positive,
continuous, monotone increasing, and bounded for ¢ > f,, where f(u)
is odd and monotone increasing, and where |[f(u) — f(us)| < e1Jus — o
for —a < uy, ue < a, with ¢ > 0. Then the particular solution u for
which % = u; and du/di = 0 at ¢ = {;, where |u < @ and f(u) = 0,
is oscillatory, and its amplitude decreases monotonically but does not
approach zero. (Milne.)

14. If ¢'(f) > Ofort¢ > o, if ¢’(f) is nonincreasing, and if lim ¢(f) = =,

t— @

then every solution of w”’ + ¢(t)u = 0 approaches zero as t — «, but
Tm |u(t) /@] is positive. (Armellini.):
t—> o

16. Is the condition that ¢(f) be monotone increasing to « sufficient
to guarantee that all solutions of %"’ 4+ ¢(f)u = 0 approach zero as
t— «?

16. Consider the equation %’ + ¢({)u =0, where ¢(f) > 0 for
a <t<b Let u be the solution satisfying the condition u'(t,) = 0,
with ¢ < to < b and u(f) = 1. Then u may be written

w = e’ + e T
2

where T = (t — t) v/¢(s) and where s is a function of ¢ and where
to < s <t (Petrovitch.)

17. If ¢(f) < 0, the solution in the interval between consecutive zeros
1 and ¢, has the form u=cos T, T = (t — to) vV — (), t1 < s < ta.
Hence t, = to — 7/2 4V —¢(s), t2 = to + 7/24/—¢(s). (Petrovitch.)

18. If ¢(t) > 0, with ¢t > to, the general solution of u”’ — ¢(f)u = 0
has the form

U = cl[exp ‘A: Xl(tl) dtl] + cz[exp ];: )\2(t1) dtl]
where \; and —X\; are nonnegative and bounded if ¢(¢) is. (Osgood.)
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19. If ¢() > 0 and is monotone, the amplitudes of the solutions of
u’ + ¢(t)u = 0 vary monotonically, increasing when () is decreasing,
decreasing otherwise. Furthermore, if ¢(f) remains finite as { — o
the amplitudes remain above a certain bound depending upon %(0)-
(Murray.)

20. If ¢(f) is monotone and tends to a* as t — o, then if

W+ $t)u =0

we have
lim max |u| = ¢;
t— o 0Ls<t
lim max |u'| = ¢
t— w 0<s<t

and ¢; = ac;. (Ascoli.)
21. If ¢(¢) is nondecreasing, max |u|is nonincreasing and approaches

8 finite limit as { — «; max |u/| is nondecreasing but may approach
0<s<t

0 as t— ., If ¢(f) is nonincreasing, the above results hold with
and v« interchanged. (Ascoli.)

22. If ¢’(¢) > 0and is nondecreasing for ¢ > to and if ¢(t + 1/4/¢ 1))/
¢(f) = 1 as t — «, then every solution of u'’ + ¢(f)u = 0 approaches
zero as t — «. (Biernacki.)

23. Show that the substitution « = r cos 6, with 6 = ¢ di/r?, trans-
forms v’ + ¢(H)u = 0into d?r/di? — ¢*/r® + re¢(f) = 0.

24. If lim o(t + ¢/ o(t))/ o) =1, ¢(t) > © as{— =, thenif A(t)

t—> o

1s the interval between two successive zeros of "’ 4+ ¢(f)u = 0, we have

lim A@) V/é@/r = 1. (Wiman.)

25. Under the same hypotheses as in 24, any solution of u”’ — ¢(t)u = 0
satisfies the relation lim w'/u /¢(f) = +1 or —1. (Wiman.)
t— w

26. Consider the two relations
d*u du

@ G~ mO% —pOu— a0 = 0,12
d% dy

®) =z — pl) 5 — POy —9(®) >0 |

where wu(fo) = uo = v(f) and w'(fo) = up = v’(fo). If there exists g§

solution u of (a) which does not vanish for ¢ > ¢ > to, then v > u fo{

t1 >t > t. (Wilkins.)

27. Let the equation «” + pi(f)uw’ + p2(t)u = O possess the propert;
that for @ < ¢ < b there exist solutions %; and . such that u; > 0, an
w(uy,us) > 0, where
PR TA
Uy U,
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Then if a function » vanishes for three points in (a,b), there exists
an intermediate point s such that »”(s) + pi(s)v’(s) + pa2(s)v(s) = 0.
Generalize. (Polya.)
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CHAPTER 7

THE EMDEN-FOWLER EQUATION

1. Introduction. In this chapter we shall study the important non-
linear second-order equation

d du S
(1) E(t”g)itu =0

This equation has several interesting physical applications, occurring
in astrophysics in the form of the Emden equation and in atomic physics
in the form of the Fermi-Thomas equation. There seems little doubt
that nonlinear equations of this type would enter with greater frequency
into mathematical physics, were it more widely known with what ease
the properties of the physical solutions can be determined.

