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Chapter XII

Use of Implicit Function and
Fixed Point Theorems

Many different problems in the theory of differential equations are solved
by the use of implicit function theory—either of the classical type or of a
more general type involving fixed point theorems andfor functional
analysis. This will be illustrated in this chapter. Part I deals with the
existence of periodic solutions of linear and nonlinear differential equations.
Part II deals with solutions of certain second order boundary value prob-
lems. In Part I1I, a general abstract theory is formulated. Use of this
general theory is illustrated by an application to a problem of asymptotic
integration.

Although Parts I and II are applications of the general theory of Part II1,
there are several reasons for giving them separate treatments. The first
reason is the importance and comparative simplicity of the situations
involved. The second reason is that Parts I and II serve as motivation for
the somewhat abstract theory of Part III. The third and most important
reason is the fact that, as usual, a general theory in the theory of differential
equations only provides a guide for the procedure to be followed. Its use
in a particular situation generally involves important problems of ob-
taining appropriate estimates in order to establish the applicability of the
general theory.

Two general theorems will be used. The first is a very simple fact:

Theorem 0.1. Let D be a Banach space of elements z, y, . . . with norms
Iz, lyl, . ... Let T, be a map of the ball |z| < p in D into D satisfying
| Tolz] — Tolyll = 6 |z — y| for some 6, 0 < 6 < 1. Let m = |T,[0]| and
m < p(1 — 0). Then there exists a unique fixed point zy of Ty, ie., a
unique point z, satisfying Tolz,] = z,. In fact, z, can be obtained as the
limit of successive approximationsz, = Ty[0}, z3 = Ty[z,], 23 = Tolxs), . . . .

Remark. 1f T, maps the ball || < p into itself, then the condition
m =< p(1 — 6) can be omitted.

Exercise 0.1. Verify this theorem and the Remark.

404
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A much more sophisticated fixed point theorem is the following:

Theorem 0.2 (Tychonov). Let D be a linear, locally convex, topological
space. Let S be a compact, convex subset of D and T, a continuous map of
S into itself. Then T, has a fixed point z, € S, i.e., Ty[z,] = z,.

The following corollary of this will be used subsequently.

Corollary 0.1. Let D be a linear, locally convex, topological, complete
Hausdorff space (e.g., let D be a Banach or a Fréchet space). Let S be a
closed, convex subset of © and T, a continuous map of S into itself such
that the image T,S of S has a compact closure. Then T, has a fixed point
z, € S.

Theorem 0.2 was first proved by Schauder under the assumption that
DisaBanachspace and this case of the theorem is usually called “Schauder’s
fixed point theorem.” For a proof of Theorem 0.2, see Tychonov [1].

Parts I and II will use the cases of Corollary 0.1 when D is the Banach
space C° -C'. Part I1I will use the case when D is a simple Fréchet space,
namely, the space of continuous functions on J :0 <t < w (= o0) with
the topology of uniform convergence on closed intervals in J.

Corollary 0.1 is obtained from Theorem 0.2 in the following way: Let
D, S, T, be as in Corollary 0.1. Let S, be the closure of TS, so that S, is
compact. Also S; < § since S is closed. Under the assumptions on D,
the convex closure of S, (i.e., the smallest closed convex set containing
S,) is compact since S, is. (This is an immediate consequence of Arzela’s
theorem in the applications below; cf., e.g., the Remark following the
proof of Theorem 2.2.) Let S° denote this convex closure of S,. Since S
is convex $° < S. Thus T, is a continuous map of the convex compact
S? into itself (in fact, ToS° © T,S < S, < $°) and the corollary follows
from Theorem 0.2.

Part 11T will depend on the “open mapping theorem” in functional
analysis. This theorem will be used in the following form:

Theorem 0.3 (Open Mapping Theorem). Let X,, X, be Banach spaces
and T, a linear operator from X, onto X; with a domain D(T,), which is
necessarily a linear manifold in X,, and range %(T,) = X,;. Let T, be a
closed operator, i.e., let the graph of Ty, 9(T,) = {(z,, Tyz,) : x, € D(T,)} be
a closed set in the Banach space X; x X3 = {(z,, z) : 2, € X}, 73 € X}
with norm |(z,, 2;)| = max (|z,|, |z,|). Then there exists a constant K
with the property that, for every z, € X,, there is at least one z, € D(T,)
such that Tz, = x5 and |x,| S K |x|. [In particular, when T, is one-to-one,
50 that z, is unique, then |z,| < K |Tyx,| holds for all z, € D(T).}

For a proof of the open mapping theorem in the form that “if P is a
continuous, linear map from a Banach space X to another Banach space
X, with domain 2(P) = X and range %#(P) = X,, then P maps open
sets into open sets,” see Banach [1, pp. 38-40). Theorem 0.3 results by
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applying this to the projection map P : 9(T;) — X,, where P(z,, Tz,) =
Tyx, and noting that a sphere about the origin in %(7T,) has a P-image
which contains a sphere about the origin in Xj.

As a motivation for the procedures to be followed consider the problem
of finding a solution of the differential equation

o.n y =1y

in a certain set S of functions y(f). Write this differential equation as
Y =A@y +/(y), where f(1,y)=/fty) — AW,

for some choice of A(t). Suppose that for every z(t) € S, the equation

0.2) =A@y + f(t, (1))

has a solution y(t) € S. Define an operator T, : S — S by putting y(t) =
Ty[(1)}, where y(t) € S is a suitably selected solution of (0.2). It is clear
that a fixed point y(t) of T, [i.e., Tolyo(t)] = y,(2)] is a solution of (0.1)
in S.

For the applicability of the theorems just stated, it will be assumed that
S is a subset of a suitable topological vector space D. It will generally be
convenient to introduce another space B and two operators L and T;.
The operator L is the linear differential operator L{y] =y’ — A(t)y, so
that g(¢) = L{y(1)) if

(0.3) Y =A@y + g().

It will also be assumed that if 2(¢) € S, then g(t) = f(¢, #(¢)) is in B and
T, : S— B is defined by g(r) = Ty[x(r)]. Investigations of T, are then
reduced to examinations of the linear differential operator L and of the
nonlinear operator 7.

The applicability of Theorem 0.1 can arise in the following type of
situation: Suppose that B, D, are Banach spaces and that |glg, |ylp
denote the norms of elements g € B, y € D, respectively. Assume that for
every g(1) € B, the equation (0.3) (i.e.,, L[y] = g) has a unique solution
y(t)e S = D, that y(¢) depends linearly on g(¢), and that there exists a
constant K such that |y|p < K|g|g- Suppose that, forthemap 7T, : S+ B
there is a constant @ such that |T,[z,] — Tilz]lg < 0|z, — 7]y for
z,, 2,€S. Then T, satisfies |To[z,(1)] — Tolz:(D]lp < 6K |z, — 44,
According to Theorem 0.1, the sequence of successive approximations

z,, %3 = Tolz,), 23 = Tlzs), - . .

will converge to a fixed point of T, (under suitable conditions on S, z,,
and 0K).
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In some situations, the equation L[y] = g may have solutions y satisfy-
ing lylp < K|glg although y is not unique; cf., e.g.,, Theorem 0.3. In
this case, ¥ need not depend linearly on g but it might be possible to form
convergent successive approximations in the following way: For a given
z,, let ; = y be a solution of L[y} = Ty[z,(1)}. If %, x,, ..., 2, ; have
been defined for n > 2, determine an z,, from the equation L{z, — z,_,] =
T\[z,.,] — Ti[z,.;] and the inequality |z, — z, |y < K|Tiz,.,] —
Ty[z,_s]lg. This situation will not arise below.

When the inequality |T)[z,(#)] — Ty[2y(1)]lg = 0lz; — 2,]p is not
available, Theorem 0.2 may still be applicable to assure the existence of
a fixed point of T,,.

PART 1. PERIODIC SOLUTIONS

1. Linear Equations

In this section, unless otherwise specified, the components of the d-
dimensional vectors y, z are real- or complex-valued. Let p > 0 be fixed.
Consider an inhomogeneous system of linear equations

(L.1) y = Al +g)
and the corresponding homogeneous system
(12) y' =A@y,

where A(t) is a continuous d X d matrix and g(¢) a continuous vector-
valued function for 0 < ¢t < p. In addition, consider a set of boundary
conditioris

(1.3) My(0) — Ny(p) =0,

where M, N are constant d X d matrices. For example, if M = N =]
and A(r), g(¢) are periodic of period p, then a solution y(r) of (1.1) or (1.2)
satisfying (1.3) is of period p.

Lemma 1.1. Let A(t) be continuous for 0 £t < p and M, N constant
d x d matrices. Let Y(t) be a fundamental matrix for (1.2). Then a
necessary and sufficient condition for (1.2) to have a nontrivial (# 0) solution
satisfying (1.3) is that M Y(0) — NY(p) be singular. In fact, the number k,
0 = k = d, of linearly independent solutions of (1.2), (1.3) is the number of
linearly independent vectors c satisfying

(1.9) [MY(©0) - NY(p)lc = 0;

ie.,d — k = rank [MY(0) — NY(p)).
This is clear since the general solution of (1.2) is ¥y = Y(t)c.
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Exercise 1.1. Let A(t) be periodic of period p and
(1.5) Y(t) = Z(t)e®,  where Z(1 + p) = Z(t)

and R is a constant matrix; cf. the Floquet theory in § IV 6. Then (1.2)
has a nontrivial (3 0) solution of period p if and only if A =1is a
characteristic root of (1.2); i.e., ®” — I'is singular. In fact, the number
of linearly independent solutions of period p is the number of linearly
independent solutions ¢ of

(1.6) [Y(0O) - Y(p)lc =0, e, (P —1I)c=0.

For algebraic linear equations, the inhomogeneous system Cy = g has a
solution y for every g if and only if the only solution of Cy = Qisy = 0.
The analogous situation is valid here.