Mathematically, the equation possesses great interest: it is a nontrivial,
nonlinear differential equation with a large class of solutions whose
behavior can be ascertained with astonishing accuracy, despite the fact
that the solutions, in general, cannot be obtained explicitly.

In order to isolate this large class of tractable solutions, we employ the
concept of proper solution, previously encountered in Chap. 5. We recall
that a proper solution is one which is real and continuous for ¢ > t,.

Henceforth we shall confine ourselves to the consideration of proper
solutions alone. In order to remind the reader of this fact, we shall
constantly insert this assumption into our hypotheses. This assumption
is a natural one as far as physical applications are concerned.

2. Some Preliminary Reductions. We now consider some changes of
variable which reduce (1) of Sec. 1 to simpler form.

If p > 1, set

(1) s = (p — 1)1, w=(p— 1)<p~a~2>/[<p—1><n—1)1§

The equation for » is

2,
2) Z——;—; + swr =0
where
3) =210ty

143
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If p < 1, set
@  s= (=, s (1= )iy

Then we have

(5) ggt L s = 0
where
©) o= {2
If p =1, set s = log . The resultant equation is
2
@ %; + eltDoyr = 0

We begin then by studying the equation

2
(8) Z—t;—‘ + trur =0
For certain values of o and n, it is possible to reduce (8) to a nonlinear
equation with constant coefficients and thereby open the way to the
application of the Poincaré-Liapounoff theory to the study of (8).
Let us try a solution of the form u = ¢t*, ¢ and w being constants.
Substituting, we see that there is a solution of this form if

_ ~(¢+2

9) W=— T
e+ +n+n]e?
°‘[+ (n — 1) ]

These equations are meaningless for n = 1, in which case the equation
is linear and amenable to the method of Chap. 6. We assume hence-
forth that our equation is actually nonlinear, that is, n > 1.

Referring to the value for ¢ given in (9), we see that in general real
solutions of this form will exist for the equation u” — t*u» = 0 only if
(¢ +2)(c +n+ 1) > 0. Whenever these particular solutions exist, we
shall see that they are not isolated curiosities but furnish valuable clues
to the structure of the set of proper solutions.

Since we are considering only real continuous solutions, the arithmetie
nature of n will have considerable influence upon the possible types of
proper solutions. It is clear that, in general, because of the presence of
the term ™, proper solutions must be positive. For certain values of n,
however, » may take negative values, namely, if n = p/q where ¢ is
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odd. We see then that for the equations where negative values of u are
permissible, either »” is always positive, or (—u)* = —wu*. These simple
observations will explain our apparent prejudice in favor of positive
proper solutions,

We will say that n is “odd” if n = p/q, with p and q both odd, and that n
is “even” if q 1s even.

It will be necessary to divide the treatment of (8) into subeases, depend-
ing upon the sign, and the values of ¢ and n. As we proceed in this
chapter, we shall introduce one device after another up to a certain point,
after which these same devices will be used in unison. It is hoped then
that, after a certain amount of working and reworking of these sections,
the reader will be able to use this same limited number of techniques to
handle any equation of similar type that may occur in theory or practice.

3. W —twur=0, ¢ +n+ 1 <0, Positive Proper Solutions. Our
first result is

Theorem 1. Ifo + n + 1 < 0, all positive proper solutions of

(1) w —tur =0
have one or the other of the following asymplotic expressions:
(2) W~ [(0 + 2(1 -i)? + 1)]l/fn_l)t—[(u+2>/(n—1>1
or )
W aleto'+n+2
@ w~att a4l e T e F R F D)
or
ajtet?
@ R )

where a; and az are arbitrary constants.

Proof. First of all, it is clear that w must be eventually monotone.
For if &' = 0 at fo, u can only have a minimum at ¢, since v’ = frur > 0.
Hence u is eventually monotone increasing or monotone decreasing.
Furthermore %’ is monotone increasing, since w'’ > 0,

Thus there are three cases possible as { — o

5) (@) w—>0
@) w—a#0
© w— »

Case (a). If v’ — 0, with %’ increasing, then %' < 0, and « is decreas-
ing. Hence u has a finite limit as { — o, since ¥ > 0. Moreover this
limit is not zero. Forif u'(©) = u(w) = 0, we obtain from equation (1)
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(6) w(l) = —/;“’u"dt= —ﬁ“’tvundt
- u(t)=—/;wu’dt=(/;w/:t‘{u”dt1)dt

Let u(fy) = 6 be small. Then since « is monotone decreasing,

7 b= ult) = L” (ﬁ“’ tour dtl) dt < o j;o” (ﬁ” 12 dt,) dt

Since n > 1 and since o + n + 1 < 0, this last integral converges, and
we have a contradiction for § sufficiently small.

Let then u(w) = a2 # 0, u(¥) = a2 + o(1) as { - . From (6) we
obtain

®) W) = —an j;” tv dt + o(1) j:” o dt
" ta’+l .
=a20_+ 1-’-0(1)t+1
and thus

© w = os = 20 [Tenan + oy

aleto'+2
= a; + [CESCE), (1 4+ o(1))

Exercise

1. Using the method of successive approximations, show that a solu-
tion of this type exists for ¢ > ¢, provided that a. is suitably chosen.