Theorem 1.1. Let A(t) be continuous for 0 <t < p; M, N constant
d x d matrices such that the d X 2d matrix (M, N} is of rank d. Then(1.1)
has a solution y(t) satisfying (1.3) for every continuous g(t) if and only if
(1.2), (1.3) has no nontrivial (# 0) solution; in which case y(t) is unique and
there exists a constant K, independent of g(t), such that

(1.7 ¥l = Kf:lig(S)ll ds for 0=t=p

Proof. The general solution of (1.1) is given by
(18) i = vole + [ Yo dsf
Corollary 1V 2.1. This solution satisfies (1.3) if and only if
(1.9 [MY(0) — NY(p)lc = N Y(P)J-:Y “H(s)g(s) ds.

Assume that (1.2), (1.3) has no nontrivial solution. Then, by Lemma
1.1, the matrix ¥ = MY(0) — NY(p) is nonsingular, thus (1.9) has a
unique solution. Substituting this value of ¢ in (1.8) gives the unique
solution of (1.1), (1.3):

1.10) ¥y = Y(t){V“NJ:Y“(s)g(s) ds + J; ‘Y“(s)g(s) ds}.

It is clear that there exists a constant K satisfying (1.7) for 0 S ¢ = p.

This proves one-half of Theorem 1.1 (and this part did not use the
assumption that rank (M, N) = d). The converse follows from Theorem
1.2.
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Exercise 1.2.  What is the Green’s function G(t, s) in the last part of
Theorem 1.1, i.e., what is the function G(¢,5), 0 < s, ¢t < p, such that

%) =f:6(r, $)g(s) ds

is the unique solution (1.10) of (1.1), (1.3)?
Consider the equations adjoint to (1.1), (1.2)
(1.11) Z 4 A%tz + h(t) = 0,

(1.12) 2+ A*(t)z =0,

where A* is the complex conjugate transpose of 4; cf. § IV 7. Consider
also a set of boundary conditions

(1.13) P(0) — Qz(p) =0,

where P, Q are constant d X 4 matrices. If y(¢) is a solution of (1.1) and
z(t) a solution (1.11), the Green formula (IV 7.3) is

(1.14) J;’[X(S) " 2(s) — y(s) - h(s)} ds = [y(1) - «1))o".

When do the boundary conditions (1.3) and (1.13) imply that
(1.15) ¥(p) - 2(p) — ¥(0) - 2(0) = 0,
i.e., that the right side of (1.14) is 0? Note that if M, Q are nonsingular,
then this is the case if and only if 0 = y(p) - @~'Pz(0) — M~Ny(p) - 2(0) =
(P*@* — M'N)y(p) - 2(0) = [M~YMP* — NO*)Q*'Iy(p) - 2(0). In
this case, necessary and sufficient for (1.3), (1.13) to imply (1.15) is that
(1.16) MP* — NQ* = 0.

Lemma 1.2. Let M, N beconstantd x d matricessuchthatrank(M, N) =
d. Then there exist d x d matrices P, Q satisfying rank (P, Q) = d,
(1.16), and having the property that the relations (1.3), (1.13) imply
(1.15). The pairs of vectors 2(0), z(p) satisfying (1.13) are independent of
the choice of P, Q.

Proof. Since rank (M, N) = d, there exist d X d matrices M, N, such
that the 2d x 2d matrix

M -—N
(L17) W= ( )
M N

is nonsingular. Write the inverse of W as
P* Pt P
e (0] a0 9),
0 Q* P
so that (1.16) holds and rank (P, Q) = d.



Downloaded 09/17/12 to 128.210.3.54. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

410  Ordinary Differential Equations

Let v, ¥, 2,, 2, be d-dimensional vectors and 9 = (v, ¥5), { = (2, 25)
be corresponding 2d-dimensional vectors. Then

(1.18) n-{=W1Wy-{ = Wy WI;
thus
(1.19) My, — Ny, =0, Pz + Qz =0  implythat 5-{=0.

The choices y, = ¥(0), y; = ¥(p), z, = 2(0), z, = —2(p) show that (1.3),
(1.13) imply (1.16). This completes the existence proof.

The formulation (1.19) of the implication (1.3), (1.13) = (1.16) makes
the last part of the lemma clear. For if n = (y,, ¥3) # O satisfies My, —
Nyy = 0, then My¥%1+ Ny; # 0. In fact, since rank (P, Q) = d, the set of
vectors { = (z(0), —z(p)) satisfying Pz(0) — Qz(p) =0 is the set of
vectors satisfying 7 - { = 0 for all y = (y,, y,) such that My, — Ny, = 0.
Since this set of vectors { = (2(0), —z(p)) is determined by M, N, the
proof of the theorem is complete.

Boundary conditions (1.13) satisfying the conditions of Lemma 1.2 will
be called the adjoint boundary conditions of (1.3). Correspondingly, the
problems (1.2)~(1.3) and (1.12)-(1.13) will be called *“‘adjoint problems.”
(Note that the adjoint of the “periodic boundary conditions” y(p) = ¥(0),
i.e., M = N = I, are equivalent to the “periodic conditions” z(p) = 2(0),
ie,P=0=1)

There is an analogue of the algebraic fact that if C is a d x d matrix,
then the number of linearly independent solutions of Cy = 0 and of the
“adjoint” equation C*z = 0 is the same:

Lemma 1.3. Let A(t) be continuous for 0 £t < p; M, N constant
d x d matrices such that rank (M, N) = d; and (1.13) boundary conditions
adjoint to (1.3). Then (1.2)-(1.3) and (1.12)~(1.13) have the same number of
linearly independent solutions.

Proof. Since the relationship between (1.2)~(1.3) and (1.12)-(1.13) is
symmetric, it suffices to show that if (1.12)-(1.13) has k linearly independent
solutions, where 0 £ k < d, then (1.2)-(1.3) has at least k linearly
independent solutions.

Let Y(t) be a fundamental matrix of (1.2), then Y*-%(¢) is a fundamental
solution of (1.12) by Lemma IV 7.1. In terms of (1.17), define a constant
2d x 2d matrix

(120) U= Wdiag [Y(0), Y(p)] -_-.(

b4

MY(©0) —NY(p))

M, Y(0) M Y(p)
so that U is nonsingular and
P Y*0) O\ Y*(p)
U‘—l = W*-1 d Y‘-l 0 X Y‘—l = .
o (Y0 ¥ (P o) Q ym(,,))
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Thus, if ¢, is a constant d-dimensional vector such that z(z) = Y*-(t)c,
is a solution of (1.12)-(1.13), then U*Y(cy, —cp) = (b,0). Here b is a
d-dimensional vector, and if c, varies over a set of k linearly independent
vectors, then b varies over a set of k linearly independent vectors, since
U*-! is nonsingular. From (1.20), it is easy to see that the equation
(co» —€o) = U*(b, 0) gives

(1.21) co = Y*(O)M*b = Y*(p)N*b,
so that
(1.22) [Y*O)M* — Y*(p)N*}b = 0.

Hence the matrix Y*(0)M* — Y*(p)N* annihilates k linearly independent
vectors b; therefore, the same is true of its complex conjugate transpose
MY() — NY(p). In view of Lemma I.1, this proves Lemma 1.3.

Remark. For the purpose of the next proof, note that the lemma just
proved implies that (1.22) holds if and only if the vector ¢, in (1.21) is
such that the solution z = Y*~(f)¢, of (1.12) satisfies (1.13).

Another algebraic fact is that if C is a singular matrix, then Cy = g has
a solution y if and only if g is orthogonal (i.e., g - z = 0) to all solutions z
of the homogeneous ‘‘adjoint” system C*z = 0. Again an analogous
situation is valid here:

Theorem 1.2. Let A(t) be continuous for 0 < t < p, M and N constant
d x d matrices such that rank (M, N) = d, and let (1.2)~(1.3) and (1.12)-
(1.13) be adjoint problems. Suppose that (1.2)~(1.3) has exactly k linearly
independent solutions y\(t), . .., y(t) and let 2,(t),...,2(t) be linearly
independent solutions of (1.12)~(1.13). Let g(t) be continuous for 0 < t < p.
Then (1.1) has a solution y,t) satisfying (1.3) if and only if

(1.23) j’g(s) ‘2(s)ds =0 for j=1,...,k.
(]

In this case, the solutions of (1.1), (1.3) are given by yo(t) + ay,(t) + -+ - +
oY1), where a,, . . ., o, are arbitrary constants.

Proof. Note that, by the proof of Theorem 1.1, the problem (1.1), (1.3)
has a solution if and only if (1.9) has a solution ¢. This is the case if and
only if

(N Y(p) fo "YY5)g(s) ds) b=0

for all solutions b of (1.22). In view of (1.21), this is equivalent to the
condition that

0= f z’[8(3) - Y*“Y(s)Y*(p)N*b] ds =f’g(s) - 2(s) ds
L] [}
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for all solutions z = Y*-(s)c, of (1.12)-(1.13), i.e., that (1.23) holds.
This proves the theorem.

The next theorem is a rather particular result for the case that A(r), g(1)
are of period p.

Theorem 1.3. Lei A(r) be continuous and of period p. Then, for a fixed
continuous g(t) of period p, (1.1) has a solution of period p if and only if (1.1)
has at least one bounded solution for t Z 0.

Proof. The necessity of the existence of a bounded solution is clear.
In order to prove the converse, assume that (1.1) has a solution y(1)
bounded for ¢ = 0. Let Y(¢) be the fundamental matrix of (1.2) satisfying
Y(0) = 1. Then (1.1) has a solution of period p if and only if the equation
¢ = Y(p)c + b, where

b= Y(p) f Y X)g(s) ds,

has a solution c; cf. (1.9) in the proof of Theorem 1.1.

If ¢ = y(0) in (1.8), then y(p) = Y(p)y(0) + b holds for every solution
(1) of (1.1). Since y(t + p) is also a solution, ¥(2p) = Y(p)y(p) + b =
Y*(p)y(0) + Y(p)b + b, or more generally,

w(p) = Y@ +  3.V'0))

Suppose, if possible, that [I — Y(p)lc = b has no solution. Then [Y(p) —
I]* is singular and there exists a vector ¢, such that [Y(p) — I1*c, = 0
and b- ¢y # 0. Thus ¢, = Y*(p)c, and ¢, = (Y*(p))*c, fork =0, 1,....
Muitiply the equation in the last formula line scalarly by c, to obtain

y(np) - co = ¥(0) * ¢o + n(b - c),
since Y4(p)y(0) - ¢ = ¥(0) - (Y*(p))*c,- As b-co # 0 and the sequence
¥(p), ¥(2p), ... is bounded, a contradiction results. This proves the
theorem,

2. Nonlinear Problems

This section deals with the existence of periodic solutions for non-
linear systems. With very minor changes, the methods and results are
applicable to the situation when the requirement of “periodicity” is
replaced by boundary conditions of the type (1.3). The results depend on
those of the last section for linear equations and, in particular, on the “a
priori bound” for certain solutions of (1.1) given by (1.7). The first two
theorems concern a nonlinear system of the form

@n y =AWy + /(1Y)
in which y is a vector with real- or complex-valued componeits.
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Theorem 2.1. Let A(t) be continuous and periodic of period p and such
that (1.2) has no nontrivial solution of period p. Let K be as in (1.7) in
Theorem 1.1, where M = N = 1. Let f(t, y) be continuous for all (t, y),
of period p in t for fixed y, and satisfy a Lipschitz condition of the form

(22 1 y) — 6yl =0 My, — %l

for all t, yy, y, with a Lipschitz constant 0 so small that Kip < 1. Then (2.1)
has a unique solution of period p.

Actually, it is not necessary that f(t, y) be defined for all y. If m =
max || (¢, 0)]|, it is sufficient to require that f(¢,y) be defined for
flyl = r, where

Kpm
(2.3) T X6p = r.

Proof. Introduce the Banach space D of continuous periodic functions
g(t) of period p with the norm [g| = max [g(¢)]. Thus convergence of
8:(1), 8:(1), . . . in D is equivalent to the usual uniform convergence over
0=t=p.

Let g(t) be a continuous function of period p satisfying |lg(t)| < r.
Thus by Theorem 1.1 the equation

(2.4) y — Ay = f(r, g(1)

has a unique solution y(t) of period p. Define an operator T, on the set of
all such g(r) by putting y(t) = Ty[g]. Note that (1.7), (2.4) and (2.2) show
that if 2(t) = T,[h), then

(25) ly—2<Kpblg—hl; e, |Tolg]— Tolh)l < Kpb|g — hi,
where [y] = max |ly(1)} for 0 < 1 < p. In addition, if m = max || f(z, 0)],
then |T,[0}] < Kpm.

Thus Theorem 2.1 follows from Theorem 0.1, for y,(r) is a fixed point of
Ty Tolyo] = 9o, if and only if y,(¢) is a solution of (2.1) of period p; cf.
(2.4) where y = Tylg].

In Theorem 2.1, we can omit assumption (2.2) when || f(¢, y)|| is “small,”
at the cost of losing *“‘uniqueness.”

Theorem 2.2. Let A(t), K be as in Theorem 2.1. Let f(t, y) be continuous
Sor all t and \\yli X r, of period p in t for fixed y, and satisfy

(2.6) Kplfpl=r for 0515p, lyl=r.

Then (2.1) has at least one periodic solution of period p.

Proof. As in the last proof, define y(f) = T[g] as the unique solution of
(2.4) of period p, where g(r) is of period p and |g| < r. In order to prove
the theorem, it suffices to show that T, has a fixed point y,, Toly,] = v,.
This will be proved by an appeal to Corollary 0.1 of Tychonov’s theorem.
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It follows from (1.7) and (2.6) that y = T,[g] satisfies |y| < r. In other
words, if D is the same Banach space as in the last proof, then T, maps
the sphere [g| < r of D into itself. Also, (1.7) gives

IT[g] = Tolhll = K_[:Ilf (¢, &(1) = f(t, h()I dt.

Since f is continuous, it is clear that if |g — k| = max fig(t) — h(t)]] — 0,
then Ty[g] — To[h] — 0. Thus T, is a continuous map.

If y = T,[g], then ||y(r)l < r and (2.4) show that there isa constant C,
independent of g, such that |y'(¢)ll £ C. This implies that the set of
functions y(t) = T,lg] in the range of T, is bounded and equicontinuous.
Hence, by Arzela’s theorem, it has a compact closure in D (i.e., any
sequence yy, ¥s, . . . has a uniformly convergent subsequence). Conse-
quently, Corollary 0.1 implies that T, has a fixed point y,. Clearly
y = y,(t) is a periodic solution of period p. This proves the theorem.

Remark. In the deduction of Corollary 0.1 from the Tychonov
Theorem 0.2, it is necessary to know that the convex closure of the
range A(T,) of T, is compact. This is clear in the proof just completed,
for y(r) in the range of T satisfies the conditions: (i) ¥(r) is continuous of
period p; (i) {y()ll = r; and (iii) |(¢) — ¥(s)| = C |t — s|. The convex
hull of %(T,) [i.e., the smallest convex set containing #(T,)] is the set of
functions y(¢) representable in the form A,y,(¢t) + - - + 4,y,(¢), where
n=12...; 4, 20and 4, + --- 4+ 4, = 1. It is clear that functions
in this set satisfy (i)-(iii). The closure of this set of functions under the
norm of D (i.e., under uniform convergence over 0 < ¢ < p) gives a set
of functions satisfying (i)-(iii). Thus the compactness of this set in D is
clear from Arzela’s theorem. (A remark similar to this can be made for the
other applications of Corollary 0.1 in this chapter; see Theorem 4.2 and
Theorem 8.2.)

Consider now a system of nonlinear differential equations depending on
a parameter y,

2.7 z' = F(t, z, p),

where F is continuous, of period p in 1 for fixed (=, u), and z, F are real
d-dimensional vectors. Suppose that for u =0, (2.7) has a periodic
solution z = gy(t). Write y = z — gy(t); then (2.7) becomes

¥ = F(t,y + go(0), ) — F(t, go(1), 0).

If F has continuous partial derivatives with respect to z and A(r) =
9,F(t, go(r), 0), where d,F is the Jacobian matrix of F with respect to z,
then the last equation is of the form (2.1), where

f(" y) = F(t’ Yy + go(‘), f‘) - F(tv go('), 0) - A")y
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and | f(r, Yi/lyl — 0 as (y, u) =0 uniformly in ¢ for 0 St <p. In
particular, when |u| is small, (2.6) holds for small » > 0; in fact, (2.2)
holds for small |ly,ll, lly;ll with arbitrarily small 6 and f(¢,0) = 0. It
follows from Theorem 2.1 that if (1.2) has no nontrivial periodic solution
of period p, then (2.7) has a unique solution z(r) = 2(t, 4) of period p
for each small |u|. The proof of Theorem 2.1 can also be used to show
that if F depends smoothly on g, then z(t, u) depends smoothly on pu.
All of these assertions can, however, be proved'more directly by the use of
the classical implicit function theorem.

Theorem 2.3. Let z, F be real vectors. Let F(t, z, u) be continuous for
all t, small |u|, and x on some d-dimensional domain. Let F be of period p in
t for fixed (x, u) and have continuous partial derivatives with respect to the
components of x. Let (2.7), where u = 0, have a solution z = g(t) of period
p with the property that if A(t) = 0,F(t, g(t), 0), then (1.2) has no nontrivial
solution of period p. Then, for each small \ul, (2.7) has a unique solution
z = (1, u) of period p with initial point (0, u) near 800); =(t,u) is a
continuous function of (t, u), and x(t, 0) = gy(t). If, in addition, F has a
continuous partial derivative with respect to u, then z(t, y1) is of class C.

It will be clear from the proof that if more smoothness is assumed for
F (e.g., F e C*or Fanalytic), then 2(1, 4) is correspondingly smoother (e.g.,
z(t, u) € C* or z(t, u) analytic).

Proof. Let z = (1, z,, u) be the unique solution of (2.7) satisfying the
initial condition z(0) = z,. Then £(t, x,, u) is continuous and has con-
tinuous partial derivatives with respect to  and the components of z,;
see Corollary V 3.3. Also, if z, is near to g,(0), then &(t, z,, u) exists on the
interval 0 < 1 < p; see Theorem V 2.1. The solution = = (1, z,, p) is
periodic of period p if and only if

(2.8) Ep, xo, p) — xy = 0.

Since £(1, £4(0), 0) = gqo(1), the equation (2.8) is satisfied if (zo, ) = (g¢(0),0).
Hence it can be solved for z, = z,(u) if the Jacobian matrix of the left
side, a,oe(p, Zo, ) — 1, is nonsingular at (z,, u) = (g,(0), 0). The partial
derivatives of (¢, z,, 1) with respect to a component of z,, when (z,, p) =
(£6(0), 0), is a solution of the equations of variation (1.2); see Theorem
V 3.l In fact, Y(t) = a,os(:, 80(0), 0) is a fundamental matrix for (1.2)
satisfying Y(0) = /. Hence the assumption that (1.2) has no periodic
solution is equivalent to the assumption that Y(p) — I is nonsingular;
cf. Lemma 1.1, where M = N = I. Thus the implicit function theorem is
applicable to (2.8) and gives a continuous function z, = z,(u). Corre-
spondingly, z = (1, 2(u), u) is a periodic solution of (2.7) of period p
and the only such solution with initial point z, near g,(0). The other
assertions of Theorem 2.3 also follow from the implicit function theorem.
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The question of the existence of periodic solutions when
det [Y(p) —I]=0

has a vast literature and will not be pursued here.