Case (b). If W' — a0, then u~ay as t — ». Using (6), one
then obtains (3).
Ezxercise

2. Under what conditions does a solution of this type exist?

Case (c). Referring to (9) of Sec. 2, we see that, if s +n + 1 <0,
with » > 1, then ¢ is a real constant for all n, so that a particular solution
of (1) is u = ct», where ¢ and w have the values of (9) of Sec. 2. What
we wish to show is that this solution is representative of the solutions for
which 4’ — «. To do this, we make the substitution

(10) . u = ct*v
The equation for v is

(11) v + 2wt’ + ww — 1) — ) =0
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Now perform the further change of variable, { = ¢*. The resulting
equation ig

2
(12) %+(2w—1)g—§+w(w—l)(v—v")=0

This equation will play an even more important role below.

Since v > 0 and ¢ > 0, it follows that ¥ > 0. Let us now show that
all positive proper solutions of (11) lie in the strip 0 < v < 1. Assoon
as v crosses ¥ = 1 (it cannot be tangent to v = 1 without beingidentically
equal to 1), it must continue increasing monotonically. For if »' = 0,
we have v’ = —w(w — 1)(v — »*) > 0, and thus only minkna can occur.
Furthermore any such » cannot approach a finite limit, since we shall
show below that if, as s— «, v — a, then a — a* = 0, which con-
tradicts ¥ > 1 and monotone increasing.

This we prove as follows: Suppose v — q, with @ — a» ¢ 0. Then
from (12), we have, as s > o,

d% dv

1 bt — 1=

(13) d32+ 2w — 1) ds—>cl;é0

Integrating, we obtain, as s — =,

dv

(14) 2 + Cw — l)v’f/‘\' c18
Since v — @, this implies dv/ds ~ cis, whence v ~ ¢18%/2, which con-
tradicts the boundedness of v.

Let us show that v — « is impossible for a proper solution. Making
the substitution dv/ds = p, (12) becomes

(15) p% 4 ap +bo ~ o) =0

where ¢ = 2w — 1, and b = w(w — 1).
Using Theorem 3 of Chap. 5, we see that, as v — «, either

(186) p ~ pEeP™
where P is a polynomial in v, or
(17) » ~ v'(log v)™

IfP(v) > — = agv — o, thenp — O0and dp/dv — 0. Turning to (15),
we see that this results in a contradiction. Hence P(¥) —» « asv— oo,
This, however, implies p > v? as v — o, which is not possible if v is a
proper solution, using Lemma 1 of Chap. 5. If P(v) is identically con-
stant, then it follows from (15) that £ = (n + 1)/2 > 1, and again we
have a contradiction. Similarly with (17).
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Hence we are left with solutions lying wholly within the strip0 < v < 1.
These solutions again must be eventually monotone, since any extremum
must be a ma¥imum.

Consequently, as s — o, v —>0orv— 1.

The case v — 1 furnishes us with the remaining type of solution of
(1), that given by (2), while the solutions corresponding to v — 0 yield
the types already found. Incidentally this is another way of showing
that u — 0 is impossible, since the rate of decrease of the solutions of the
nonlinear equation (11) cannot be too rapid.

Finally let us note that we have made no use of the parity of n.

Ezxercise

3. Under what conditions do there exist solutions of (12) of the
specified type?

4. v —tur =0, +2 <0 <¢+n-+ 1. In this case we show
Theorem 2. Ife +2 <0 < ¢ + n + 1, every positive proper solution
of
(D u —tur =0
has the asymptotic form
anta+2

) u=a+m(1+0(1))

Proof. We have again the same three cases:
3 (a) w—0
®) v —>a0
(&) Ww— =
asi{— o,
Let us first show that case (3b) is impossible. If 4’ — g, then u ~ af,
and from (1)
) u’ > apotn
for a> a1 > 0 and ¢ > 1, whence integration yields
aittv+n+l
co+n-+1
which is a contradiction. Similarly we show that case (3¢c) cannot oceur,
For 4’ — co implies %' > a for large ¢ for some a, and hence u > ai.

Reverting to (1), v’ > artet*, v > (a2/o + n + L)tetntt — ¢y > b, for
some b > 0, and thus ¥ > #+! for some b > 0 as { — «. Continuing in

(5) w >

— C1— ®©
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this way, we obtain w > t¥ for every N ast— «. Hence from (1), for
large ¢,

(6) wo> ttur > ulte e>0

as t— . If % is negative, u is decreasing and approaches a finite
limit; this is what we wish to show. Hence let us assume «’ is positive.
If v is positive, we have from (6)

(7) ‘ wu' > wlteu’

which upon integration yields w'? > cou?tc as t— o, or u' > czultv?,
But this we know is not possible if % is a proper solution.

Consequently we are left with case (3a), where ' — 0. In this case,
' must be negative for large ¢, since positive u implies, by virtue of the
differential equation, that v’ > 0, and hence that u’ is increasing. Once
it has been established that w’ < 0, it follows that u approaches a limit
as{— . The proof given in Sec. 3, (6) and thereafter, shows that this
limit is not zero.