Note that if Fin (2.7) does not depend on 7 and go(f) # const., then the
conditions of Theorem 2.3 cannot be satisfied since x = g,'(t) is a non-
trivial periodic solution of the equations of variation (1.2). Here, however,
we have the following analogue.

Theorem 2.4. Let x, F be real vectors. Let F(xz, u) be continuous for
small |u| and for x on some d-dimensional domain and have continuous
partial derivatives with respect to the components of x. When u =0, let

2.9) 2 = Fz, p)

have a solution x = g(t) # const. of period p, > 0 such that if A(t) =
0,F(go(t), 0), then exactly one of the characteristic roots of (1.2) is 1 [i.e.,
e®s has A = 1 as a simple eigenvalue; cf.(1.5) where p = p,). Then, for
small ||, (2.9) has a unique periodic solution x = x(t, u) with a period p(u),
depending on p, such that x(t, p) is near g,(t) and the period p(p) is near p,;
furthermore z(t, ), p(u) are continuous, x(t, 0) = g(t), and p(0) = p,.

Remarks similar to those for Theorem 2.3 concerning the smoothness of
F and corresponding smoothness of z(t, u), p(u) hold.

The geometrical considerations in the proof to follow are clarified by
reference to Lemma IX 10.1, which shows that we obtain all solutions of
(2.9) near z = g,(r) by considering solutions with initial points 2(0) = z,
near to g4(0) and z, restricted to be on the hyperplane 7 normal to
F(g,(0), 0) and passing through g4(0).

Proof. Let x = (1, zo, ) be the unique solution of (2.9) satisfying
z(0) = z,. This solution is of period p if and only if (2.8) holds. The
equation (2.8) is satisfied when (p, zo, ) = (p,, £(0), 0).

Since solutions of (2.9) are uniquely determined by initial conditions and
g(1) # const., it follows that F(g,(t),0) O for all t. Suppose that the
coordinates in the z-space are chosen so that g,(0) = 0 and F(0,0) =
©,...,0,a), a # 0, and let 7 denote the hyperplane ¢ = 0 through the
point g40) = 0 normal to F(0,0). Consider z, on this hyperplane,
Zg=(zl,...,2871,0). Then for small |u|, the equation (2.8) has a
unique solution for p, z,, in terms of x if the Jacobian matrix of &(#, 2o, u)
— z, with respect to z,!,..., 3 ! and ¢ is nonsingular at (t, zo, ) =
(Po, 0’ 0)'

The matrix Y(¢), in which the columns are the vectors 9£/dz,!, .. .,
0£/023-" and & at (zo, ) = (0, 0), is a fundamental matrix for (1.2) and
its last column is F(g(¢),0). Atz =10,

(2.10) Y(0) = diag [[,_,, «] = Z(0),
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by (1.5). Since (1.2) has, up to constant factors, only the last column
g0 (1) of Y(r) at (zo, u) = (0,0) as a periodic solution of period p,, the
matrix ¥(p,) — Y(0) annihilates vectors ¢ of the formc =(0,...,0, ¢%)
and no others.

The Jacobian matrix J of £(1, 2y, u) — x, with respect to z,', ..., 2§77,
and ¢ at (¢, , ) = (o, 0, 0) is

J = Y(Po) - diag [’d—lr 0]9
and the last column of Y(p,) is F(g,(0),0) = (0,...,0, «), so that J =

[Y(po) — Y(0)] + diag [0,...,0,a). If J is singular, then there exists a
vector ¢ = (¢!, ..., ¢%) # O such that Jc = 0; i.e.,

[Y(p)) = YO)lc + ©,...,0,ac%) =0.
In view of (2.10) and Z(0) = Z(p,), this is the same as
Z(O){(ef = DNc +©,...,0,c)} =0 or

€ —-De+(0,...,0,c%)=0.

If ¢? = 0, then ¢ = 0 for ef? — I only annihilates vectors of the form
©,...,0,¢%. If ¢* # 0, then (e®Po — I)*c = 0. But this implies that
A = 1 is atleast a double eigenvalue of e®?e. This contradiction shows that
J is nonsingular.

Hence the implicit function theorem is applicable to (2.8) and gives the
desired functions z'(u),..., z3~(u), and p(u). Correspondingly, if
2o(p) = (&} w), - - - 2-), 0), then (1, 1) = &(1, 7o), p) is a periodic
solution of (2.9) and is the only periodic solution having an initial point
zo, With z,° = 0, near to g,(0) and a period near to p,. This proves
Theorem2.4.

Exercise 2.1. Let dimx = 2; F(t,z) continuous for all ¢ and =z,
periodic of period p in ¢ for fixed z. Let the solution z = z(¢, t,, ,) of

@.11) &' = F(, 7)

satisfying z(¢,) = z, be unique for all #,, z, and exist for ¢ = ¢,. Finally,
for some (1, z,), let z(t, 1y, z,) be bounded for t = ¢,. Then (2.11) has at
least one periodic solution of period p. See Massera [1].

Exercise 2.2. Let a(t) = (2}(¢), . . ., &%), B(t) = (B1), . . ., p°(1)) be
piecewise continuously differentiable for 0 <t < p; «'(f) < (1) for
j=1,...,d; and «(0) = «(p), f(0) = B(p). Let

fa=0w9,.... %)

be continuous on an open set containing Q° = {(1, y): «’(t) < ¥’ < (¢) for
0 = ¢ = p} and let f(, y) be uniformly Lipschitz continuous with respect
to y. Suppose finally that the functions w/(t, y) = o«¥(t) — f(t, ¥, .. .,

YL @),y L YY) and WL y) =BT - L9, ..y B,
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¥, ..., ¥ do not change signs (e.g., u’ = O or ¥’ < 0) and that u’v’ < 0
for all (1, y) € Q°. Then y’' = f(r, y) has at least one solution y = y(¢),
0 < ¢ < p, such that (¢, y()) € Q° and ¥(0) = ¥(p). See Knobloch [1].

PART IL. SECOND ORDER BOUNDARY VALUE PROBLEMS

3. Linear Problems

This part of the chapter concerns boundary value problems involving
a system of second order equations. Consider first a linear inhomogeneous
system of the form

3.1 2" = B(t)x + F(1)x' 4 h(t)
and the corresponding homogeneous system
3.2 2" = B(t)z + F()x'

for a d-dimensional vector z (with real- or complex-valued components).
The problem involves solutions satisfying boundary conditions

33 20) =2, olp) =1z,

when p > 0, z,, =, are given. For the inhomogeneous equation (3.1), the
conditions (3.3) are not more general than

34 20)=0, =(p)=0,

for if z — [(z, — zo)t/p + =] is introduced as a new dependent variable,
the equation (3.1) goes over into another equation of the same form with
h(z) replaced by h(t) + B(1X(z, — z)t/p + B(t)x, + F(t)z, — zo)/p.
Actually, the theory of the boundary value problem (3.1), (3.4) is
contained in § 1. In order to see this, write (3.1) as a first order system

(3.5) y = Ay + g(1),

where y = (z, z') is a 2d-dimensional vector, g(t) = (0, h(t)), and A(t) is a
2d x 2d matrix

3.6 A ( 0! )

X t) = .

36) B(t) F()

The boundary conditions (3.4) can be written as

(X)) My(0) — Ny(p) = 0,

where M, N are the constant 2d X 2d matrices
I 0 0 0

(3.8) M= ( ) and N= ( )
0 0 I 0
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Note that

0rIo

Instead of restricting M, N to be of the type (3.8), it is possible to choose
more general matrices; in this case, (3.4) is replaced by conditions of the
form

M;2(0) + M;x'(0) — Nyz(p) — Npz'(p) =0 for j=1,2,

where M, N;, are constant d X d matrices such that

M,, My, Ny N
M, N) = ( n My Ny :j
M; My Ny N,

is of rank 2d. For the sake of simplicity, only the choice (3.8), i.e., only
the boundary conditions (3.4), will be considered.

Lemma 1.1 implies the following:

Lemma 3.1. Let B(t), F(#) be continuous d.x d matrices for0 < t < p;
U(t) the d x d matrix solution of

(3.9) U" = B)U + FU’, UQ0)=0, U'(©0)=I.

Then (3.2) has a nontrivial solution (# 0) solution satisfying (3.4) if and only
if U(p) is singular. In fact, the number k,0 S k < d, of linearly independent
solutions of (3.2), (3.4) is the number of linearly independent vectors ¢
satisfying U(p)c = 0.

The corresponding corollary of Theorem 1.1 is

Theorem 3.1. Let B(t), F(t) be continuous for 0 < ¢ < p. Then (3.1) has
a solution x(t) satisfying (3.4) for every h(t) continuous on [0, p] if and only
if (3.2), (3.4) has no nontrivial (# 0) solution. In this case, =(t) is unique and
there exists a constant K such that

1 000
rank(M,N)=rank(0 )=2d

(3.10) =l 1) = Kfllh(S)ll ds.

Exercise 3.1. Verify Theorem 3.1.

The homogeneous adjoint system for (3.5) is y’ = —A*(t)y which is not
equivalent to a second order system without additional assumptions on B
or F. The simplest assumption of this type is that F(t) is continuously
differentiable. In this case, the homogeneous adjoint system y’ = —A*(t)y
is equivalent to

G.11) 2" = [B*t) — F*(0))z — F*(1)2'
and the corresponding inhomogeneous system is
(3.12) 2" = [B*1) — F¥(t)}z — F*(1)2' + f(1).
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[Actually, the differentiability condition can be avoided by writing the
terms involving F* as (F*z)’, and interpreting (3.11), (3.12) as first order
systems for the 2d-dimensional vector (—2' — F*z, z).]