Once this point has been settled, we may use the same iteration pro-
cedure as before to obtain the asymptotic expression of the solutions.

Ezxercise

Under what conditions does a solution of the stated type exist?

.o +2<0,c+n+1=0, 4’ —tw" =0 Once more we have
the same three cases as t — «:

1) @ «—0
) W —>a=0
(&) w —

That case (1b) is impossible, follows as above, with (5) of the previous
section replaced by

(2) w>atloglt —cy— o

To rule out 4’ — « [Case (lc)], consider the equation obtained by
setting u = vi,

3) " + 2 — or =0

and then { = ¢,

4) dfs,'*"as_v":()'
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Since v > 0, all solutions are eventually monotone. Using Hardy’s
theorem as before, we rule out v — . Hence v has a finite limit, which
can be only zero, as we see from equation (4). If v — O, it has the asymp-
totic expression v ~ ¢ie™%, with ¢; % 0; hence u = vi~c¢; as { —» .
That this constant c, is not zero may be deduced from (4), as we have
just done, or may be shown by virtue of the fact that ¢ + 2 < 0, as we
have done in the preceding sections.

It is important to keep in mind that there are these alternative ap-
proaches to the problem of determining the behavior of the solutions,
since in more complicated cases one of the approaches may fail.

Thus we have

Theorem 3. Ife +2 <0 =0 + n + 1, every positive proper solution
of
%) u’ — tur =0
has the asymptotic form

antu+2

© L ) (PR )

(1+ o(1))

asl— .
6. ¢ +2=0,u" —tur =0. Weshall prove
Theorem 4. Every positive proper solution of

(1) 1 — ur =

has the asymptotic form

@) e ( log ¢ )VWD

ast— «©,
Proof. Set? = ¢, obtaining

3) W —uw —ur=0

Since u > 0, every solution is eventually monotone; hence 4 approaches
zero, infinity, or a finite limit. The only finite limit it can approach is
zero. Using Hardy’s theorem as above, we rule out «— « and hence
are left with 4 — 0. To determine the form, set ¥’ = p, obtaining

d
& Pgy—P—u =0

and then 4 = 1/v. Discussion of the various possibilities results in (2).
We leave the details as an exercise,
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Ezxercise

Under what conditions does a solution of the stated type exist?

T.04+2>0, u — tur =0

Theorem &. If o + 2 > 0, every positive proper solution of
(1) w' — tur =0
has the asymptotic form
(2) u- ~ ci—(e+D)/ (=D

Proof. All solutions are monotone as before. Set w = ct*v, where ¢
and w have the values given in (9) of Sec. 2. The equation for v is

(3) v 4+ Cw — 1) + ww — 1) —v*) =0
For ¢ and # in the range considered, we have
(4) 2w —1) <0 <w(w~—1)

Let us now consider the possible alternatives for v; we already have
v > 0. If v crosses v = 1, it must continue monotonically increasing,
since any turning point must be a minimum. That v approach a finite
limit greater than 1 is impossible, since any finite limit must be a root of
v — v =0, Hence v— . We now investigate this possibility using
Hardy’s theorem. Setting p = v’, we obtain

(5) P2 —ap 4+ b — 1) = 0
As v — o, we must have either

(6) p ~ eFliye

where P is a polynomial or

() p ~ v¥(log v)*

Evaluation of the constants shows that both cases lead to p > vlte
with € > 0, as v — «. Since p = dv/dt, this is impossible if we are
considering proper solutions.

Henceif v > 1, v— 1 as{— o, which yields (2).

Now let us consider the solutions in the region 0 < v < 1. From the
ultimate monotonicity of the solutions, v -0orv— 1last{— . Wecan
easily rule out the possibility that v — 0. The characteristic roots of the
linear part of (3) are given by A = —w, —(w — 1). Since both are
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positive, it follows that v = 0 is a thoroughly instable solution and thus
that no other solution of (3) can tend to this as ¢ — «. Hence again
the only alternative is v — 1, which yields (2).

This concludes the discussion of the positive proper solutions of the
equation 4’ — t"u* = 0. Since all proper solutions are monotone, these
solutions are ultimately positive or negative. If w is negative, the ques-
tion arises as to the meaning of w*. Either n has a value which rules
out negative values, or (—u)" = +wu*, in which case we can reduce the
discussion to the previous case or to the case still to be discussed where
w' + trur = 0,

Exercise

Under what conditions does a solution of the stated type exist?

8w +tur =0,04+n+1<0,n4“0dd”
Theorem 6. The proper solutions of

(1) w4+ tuwr =0
possess one of the asymptotic forms
_ _ 66t0+2
u ~ cgl

ast— o, ifc+n+1<0.
Proof. At this point we introduce a new artifice. We have

3) wu'’ + turw’ =0
whence
72 ¢
(4) u + / tu’ dt = ¢
- 2 1

Integrating by parts,

w'?t | truntl

5_1 ynt1
(5) ——2—+m—0’/;t n+1dt=01

Since ¢ < 0 and since n + 1 is even, whence w"*+! > 0, this yields

6) (o) u” < e
(b) truntt < ¢

Hence

@) ful = 0(-=7tr+)
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Returning to our original equation, we obtain
®) A+ [frundt = e
The integral is

@) 0 ( / ! fog—nasimt1y dt) =0 ( f  gortnsny dt)

Sinceo/(n + 1) < —1, the integral converges. Thus 4’ — ¢;5 ast — o«
If s 540, u~cst. If ¢ =0, which is to say, if W' — 0 as { — =, we
have, in place of (8),

(10) u = ﬁ” trun di
Since u = O(t~/™+V), we have

(11) w =0 (ﬁ ® tognortntD) dt) =0 (ﬁ ® gosatD dt)
= O (flotntD/a+1)

Ife4+n+1< —(n+1), wecan conclude that u — csast— ». If
not, then u = O(#'—¢) for some ¢ > 0, whence, repeating the argument,

0 ( ﬁ * foyn dt) =0 ( ﬁ * fotn—ne dt)

= 0 (tu+n+ 1—ne)

and so on, until the exponent is smaller than —1. Thusu — cgasf— .
Both ¢; and ¢ cannot be zero, as follows from the argument of case (5a)
of Sec. 3. The more precise result of (2) may now be obtained by
iteration.

12) W

Ezercise

Under what conditions do solutions of the stated type exist?

9. v +tur =0,0+22>0,n%“0dd.” We now prove the following
important result:. \
Theorem 7. If o + 2 > 0, there are no monotone solutions of

1 '+ tur =0

Proof. Let us consider the case ¢ 4+ 2 = 0 first. Assume that there
is a monotone inecreasing solution u, where u — ! > 0, with [ finite or
not, as ¢ — «. Setting ¢ = ¢, we obtain
@) v/ —v +or =0

We see that the only finite limit v can have is v = 0. To show that
v —  is impossible, we use Hardy’s theorem as before.
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There remains the case v — 0. Setting p = v’, we have

d
@) df p+ovn=0

We then let » = 1/u and use Hardy’s theorem to obtain the possible
forms of the solution as ¥ — «. In this way we see that no monotone
solution exists.

Subsequently we will examine the oscillatory behavior.,

Now consider the case ¢ + 2 > 0. Take first the case where u is
monotone increasing. The limit must be infinite or zero, as we see by
considering the equation for v = u(et),

4) VI — v ety = 0
Let us consider the case 4 — « first. For ¢ > ¢, we have from (1)
(5) u' < =t

or, integrating,

(6) W< ———(<er—logtife +1=0)

ot
o+ 1
If ¢ + 1 > O, this contradicts ' > 0for¢ > 0. If ¢ + 1 <0, integrate
(5) between ¢ and «, obtaining

7) Wi > — L2
s+ 1
Integrating between ¢, and £, we have
_ttr+2
(8) u(t)zm—{—cht‘, e>0
Returning to the original equation, we have
(9) u’/ < —fotne

and we repeat this process until 1 4 o + ne > 0, which will imply
w < 0 for ¢ large, and thus a contradiction. The same argument shows
that u — ¢; > 0 is impossible, as we already know.

Now consider u monotone decreasing, with ¥ > 0. Then u — 0 as
t{— ». Integrating the equation of (1) between ¢ and «, we have

r® ”Un —
(10) w | +ﬁ toun dt = 0

W o= ﬁ”tmndt>0

which is a contradiction. Since n is odd, the case where u > 0 is equiv-
alent to that where u < 0.
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10, /' +tur =0, o +2<0<o0+n+1 204+n+3 <0. The
arguments used in this and the following section will be more complex
and detailed than those given previously. This seems unavoidable,
since the set of solutions is actually more varied.

Our first result is

Theorem 8. [fe +2<0 <o+ n+ 1andif 20 +n + 3 <0, with
n “odd,” all proper solutions of

1) w’ + tur =0
have the asymplotic forms P I‘
(2) U~ ct¥
sl lor41 sokpl &
or Fi6. 1.
'(3) w = — cite (1 + o(1))

(¢ +1)(e+2)
Proof. Let us make the change of variable
(4) u = ci*v

where ¢ and w are determined by the condition that c¢t* be a solution
of (1). The equation for v(ef) is then

(5) v + Qw - 1) +ww — D —v) =0

where 2 — 1 > 0 and w(w — 1) < 0. Consequently we write this
in the form

(6) v + av’ — by — v*) = 0, a>0,b6>0

It is here that the condition 2¢ + n + 3 < 0 is used in an essential
manner.
Multiplying by »’ and integrating, we obtain

G e [ a2 —2) 2
g T ntl1 2)°@

Hence |v| is bounded as {— «. From this it follows that
®) vi<w,  [Tvrd<e

From (6) we may then also conclude that |v"/| is bounded as t — =,

Now let us show that the above conclusions imply that »*— 0 as
t— o, Let us prove this by contradiction. Let [fa,22+1] (see Fig. 1)
be the nth interval, in which v’ > a. Since
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9 a? 2 (Bontr — ta) < /(;w v'2idi < o

n=1
it follows that fmy1 — f2z— 0. Similarly, consider intervals {s.,ssetal,

in which v > /2. As above, sui; — s — 0 as k — o,
In the interval [sy,tx] the slope of the chord joining PQ is

(10) ‘m = 9;1/2 = v"'(9), Sar X0 < ton
low — Sak
It follows then that
(11) Tim v/(f) = =
> o

which contradicts the boundedness of [¢"|. Thus v’ — 0 asi— .