In order to obtain the corresponding Green’s relation, multiply (3.1)
scalarly by z, (3.12) by z, subtract and integrate over [0, p] to obtain

(3.13) f ) - ) — o(t) - fO]dt = [# 2 — 2+ 2" — Fz -2},

Thus, if z satisfies (3.4) and z satisfies

(3.19) 2(0) = 0, z(p)=0
then
(3.15) J:’[h(‘) 1) — (1) f(1)] dt = 0,

so that (3.4) and (3.14) are adjoint boundary conditions.

Exercise 3.2. Verify that (3.2), (3.4) and (3.11), (3.14) are adjoint
boundary problems in the sense of § 1.

Lemma 3.2. Let B(t) be continuous and F(t) continuously differentiable
for 0=t = p. Then (3.2), (3.4) have the same number of linearly inde-
pendent solutions as the adjoint problem (3.11), (3.14).

Finally, a corollary of Theorem 1.2 is

Theorem 3.2. Let B(t) be continuous and F(t) continuously differentiable
on [0, p] and such that (3.2), (3.4) has k, | < k < d, linearly independent
solutions. Let 2,(t), . . ., z(t) be k linearly independent solutions of (3.11),
(3.14). Let h(t) be continuous on [0, p). Then (3.1), (3.4) has a solution if
and only if

?
(3.16) f h(t)-z(t)dt =0 for j=1,...,k
o
The next uniqueness theorem has no analogue in § 1.

Theorem 3.3. Ler B(t), F(t) be continuous d x d matriceson0 St Z p
such that

G.17) Re [(B(1) — 1F()F*(1))z - 2] Z 0

for all vectors z (i.e., let the Hermitian part of the matrix B — }FF* be non-
negative definite). Let g(t) be continuous for 0 £ t < p. Then

(3.18) 2" = B(t)x + F(t)' + h(t)

has at most one solution satisfying given boundary conditions %(0) = z,,

2p) = z,.
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Remark 1. Actually, Theorem 3.3 remains valid if (3.17) is relaxed to
(.19) 2Re [(B(1) — FFOF*(D)z - 2] > —(n[p)* |=|*

for all vectors z # 0; cf. Exercise 3.3.
Proof. Since the difference of two solutions of the given boundary value
problem is a solution of

(3.20) z" = B(t)z + F(t)r', =(0) = z(p) =0,

it suffices to show that the only solution of (3.20) is z = 0.

Let z() be a solution of (3.20). Put /(1) = ||z(1)}l*. Thenr' =2Rez 2’
and r" =2 Re(z 2" + ||2||?), so that 7" = 2 Re [(B(t)x + F(t)z') - = +
ll"||2). It is readily verified that
Re (B(t)x + F(1)x') -z + ||2'|2 = ||' + $F*z|* + Re (Bx — }FF*z) - x.
Thus
3.21) r" =22 + §F*z|2 4+ 2 Re [(B — }FF*)z - z}.

Hence (3.17) implies that r" = 0. Since the last part of (3.20) means that
r(0) = r(p) = 0, it follows that r(t) =0 for 0 S ¢ = p. This proves
Theorem 3.3.

Exercise 3.3. (a) Show that if there exists a continuous real-valued
function ¢(¢), 0 £ t = p, such that the equation

r' +q(t)r=0
has no solution r(r) # 0 with two zeros on 0 < t < p [e.g., ¢(t) < (n/p)?]
and (3.17) is relaxed to
(3.22) 2 Re [(B(t) = tF()F* () - x] Z —q(1) |=|*

for all vectors z, then the conclusion of Theorem 3.3 remains valid. ()
Let there exist a continuously differentiable d x 4 matrix K(¢) on [0, p]
such that

(3.23) Re[B— K' + (3F = KF)}F* — KH))jz- 220

for all vectors z and 0 St < p, where K¥ = }(K + K*). Then the

conclusion of Theorem 3.3 is valid. [Note that (3.23) reduces to (3.17) if

K(t) = 0, so that (b) generalizes Theorem 3.3, but not part (a) of this

exercise.] The 2 in (3.22), hence in (3.19), is not needed if F = 0.
Remark 2. If F(t) has a continuous derivative, then (3.20) implies that

z = 0 if and only if z = 0 is the only solution of

(324) 2" = [B*() — F¥()) — F*()?,  %0) = 2(p) = 0;

cf. Lemma 3.2. Hence, the conclusion of Theorem 3.3 is valid if B, F in
the criteria (3.17), (3.22), (3.23) arereplaced by B* — F*’, — F* respectively.
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4. Nonlinear Problems

Let z and f denote vectors with real-valued components. This section
deals with second order equations of the form

4.1 " = f(t, z, x')

and the question of the existence of solutions satisfying the boundary
conditions

4.2 20) =0, 2p)=

or, for given z, and z,,

4.3) 20) ==z, 2(p) ==z,

The equation (4.1) will be viewed as an “inhomogeneous form™ of
4.9) z"=0.

The problem (4.2), (4.4) has no nontrivial solution. Thus, by Theorem
3.1, an equation

(4.5) z" = h(t)
has a unique solution satisfying (4.2). In fact, this solution is given by
] »
(4.6) ) = — 1l:(p - t)f sh(s) ds + t‘f (p — s)h(s) ds].
p 0 ¢

This can be verified by differentiating (4.6) twice; cf. (XI2.18). The
relation (4.6) can be abbreviated to

4.7) 2(t) = —f’G(t, s)h(s) ds,
[}
where
4.8 G(t, s) = ;l,(p —1f)s or G(t,s)= %t(p —3)

accordingas 0 S s St Spor0 =t S5 Sp. Thus

0= G(ts)<p fc(: s)ds—-t(p—t)<§-

(4.9) o

[i6aotas =L+ o - 152,
0 2p 2

where G, = G/dt. Thus (4.6) or (4.7) and its differentiated form imply

(4.10) =0l = %fmax lal, =" = gmax lth(s)l

where the max refers to 0 < s < p.
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Theorem 4.1. Let f(t, z, ') be continuous for 0 < t < p and all (z, z')
and satisfy a Lipschitz condition with respect to z, 2" of the form

(4.11) “f(t» zy, 2,") —f(l, zy, %)l £ 0, Iz, — 25l + 6, 2, ~ zy||
with Lipschitz constants 8, 6, so small that

2
(4.12) Q‘-’g’i + %—E <L

Then (4.1) has a unique solution satisfying (4.2).

Remark 1. Instead of requiring fto be defined for0 < ¢ < pandall
(z, =), it is sufficient to have fdefined for0 < ¢t < p, z| S R, |']| = 4R/p,
where R satisfies either

2 2
mp Bop Gm)]
4.13 — S R|1- (-—— —=
@13 8 = [ 8 + 2
if m = max || f(t,0,0)}| for 0 <t < p, or merely
2
(4.14) ﬁs‘l— <R

if M = max || f(t, z, 2')| for ||| < R, |l2'|| = 4R/p.
Proof. Let D be the Banach space of functions A(r), 0 < ¢ < p, having
continuous first derivatives and the norm

(4.15) ] = max (max lh(O1, P max llh’(:)ll).
0stsyp 4osisy

Consider an h(f) in the sphere |4} = R of D. Let z(t) be the unique
solution of

(4.16) " = f(t, h(t), K'(1))

satisfying z(0) = z(p) = 0. Define an operator T, on the sphere |h| S r
of D by putting To[A(r)] = 2(1).
If zy = T,[0] and || f(z, 0, 0)]| < m, then

2
@.17) lzo(t)| < '—"sl f Iz (D) £ 1"81

by the case h = f(1,0,0) of (4.10). Thus the norm z(t) = T,[0] € D
satisfies

2
(4.18) IT[0)l < '"T” .
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Also, if z; = T[h,], 2, = Ty[h,), then, by (4.10) and (4.11),

2
lz,(t) — 2l S % (6o max |k, — hy|l + 6, max b, — hy'l),

l2'(0) — 2/ (DI = ‘g(oo max |[hy — hq|| + 6, max b, — hy'l).

If the last inequality is multiplied by p/4 and 0,(p%/8) max ||h," — hy'|| is
written as (6,p/2)[(p/4) max ||h,' — hy'l]], it follows that

]
@19 T - Tl s (24 52) 1 - hy.

Thus the inequalities (4.12), (4.13) and (4.18) show that Theorem 0.1 is
applicable and give Theorem 4.1.

Similarly, if |f(¢,2, )] S M for |z]| = R, ||2'|| < 4R/p, then the
derivation of (4.17) shows that if |h] < R, then z = T,[h] satisfies |z] <
Mp?[8. Thus if (4.14) holds, T, maps the sphere |#| < Rinto itself and the
Remark following Theorem 0.1 is applicable in view of (4.12). Hence the
proof of Theorem 4.1 and Remark 1 following it is complete.

Corollary 4.1. Let f(t, z, z') be continuous for 0 St < p, [z| = R,
llz’ll < R, and satisfy (4.11), (4.12) and || f(t, 2, 2')| S M. Let

Mp? M
(4.20) R F Y S ""T"" <R,

Then (4.1) has a unique solution satisfying
(4.21) 20)=0 and z(p) =z,

Exercise 4.1. (a) Prove Corollary 4.1. (b) In Corollary 4.1, let
ILf(t, , )] S M be relaxed to || /{1, tzo/p, zo/p)l S mfor0 S ¢ < pand
R be defined by replacing “=" by “=" in (4.13). Show that the con-
clusion of Corollary 4.1 remains valid if R + [zl < R, 4R/p + |zllfp S
R, replaces (4.20).

Theorem 4.2, Let f(t,z,2") be continuous and bounded, say,

If(t 2,20 = m,
for 0=t = p and all (z,2"). Then (4.1) has at least one solution (1)
satisfying 2(0) = 2(p) = 0 and
2
(4.22) =01 <=5, 11 ==E.
It is sufficient to require that f(1, , z') be defined only for |z} < mp*/8,
12'll S mp|2.