Returning to (7), and using ﬁ) "vrdt < w , we obtain

A pntl 2
12 i (51 -5) =

Hence v-—r as t— «, where r*+!/(n 4 1) — r2/2 —¢; = 0. But r
must be a root of » — r = 0, from (6), and consequently r = 0 or 1.

If r = 1, we have the desued solution of (2).

Let us then consider the case r = 0, wherev —» 0 and v’ > Q as { — o,
The linear part of (6), v/ + av’ — bv = 0, has the associated char-
acteristic roots —w, —w -+ 1, the first of which is negative, the second
positive. Thus if v — 0 and if v/ — 0, v ~ cse™* as { — «. This leads
to the solution of (3).

Ezxercise

Under what conditions do solutions of the above type exist?

11 v’ +tur=0,2c+n+3>0¢+2<0 <¢r+n+1 Repeat-
ing the preliminary reductions of the previous section, we have the.

equation ;
(1) v’ — b (v —v) =0, b>0,c>0 41
where b = 2w — land ¢ = —~w(w - 1).

We begin by proving some initial results concerning the behavior of th
solutions.

Lemma 1. There are no proper solutions other than v() = 1 such ¢
either v(t) > 1 when t 2> ty or v(t) < —1 when t > t,. Furthermore ¢
are no solutions such that v(t) approaches 1 from below or —1 from above.
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Proof. Using the above methods, we easily dispose of the possibilities
that v— o or v— ¢ % 1. Consequently we are left with the case
v — 1 from above as { — =, if we are considering the casev > 1. Setting
v = 1 + u, the resulting equation for u is

(2) w — b +ef(n — Du+0wd)] =0

The characteristic roots of the linear equation either are both positive
or possess positive real parts. Therefore w = 0, that is, v = 1, is an
unstable solution. This also disposes of the possibility that v — 1
from below as't — «©. The argument for »({) < —1 or v —» —1 from
above is similar.

Lemma 2, If —1<v <1, withv &£ +1, then .
_ (¢ +2)
~ wi — e P T/
(3) v~ ce w =1
asi— .

Proof. No oscillatory solutions are possible, as we see by looking
at the sign of v — v». Since v cannot approach [ £ 0 or'1, and cannot
tend to 1, it must necessarily approach zero as t— . We can then
determine the behavior using the theory of Poincaré-Liapounoff or
Hardy’s theorem, setting v = 1/u.

Finally

Lemma 3. If v(t) is not of the above type, or +1, then as t — », v(¢)
cuts +1 infinitely often, and Tim |v]
= o, - — * vel

Proof. Let us assume, without t ; z =0
loss of generality, that v intersects | * ++ o+
v = linfinitely often. Let {¢,} bethe
sequence of intersections (see Fig. 2).

Multiplying the equation of (1) by v’ and integrating, we obtain

v= -1

Fic. 2.

12

v (7751 Lagl
(4) : 1 — b/ vidt =0
] te Is
Hence -
(5) Y W) = 02t = b [ vt

8=

Let us show that [) " y?dt = w, which will show that v/(t,) — .

Assume for the moment that the integral is finite. Then we have from
(1), upon multiplication by ¢’ and integration,
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(6) vi—b [ vt o 2 —’f)=c
0 nt+1 2 !

This together with j; "v'2df < o would imply that [»] and [v| are

bounded. From the differential equation we have that |v"’| is bounded.
But we showed in Sec. 10, relations (9) and the following, that these
facts imply that v — 0 as {— «. This, however, contradicts (4),
which shows that o'(t,+1)? > v'(;)% Hence we have demonstrated that
[v'(}:)] — o as s— =,
Now let us show that the curve can cross ¥ = 1, without also crossing
v = 0, only a finite number of times. Consider Fig. 3. AtP,v/'({,) is very
large and negative; for ¢, large.

P Q vel Since v"/(f,) = b’'(t;), we see that

P ~——"t v’ is decreasing at P, whence it

A e v=0 is impossible, referring to (1),
v=-1 that o' = 0 between ¢, and ¢,,, for

Fic. 3. 0 <v < 1. Similarly it follows

that the curve v = v(f) must cross

v = —1 and can return and cross v = —1 again only if |v] becomes suffi-

ciently large to counteract the v’ term.
This argument then shows that Tm |s] = 4 and completes the
> o

proof of the lemma.

Now that we have obtained this preliminary information, let us
attempt to determine the shape of the curve more precisely.