Proof. Let D be the Banach space of continuously differentiable
functions A(f), 0 S t £ p, with norm || defined (4.15). Consider A(#) in
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the sphere [h] < mp*8 of D. For such an h, put = Tk}, where z(t) is
the unique solution of (4.16) satisfying #(0) = x(p) = 0. Then [z(r)] =
mp*8 and {|2'(1)l < mpf2, so that T, maps the sphere |h} < mp?/8 into
itself.

If |hyl, 1hs] = mp?/8 and z, = Ty[h,], 23 = Tylh,), then (4.7) and (4.9)
imply that

e = 2l = 2[ 1106 D, B0 = 16, o, B .

Since f is a continuous function, it follows that if |4, — k| — 0, then
|2, — z,] = 0. Thus T, is continuous.

For any z(t) in the range of T, i.e., z = Ty[h] for some h, (4.16) implies
") = m. It follows that the set of functions z(f) in the range of
Tolh), |l < mp?(8, are such that 2(¢), 2'(¢) are bounded and equicontinuous
since

l=(t) — 2(t < dmp |ty — 13l, 12(8) — 2D S mlty — 4l.

Hence Arzela’s theorem implies that the range of T,[A] has a compact
closure. Consequently, Tychonov’s theorem is applicable and gives
Theorem 4.2.

Corollary 4.2. Let f(t,x,2) be continuous and satisfy ||fl < M for
O=Zt=T |zl £ R Iz’ £ R,. Let p and z, satisfy 0 < p < T and
(4.20). Then (4.1) has a solution satisfying (4.21). (In particular, if 0 <
T < min ((8R,/M)*A, 2R,/M), then there exists a 8 > 0 such that if
2ol < 0, then (4.1) has a solution satisfying (4.21) for p = T.)

Exercise 4.2. Prove Corollary 4.2.

Exercise 4.3. Let f(t, z,2") be continuous for 0 < ¢t S p, |z < R,,
and arbitrary z’. Let there exist positive constants a,b such that
W/t z, 2N Salz'j2+b for 0=St=p, lz|| SR, Assume that
a, b, |lz,| are such that a(bp® + 2 |zo) <1 and r* = (@p)2{l — [I —
a(bp® + 2 ||z,})14} satisfies r*p + 3 ||z,ll < 4R,. Then the boundary
value problem (4.1),(4.21) has a solution.

Note that Corollaries 4.1 and 4.2 are similar except that in Corollary
4.1 there is the extra assumption that (4.11) and (4.12) hold; corre-
spondingly, there is the extra assertion that the solution of (4.1), (4.21) is
unique. We can prove another type of uniqueness theorem.

Theorem 4.3. Let f(t, z, z') be continuous for 0 £ t < p and for (z, z')
on some 2d-dimensional convex set. Let f(t, , z') have continuous partial
derivatives with respect to the components of x and x'. Let the Jacobian
matrices of f with respect to z, z’

(423) B,z 2)=0,f(z2), F(t,z,2') = 0,f(t, z, ')
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satisfy
424 2B — }FF*)z-z> — ’—'; lz|?
p

Jor all (constant) vectors z # 0. Then (4.1) has at most one solution
satisfying given boundary conditions 2(0) = z,, z(p) = z,,.
By the use of Exercise 3.3(a), condition (4.24) can be relaxed to

2(B— }F*F)z-zZ —q(1) l=I*,
where qft) satisfies the conditions of Exercise 3.3fa). Here and in
(4.24), "2" is not needed if f is independent of x'.

Proof. Suppose that there exist two solutions z,(), z,(f). Put z(r) =
z,(1) — z,(1), so that

2" = f(t, z(t), 2/ () — (6, (1), 2,/()),  #(0) = 2(p) = 0.
This can be written as
=" = B,()x + F,(1)7, z(0) = z(p) = 0,
where

(4.25) B,(1) =le ds, Fi(1) =J-‘F ds,
0 0
and the argument of B, Fin (4.25) is
(4.26) (1, (1 = $)z,(1) + s25¢), (1 = 8)2,'(t) + 52,/(1)).-

This is a consequence of Lemma V 3.1.
For any constant vector z, an application of Schwarz’s inequality to
the formula in (4.25) for each component of F,*(t)z gives

1
IFy*(@)al® éf IF*z||* ds,
[
where the argument of F* is (4.26). Hence,

[B(t) — I (OF ()2 2 L [B — }FF*)e- 2 ds.
Thus by (4.24) .
2[By(1) = FF,(F,* (k"2 > — ’-;— ok

for all vectors z # 0. Consequently, Theorem 3.3 and Remark 1 following
it imply that (f) = 0. This proves the theorem.

Exercise 4.4. Let f(t, 2, ") be continuous for 0 < ¢ < p and (z, ) on
some 2d-dimensional domain and satisfy a Lipschitz condition of the form
(4.11), where

2
4.27) 20, + 10, < <.
P
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Then (4.1) has at most one solution satisfying given boundary conditions
z(0) = z,, z(P) =z,

Exercise 4.5. Let f(t, z, z') be continuous for 0 < ¢ < p and (z,z') on
a 2d-dimensional domain. Let Az =2, — z,, A2’ =2, — 2/, Af =
f(t, xq, 2') — f(1, 7y, 2,"), where z,, z,, 2,, z," are independent variables
and assume that

Ax-Af 4 |A2'2> 0 if Az5#0, Az-Ar' =0.

Then the boundary value problem z" = f(t, z, ), 2(0) = z,, z(p) =z,
has at most one solution.

Exercise 4.6. (a) Let x be a real variable. Let f(1, z, ') be continuous
and strictly increasing in z for fixed (¢, z'). Then (4.1) can have at most
one solution satisfying given boundary conditions z(0) = z,, z(p) = z,.
(b) Show that (a) is false if “strictly increasing” is replaced by “non-
decreasing.” (c) Show that if, in part (@), “strictly increasing” is replaced
by “nondecreasing” and, in addition, f satisfies a uniform Lipschitz
condition with respect to z’, then the conclusion in (a) is valid. [For an
existence theorem under the conditions of part (c), see Exercise 5.4.}

Exercise 4.7 (Continuity Method). Let z be a real variable. Let «(t, '),
B(t, =') be real-valued, continuous functions for —0 < ¢, 2’ < o with
the properties that (i) «, # are periodic of period p > 0 in ¢ for fixed z’;
(i) «>0; (i) |8(t, 2')| — oo and [a(t, 2')/B(t, ') =0 as |z'|— oo
uniformly in ¢. (a) Show that

(4.28) 2" = za(t, 2') + B(t, 2)
has at most one solution of period p,
(4.29) z0) —z(p) =0, 2'(0)—z'(p) =0.

(b) Show that if C = max |B(1, 0)|/«(?, 0) and K is so large that Ca(t, 2') <
31B(r, )| and |B(z, 0)] = |B(z, )I/4 when |¢| = K, then any periodic
solution z(z) of (4.28) satisfies |x(¢)| = C, |£'(t)] £ K. (¢) Assume that
a, B are of class C1. By showing that the set of A1-valueson0 < 1 < 1 for

which " = za(t, z') + (1, 2') — B(t,0) + AB(¢, 0)

has a periodic solution is open and closed on 0 < 4 <1, prove that
(4.28) has a unique periodic solution. (d) Show that the assumption in
(c) that a, § are of class C* can be omitted.

Exercise 4.8 (Continuation). Let «(t, z, 2'), f(t, 2z, 2") be continuous
for — < t, 7, 2" < oo with the properties that (i) «, # are periodic of
period p > 0 in ¢ for fixed (z, z); (ii) « > 0; (iii) there is a constant C
such that |f(z, z, 0)] £ Cua(t, 2, 0) for —o0 < t, x < o0; (V) |B(t, z, 2')| —
o and |«(t, z, 2')/f(1, x,2')] - 0 as |z'| > co uniformly on bounded
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(1, z)-sets. Show that
z" = za(t, z, 7') + B(t, 2, 2)

has at least one periodic solution.

S. A Priori Bounds

The proofs for the existence theorems for solutions of boundary value
problems in the last section depended on finding bounds for the solution
and its derivative. This section deals with more a priori bounds and their
applications. The main problem to be considered is of the following type:
Given a d-dimensional vector function z(t) of class C? on some interval
0 < ¢ < p, a bound for |2(?)|, and some majorants for |z”||, find a bound
for |z’}|. The following result holds for the case when z is a real-valued
function:

LemmaS.1. Let ¢s), where 0 S s < <0, be a positive continuous func-

tion satisfying
® sds

5.1
(.1 v

Let RZ0and v > 0. Then there exists a number M [depending only on
@(s), R, 7] with the following property: If 2(t) is a real-valued function of
class C*for 0 £ t < p, where p Z 1, salisfying

(.2 l«l =R, I2°] = (=D,

thenljg'| S Mfor0 St S p.
Proof. In view of (5.1), there exists a number M such that

M
(5.3) f s45_ 9.
tr/r ¢(S)

It will be shown that M has the desired property. [Instead of assumption
(5.1), it would be sufficient to assume the existence of an M satisfying (5.3).]

Let |2(f)| assume its maximum value at a point t =a,0 S a = p.
We can suppose that () > 0, otherwise z is replaced by —z. If z'(a) >
2R/, then there exists a point fon 0 < ¢ < p where 2'(f) = 2R/p < 2R/~.
Otherwise z(p) — 2(0) > 2R which contradicts |z| £ R. Assume 2(a) >
2R/ and let ¢ = b be a point nearest ¢ = g where z'(t) = 2R/r. For sake
of definiteness, let & > a. Thus 0 £ 2R/t = 2'(b) £ 2'(t) < #'(a) for
ast=sh

If the second inequality in (5.2) is multiplied by z'(t) > 0, a quadrature
overa £t S b gives

b 2'(1)x"(1) dt‘ ',
J; —-—-—q’(x'('» é,[, z'(t)dt < 2R.
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Even though it is not assumed that =" 0, the formal change of variables
s = #'(t) is permitted on the left and gives

J'z'(c) _S£ <R
2Rir @(S) ="

cf. Lemmal4.1. From (5.3), it is seen that 2’(a) £ M. Thus it follows
that either z'(a) < 2R/ or 2'(a) < M. In either case z'(a) £ M. Since
z'(a) = max |z'(1)| for 0 < ¢ < p, the lemma follows.

Lemma 5.1 is false if z is a d-dimensional vector, d = 2, and absolute
values are replaced by norms in (5.2). In order to sce this, note that
@(s) = ys* + C > 0, where y and C are constants, satisfies the condition
of Lemma 5.1. Let z(t) denote the binary vector z(t) = (cos nt, sin nt).
Thus |iz| = 1, [2'()] = Inl, |=z"()]] = n* = ||z’|®. Thus the inequalities
analogous to (5.2),

(5.9) =l = R, 12°) = ¢(l='}),

hold for R = 1, ¢(s) = s* + 1. But there does not exist a number M such
that [|2'(s)|| £ M for all choices of n. The main result for vector-valued
functions will be the next lemma.

Lemma 5.2. Let ¢(s), where 0 £ 5 < o0, be a positive continuous
Junction satisfying (5.1). Let «, K, R, v be non-negative constants. Then
there exists a constant M [depending only on ¢(s), «, R, 7, K] with the
Jollowing property: If x(t) is a vector-valued function of class C* on
0 < t < p, where p = , satisfying (5.4) and

(5.5 <t =R, 2"l S’ + K,  where r= ||,

then |z’ S Mon0 =t = p.

Proof. The first step of the proof is to show that (5.5) alone implies the
existence of a bound for ||z'(#)|| on any interval [u,p — u], 0 < u = ip.
Let0<u<pand0 =1 =<p— pu,then

t

+
(5-6) ot + p) — 1) — px'(1) = _[ (t + p — 5)2"(s) ds,
t+ pu— s 0,and (5.5) imply that

t+p
w12 S 2R + j "+ = ar'(s) + K) ds.

This inequality and the analogue of (5.6) in which z is replaced by r give

plIZ @) = 2R + alr(t + p) — r(t) — pr'(1)] + 1Kp?;
hence

(57 #I#O] S 2R( +aRM 4Kt — aur()  for 0S1Sp—p
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Similarly, for 4 < ¢t < p, the relation

¢
z(t) — 2(t — p) — pr'(t) = —J;_ (t — u — s)x"(s)ds

implies that
(58) iz’ S 2R(1 + oRW- §Ku? + aur'(t) for =<t =p.
Let

(5.9) MGp) = i’ﬂ’—*;ﬂi + 4Kp.

The choice u = {p in (5.7) and (5.8) gives

(5.10 = = My(3p) — ar'(t)  for 0=1=}p,
(5.11) IO = Mi(dp) + (1)  for dp=t=p.
Adding (5.10), (5.11) for ¢ = p/2 shows that
(5.12) =’ = Mi(3p).
The assumption (5.4) and (5.10)-(5.11) imply that
fz’ - 2| . .
5.13) ——— = |2’ = M,y(3p) £ ar',
( e(ll='l) '
where 4 is required accordingas ¢ = jpor¢ < Ip. Let O(s) be defined by
*udu
5.14 O(s) = | == .
(5.14) (s) o o)

Then, by Lemma 4.1,
(5.15) 1®(iz' () — PU=Ep)DI =

9

f ’ " dt
Tz —

e(l='lD
where the integral is taken over the t-interval with endpoints ¢ and p/2.
In view of (5.13), the integral is majorized by

IpMyAp) + « Ir(1) — r(dp)| < ipMy(dp) + 2aRT

o=’ (Ol) S SUI='GpD + IpMy(dp) + 2aR”

Hence
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In view of (5.12) and the fact that ® is an increasing function, |z'(r)}| S
M(p), where
M(p) = OHO(M 13p) + IpM 1(*}’) + 2xR?)

and @1 is the function inverse to ®. If p = , then ¢ € [0, p] is contained
in an interval of length 7 in [0, p]. Thus the considerations just completed
show that p can be replaced by 7, and the lemma is proved with M (7) as
an admissible choice of M.
Exercise 5.1. Show that an analogue of Lemma 5.2 remains valid if
(5.5) is replaced by
Izl = R, 2" = 5",

where p(t) is real-valued function of class C2 on 0 <7 < p such that
[p(t)] = K. In this case, M depends only on ¢(s), «, R, 7, and K.
The choice ¢(s) = ys* + C in Lemma 5.1 gives the following:
Corollary 5.1. Let y, C, &, K, R, v be non-negative constants. Then
there exists a constant M [depending only on y, C, a, R, 7, K] such that if
(t) is of class C*on 0 = t £ p, where p = +, satisfying (5.5) and

(5.16) Izt =R, "I =y I='I*+ C,

then |z’ S M for0 =t S p.
Remark 1. If y in (5.16) satisfies yR < 1, then (5.5) holds with

(5.17) am—" k=<
21 — 7R) 1< R

Thus assumption (5.5) is redundant in Corollary 5.1 when yR < 1 (but
the example preceding Lemma 5.2 shows that (5.5) cannot be omitted if
yR = 1). Also if « in (5.5) satisfies 2aR < 1, then (5.16) holds with

y = 2a and C= K ,
1 —2«R 1 — 2aR

so that (5.16) is redundant in this case. Even if d = 1 (so that z(¢) is
real-valued), condition (5.16) cannot be omitted if 2aR > 1).
In order to verify the first part of Remark 1, note that

(5.19) r =2z + |2']9).

Hence (5.16) shows that r" 2 2[(1 — yR) ||z’}* — CR]. Another applica-
tion of (5.16) gives yr" Z 2[(1 — pR)(Jl="| — C) — CRy] = 2[(1 —
yR) |2"|| — C). This is the same as (5.5) with the choices (5.17). The
proof of the remark concerning (5.18) is similar.

Exercise 5.2. Show that if 2aR > 1, then assumption (5.5) carinot be
dropped in Corollary 5.1.

(5.18)
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The following simple fact will be needed subsequently.
Lemma 5.3. Let f(t, z, ") be a continuous function on a set

(5200 E(p,R) = {(t,z,2'): 0 =t = p, llz| < R, 2’ arbitrary},
and let f have one or more of the following properties:

(521) z-f+I)*>0 when z-z'=0 and |z] >0,
(522) z-f+|#)*>0 when z-2'=0 and |z]| =R,
(5.23) 171 = oI,

(5.29) 1A= 22z f+ 12'|") + K.

Let M > 0. Then there exists a continuous bounded function g(t, z, z')
defined for 0 < t < p and arbitrary (z, ') satisfying

(5.25) gtz 2)=f(t,z,2) for 0=t=p, Izl =R |} =M
and having the corresponding set of properties among the following:
S21)z g+ 12'1*>0 when z-2'=0 and |z 20,
(522)z-g+12'I|*>0 when z-2’=0 and |z} ZR,
(5.23) gl = ("I,

(5:24) lgh = 2a(z- g + 2’1" + K.

Proof. We can obtain such a function g as follows: Let &(s), where
0 <s< o, be a real-valued continuous function satisfying = 1,
0<d<1,8=0accordingasd S M, M <s < 2M,s>2M. Put

g(t, z, z) = 8(|«'|)f(t,z,z) on E(p,R),
n— R Rz,
g(t, z, 2') izl g(t, izl z) for |z} > R.

On E(p, R), the identity
z- g+ ') = &z’ - £+ I=1%) + [t — &(l="D] I="|*

makes it clear that g has the desired properties on E(p, R). Furthermore
the validity of any of the relations (5.21')5.24') for fjz| = R implies its
validity for |lz|| > R. This proves the lemma.

Note that inequalities of the type (5.23), (5.24) imply that solutions of
(5.26) z" "_-f(t, z, z’)

satisfy (5.4), (5.5), respectively; cf. (5.19).
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Theorem 5.1. Let f(t, x, =') be a continuous function on the set E(p, R)
in (5.20) satisfying

(527) z-f+|Z*=0 if z-2’=0 and |z =R,

(5.24) and (5.23), where ¢(s), 0 < s < <0, is a positive continuous function
satisfying (5.1). Let |z,|l, |z ]l £ R. Then (5.26) has at least one solution
satisfying 2(0) = z,, 2(p) = z,,.

It will be clear from the proof that assumption (5.23) can be omitted
if 2aR < 1. Furthermore, if f satisfies

(5:28) I/ = v Ik + C

where y, C are non-negative constants and yR < 1, then both assumptions
(5.23) and (5.24) can be omitted.

If the vector x is 1-dimensional, Lemma 5.1 can be used in the proof
instead of Lemma 5.2. This gives the following:

Corollary 5.2. Let z be a real variable and f(t, z, z’) be a real-valued
Sunction in Theorem S5.1. Then the conclusion of Theorem 5.1 remains
valid if condition (5.24) is omitted.

Note that, in this case, condition (5.27) becomes simply f(¢, +R,0) = 0
and f(t, —R,0) = 0for0 =t < p.