Let us first review what we already have derived. The shape of the
curve is as shown in Fig. 4. Furthermore we know that |v'(¢,)| — « as
s — «, and the argument immediately preceding shows that |v(r.)| —
as s — ©. We want now to establish the crucial

2K
: ! :
/ts Ts T Tet1 \ts-}-l v=0

7, ——v=-1
Fic. 4.

Lemma 4. {1 —f—>0ass— =,

Proof. The proof is broken into two parts. We first show that
T, — t,— 0 and then that 7, — 7, —0 as s— ., That T, — {, - 0
is an immediate consequence of the fact that [v/(f,)| — » and of the
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monotone increasing character of »” in the intervals [¢,,T.] for large .
This last follows from (1), noting that 0 <» < Nn (s, T.).

Let us now turn to the proof that 7, — T, — 0. Equation (1) may
be written

) v (e—l"v’)2 = 2ce M (y" — p)o/
If t < 7,, then e=2n < ¢~ Integrating (10) over (¢,r,), we obtain
(8) 206—25’«( wtt v vh + UZ) < e wiy'?

n+1 2 nH1
n+1 2
< 9pg—2wt | Ys _ 5
< e (n +

This yields

nt 2 n+1 2\~
bl—r) < b Vs Y v
9) Ve U(n—{—l R < V2
Integrate between 7', and r,, obtaining '

,\/20 N / ( it 02 pntl 92 —¥
(10) (I = 7t < n+1_'2'_n+1+§ dv

The lower limit may be taken to be 0, which, combined with the sub-
stitution v = v,u, yields the result

\/20 /1(1 — oyt 1 — 2\ %
1 1 — b7 < —[(n—1) /2] .
(1) (1 — er) < o (e )

Since v, — © as §— «, wesee thatr, — T, > 0ass— «,

Returning to the u,¢ plane, and re-
calling that the ¢ coordinate in the u,t
plane is related to'the ¢’ coordinate in
the v,t’ plane by the relation ¢ = &,
we see that if Fig. 5 is the graph of
the u curve in the wu,t plane, then
ter1/ts— 1 as s — o,

Before continuing with the derivation of the asymptotic behavior
of the solution, we shall turn to the other ¢ ranges where oscillatory
solutions exist, and show that, in these cases, we also have t,,1/t: — 1
in the appropriate plane. Once this result has been obtained, a single
argument yields the asymptotic behavior in all cases.
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12, v 4 tu» = 0,0 4+ 2 > 0. We wish to show that in this case too,
referring to Fig. 5, we have

Lemma 8. ¢4/t — 1 ass— o,

It is clearly sufficient to prove that 7,/t, — 1, where 7, is again the
point at which % attains its maximum, since a similar argument shows
that f,y1/7. — 1, and then Lemma 5 follows. We begin by showing
that, if ¢ > 0, then

G Uttt > e >0
From the differential equation we derive
s dulZ Ts 2Tvun—{-1
/2 = — — aasnay’ a s
2) w'2(t,) / 7 dt Z/Q.tuudtgn_'_l
Similarly, in the interval [7:—1,t5], we have
, 2
&) wWHE) 2 2

and thus, comblmng (2) “and (3), we obtain (1). Starting with
w'u’ + tur’ =0
we now integrate between t and 7, and use t, < t < 7y,

2t 27
nt+1l . gn+l ’2 _“%
@ ot — e S e < 2

From this we obtain, integrating between ¢, and z,, ;
2 T§W2)+1 _ tg.r/2)+1 Ua du
& N1 T S ﬁ VT —wh
5 i

2 !
o/2 —_ (
< \/ n 1 & (Ta t-) ;

(tt — wtt)

or
(6) 9T 1 - (ts /Ts)("/ZH'l ;
S R 7)o W MV e ;
.
Since .
+2(n+1) n=1 {
(7) 1",’+2u;‘—1 = [7-8 n—1 us"“]"‘*‘l '3‘

¥

7s— ® as s— « and (¢ + 2)(n + 1)/(n — 1) > o, the right-hand side |

of (6) > 0 as s— o, and therefore ¢,/r,— 1 as s > «. '

Let us now conmder the case ¢ < 0,5 + 2 > 0. The same reasonmg
as used above yields the result

(8) Auptt 2wt > e >0
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and its corollary that u, — « as s «. Since (¢/2) + 1 >0; we con-
clude easily from the above results (4), (5), and (6), appropriately
modified to take account of ¢ < 0, that again ¢, /7, — 1.

13. Asymptotic Behavior of the Oscillatory Solutions of u”’ + t-u~ = 0.
We shall now show how the preliminary result ¢,/r, — 1 may be used to
find the asymptotic form of u, and #,,; — f,. The argument is the same
for all cases, and we shall present it in detail for ¢ > 0.

From (5) of Sec. 12 we see, using ¢,/r; — 1, that

1
: [} /=
n 1 (re — ) ~ NS

In place of this estimate for the length of the total interval =, — t,, which
we shall use below, we want first an estimate of { — ¢,, where ¢, < t < 7,.
Since we have from (4) of Sec. 12

ey

’
u'/ 2 A~ u

n + i’ \/u;’“ — i
integration between ¢, and t = ¢, + h yields

f 2 u du
/2~ _
® h nFi’* /; VUt = gt

Returning to the equation, —d(w'?)/dt = 2t*u*w’, set ¢ = t, + h and
expand ¢ about £, obtaining

(2)

@ — & @y = 20ty + hotr1 1+ Oun
wheree = ¢(f) > 0ast— ». Now integrate between ¢, and r,, obtaining

5) W(t)? = z“:l‘_ T+ 20671+ 6 / hum’ di

Employing the estimate for k from (3), this becomes

e L 2Burtt | 2etei(Lte) [ f (v dv i
(6) w (tl) n + 1 + '\/§7—(—7L——|—1)T:’/2 N uu . —'—“-—‘m

_2teuptt | 20tM(1 4 ) uies

TatT T /D nt

where

o 1 TEHTI/(n + 1)
) Kx—ﬁmd”‘nﬂr[%zﬂl/nﬂﬂ
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The evaluation of the integral in (6) is performed by first changing the
independent variable from ¢ to w and then letting u = u,.
We now have the equality
20ur+1 14 o(l + €K,
n+1 V2/n F 1 i 2ue—vr

Similarly, from the other half of the wave, we obtain
©) Wity = —2 g [1 = oL+ K,
nt1 2/ + 1 a9 3urgv?

Returning to equation (1) and the estimate for 7, — ¢, we may simplify
(8) and (9) as follows:

®) w(t)® =

(10) W) = ot [1 + (17“}{)& (r, — m]
2t 1 K
= n -{: i u;‘i'll l:]. bt (—“_t‘t-Ke‘Z_‘_l‘ (ts - Ts—l):l
where
w1 TEHT/( + 1)
an - K= [, JT—oh T nF1T04 T (/0 F D]

Since (v, — &) /7, is small, as is also ({, — 7.—1)/ts, we write these rela~
tions in (10) in the form

2toqyntl . — 1 e Ki(1+e)/Kg
2 7 2 — 8 g 3 3
(1 ) u (ta) n + 1 (1 + ts )
_ 2t';u;'+1 - o K1(1+e€)/ K2
T n41\4L
Similarly,
2t,,-un+1 _ cK1(1+€)/K3
’ 2 g He—1 8~—1
(13) u'(ts) P [ i ] :
Hence :
nt1 cRi(1+e)/Ka
U T i
14 1= 2 = ) ,
(14) (us—1> (TH) , {
Multiplying over s, we obtain XJ
(15) Uy = T;-vxl(1+e)/x,H (%__1) i _ rs_vK1/[Kz(n+l)I+€2

where e, — 0 as¢{ — . Replacing K; and K, by their numerical valu

(16) Uy = TE—V/M—S)+¢
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From this, we obtain, returning to (1),
(17) ta+1 — ts — t§—2”/”+3)+‘
A further use of the above methods yields the precise results,

(18) Us ~ Cxrye/ o+

g o 1 } 2 rgr (1/n + 1) F—20/(nk3)
a4l Coe2 N +1T[(38) + (1/n + 1] °

where ¢; is a constant.

The same results hold over the other o ranges, and we leave their
derivations as exercises.

14. The Equations u’’ + eMu® = 0. Since the methods we have
applied in the previous sections are equally applicable to the equations
u”’ + eMur = 0, we shall state the results and leave the proofs as exercises.

Consider first the equation ¥’ -+ eMu* = 0, and define

1) w= — ¢ = w¥D

Ezxercises

1, If X > 0 and » = p/q, where p and ¢ are both odd, then all proper
solutions are oscillatory.

2. If A > 0 and n = p/q, where p is even and ¢ is odd, then the proper
solutions form a one-dimensional manifold, all asymptotic to —ce*t,

3. If n is irrational, or rational with even denominator, there are no
proper solutions.

4. If A < 0 and n = p/q, a rational number not of the form even/odd,
the proper solutions form a two-dimensional manifold with the parameters
a; = lim ¥/, ap = Um (u — ail).

t— t— o0

6. Show that, under the conditions of Exercise 4,
w=at+ a + (ﬁ "t — $)r(as)" ds) (1 + o(1))

6. What restrictions must be imposed upon a, and a, if we wish solu-
tions which exist for 0 < ¢ < »?

7. If A < 0 and n = p/q, where p is even and ¢ is odd, show that, in
addition to the above solutions, there is a one-dimensional manifold of
proper solutions asymptotic to —ce*t.

In the following two exercises we consider the equation '/ — eMuy* = 0.

8. Show that, if A > 0, the proper solutions form a one-dimensional
manifold, asymptotic to ce*t.
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9. Show that, if A < 0, in addition to the above one-dimensional mani-
fold, there exists a two-dimensional manifold of solutions with parameters
ao and @, as above. If a; # 0, we have

% = aif + ay + (/: i t — s)e**(a.s)” ds) (1 4+ o(1))

What conditions must be imposed upon @, and a; if we want solutions to'
exist for all ¢ > 0?
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