Proof of Theorem 5.1. The proof will be given first for the case that f
satisfies (5.22) instead of (5.27). Let M > 0 be a constant (with p = 7)
supplied by Lemma 5.2. Let g(t, 2, ) be a continuous bounded function
for 0 < ¢ < p and arbitrary (z, 2") satisfying (5.25), (5.22"), (5.23'), and
(5.24). By Theorem 4.2, the boundary value problem

2" =gt x,2), z(0) = z,, and z(p) =12z,
has a solution z(¢). Condition (5.22') means that r = [|z(¢)||* satisfies
r">0if ¥ =0 and r = R?; cf. (5.19). Hence r(t) does not have a
maximum at any point f, 0 < ¢ < p, where r(t) = R®. Since r(0) =
lzoll?, r(p) = liz,lI? satisfy r(0), r(p) < R? it follows that r(f) < R? (i.e.,
lz(t)l = R) for 0 <t < p. By virtue of 2" =g and (5.23), (5.24'),
Lemma 5.2 is applicable to z(t) and implies that ||2'(r)] < M for0 <t < p.

Consequently, (5.25) shows that x(¢) is a solution of (5.26). This proves
Theorem 5.1 provided that (5.27) is strengthened to (5.22). In order to
remove this proviso, note that if € > 0, the function f(t, =, z') + e
satisfies the conditions of Theorem 5.1 as well as (5.22) if ¢, K in (5.23),
(5.24) are replaced by ¢ + €R, K + €R, respectively. Hence

" =f(t,2,2') + e

has a solution x = z (t) satisfying the boundary conditions. Itis clear that
flz ()l = Rand that there exists a constant M (independent of €,0 < € <
1) such that |z,/(f)| = M. Consequently, if N = max | f(t, z, z')| + |
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for 0 =1 = p, llz]l £ R, |z’ £ M, then |jz."(t)l < N. Thus the family
of functions z(t), z,'(t) for 0 < t < p are uniformly bounded and equi-
continuous. By Arzela’s theorem, there is a sequence 1 > €¢; > € > - -
such that ¢, — 0 as n — o0, and z(¢) = lim z(¢) exists as € = ¢, — 0 and
is a solution of (5.26) satisfying 2(0) = =,, z(p) = z,. This completes the
proof of Theorem 5.1.

Exercise 5.3. Show that if (5.27) in Theorem 5.1 is strengthened to

(5.29) z-f4 |2'|*=0 when z-2'=0,
then (5.26) has a solution z(r) satisfying 2(0) = z,, (p) = 0, and
(5.30) rz0, r=0 if r=|z|

Exercise 5.4. Let u be a real variable. Let A(t, 4, «’) be real-valued
and continuous for 0 < ¢ < p and all (¥, «'), and satisfy the following
conditions: (i) A is a nondecreasing function of u for fixed (t, «'); (ii) |h| =
o(|u’l) where ¢(s) is a positive, continuous, nondecreasing function for
s = 0 satisfying (5.1); (iii) «" = h(t, u, ') has at least one solution
u,() which exists on 0 = ¢t < p [e.g., (ii) and (iii) hold if || < « ju'| + K
for constants «, K ]. Let u,, u, be arbitrary numbers. Thenu” = h(t, u, u')
has at least one solution u(t) satisfying u(0) = u,, u(p) = u,. [For arelated
uniqueness assertion, see Exercise 4.6(c).}

Theorem 5.2. Let f(t, z, 2) be continuous in

(531) ER) ={(tz2): 0=5t< oo, |z| £ R, 2 arbitrary}.
For every p > 0, let f satisfy the conditions of Theorem 5.1 on E(p, R) in
(5.20), where @(s) and the constants a, K in (5.23), (5.24) can depend on p.
Let ||zyl £ R. Then (5.26) has a solution x(t) which satisfies x(0) = z,
and exists for t Z 0.

Exercise 5.5. (a) Prove Theorem 5.2. (b) Show that if, in addition,
(5.27) is strengthened to (5.29) in Theorem 5.2, then the solution z(t) can
be chosen so that (5.30) holds. (c) Furthermore, if (5.29) is strengthened to
z-f+ |2'|* =0, then r 20, ' <0, r"20fort20. (@) Ifzis -
dimensional, show that condition (5.24) can be omitted from Theorem 5.2
and parts (b) and (c) of this exercise.

Exercise 5.6. Let f(t, z, z') be continuous on the set E(R) in (5.31).
For every m, 0 < m < R, let there exist a continuous function h(t) =

h(t, m) for large ¢ such that wah(t) dt= o0 and z- f(t, 2, 2) Z (1) 2 0

for large ¢, 0 < m X |lz| £ R, z’ arbitrary. Let z(r) be a solution of
(5.26) for large . Then z(1) — 0 as t — co.

Exercise 5.1. Let f(t, , 2') be continuous on E(R) in (5.31) and have
continuous partial derivatives with respect to the components of z, z’;
let the Jacobian matrices (4.23) satisfy §(B + B*) — }FF* 2 0; cf. (3.17).
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Let 2l < R. Then (5.26) has at most one solution satisfying 2(0) = z,
and jj2(t)] S Rfort = 0.

Remark 2. The main role of the assumptions involving (5.23) and/or
(5.24) in Theorems 5.1, 5.2 is to assure that the following holds:

Assumption (A,). There exists a constant M = M (p) with the property
that if z(r) is a solution of z" = f(t,z,2) for 0 St < p satisfying
=2l = R, then |z'(1)] S M for0 =1 = p.

Exercise 5.8. Let f(t,z,2') be continuous on E(R) in (5.31) and
satisfy assumption (4,) for all p = p, > 0. Suppose that, for each z, in
flzoll = R, (5.26) has exactly one solution z(r) = (1, z,) satisfying z(0) =
xz, and existing for ¢ = 0(cf, e.g., Theorem 5.2 and Exercise 5.7.) (a) Show
that z(t, z)) is a continuous function of (¢, z,) for ¢ =0, |iz,] < R.
(b) Suppose, in addition, that f(r, z, z') is periodic of period p, in ¢ for
fixed (z,z"). Then (5.26) has at least one solution z(r) of period p,.

PART III. GENERAL THEORY
6. Basic Facts

The main objects of study in this part of the chapter will be a linear
inhomogeneous system of differential equations

(6.1 y' =A@y + g,

the corresponding homogeneous system

(6.2) y =A@y,

and a related nonlinear system
(6.3 y =40y + /).

Let J denote a fixed t-interval J:0 St < w (< ). The symbols
z,9,f,8 ... denote elements of a d-dimensional Banach space Y over
the real or complex number field with norms jlz|, Hyl, I /1, lgl,....
(Here ||z|} is not necessarily the Euclidean norm.) In (6.1), g = g(¢) is a
locally integrable function on J (i.e., integrable on every closed, bounded
subinterval of J). A(t) is an endomorphism of Y for (almost all) fixed ¢
and is locally integrable on J. Thus if a fixed coordinate system is chosen
on Y, A(t) is a locally integrable d x d matrix function on J.
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When y(¢) is a solution of (6.1) on the interval [0, a] < J, the fundamen-
tal inequality

64) Iyl < {uyu')u +f:ug(s)u ds} exp f IAE)Nds  for 01,0 Za

follows from Lemma IV 4.1. If this relation is integrated with respect to
t! over [0, a], we obtain

65 Iyl s {i j ")l ds + f. Ig(s)l ds} exp f I A(s)l ds

for0St=<a.

Let L = L; denote the space of real-valued functions ¢(t) on J with
the topology of convergence in the mean L' on compact intervals of J.
Thus L is a Fréchet (= complete, linear metric) space. For example, the
following metric, which will not be used below, can be introduced on
L:let0=1<t; <t<..., t,—~w as n— oo, and let the distance
between ¢, y € L be

o 2" tn
] = 4 I = - :
d(e, v) "Z:l TN where I(n) J; lp — yldt

Correspondingly, let C = C, denote the space of continuous, real-
valued functions ¢(t) on J with the topology of uniform convergence on
compact interval of J. Thus C is also a Fréchet space. A metric on C,
e.g., is

- m(n)
d » = T T
@9 =2 ]

The symbols L? = L, 1 < p < oo, denote the usual Banach spaces of
real-valued functions ¢(t) on J: 0 < t < w (£ o) with the norm

1/p
lgpl, = (f Iw(t)l’d:) if 1Sp<oo,
J

|ple = ess sup [@(1)] if p= 0.
J

where m(n) = [T?); (1) — w(Ol .

L,* is the subspace of L* consisting of functions ¢(t) satisfying g(f) — 0
as 1 — w. For other Banach spaces B of real-valued, measurable functions
@(7) in J, the notation |@|z will be used for the norm of ¢(¢) in B.
Remark. Strictly speaking, the spaces L, L, L,”, ... are not spaces
of “real-valued functions” but rather spaces of ‘‘equivalence classes of
real-valued functions,” where two functions are in the same equivalence
class if they are equal except on a set of Lebesgue measure zero. Since no
confusion will arise, however, over this ‘‘abuse of language,” the
abbreviated terminology will be used. In this terminology, the meaning
of a “continuous function in L” or the “intersection L N C” is clear.
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L(Y), L*(Y), B(Y), ... will represent the space of measurable vector-
valued functions y(t) on J: 0 £ ¢ < w (£ o) with values in Y such that
(1) = ly()ll is in L, L? B,.... With L? or B, the norm |g|, or |¢|p
will be abbreviated to |y|, or |yl

A Banach space D will be said to be stronger than L(Y) when (i) D is
contained in L(Y) algebraically and (ji) for every 2,0 < a < , thereis a
number « = ay(a) such that y(r) € D implies

(6.6) J;ally(t)ll dt Salyly, where a= ay(a)

[It is easily seen from the Open Mapping Theorem 0.3 that condition (ii) is
equivalent to: ‘‘convergence in D implies convergence in L(Y).”]

If D is a Banach space stronger than L(Y), a D-solution y(¢) of (6.1) or
(6.2) means a solution y(r) € D. Let Yy denote the set of initial points
¥(0) € Y of D-solutions y(t) of (6.2). Then Y4 is a subspace of Y. Let Y,
be a subspace of Y complementary to Yy; i.c., Y, is a subspace of Y such
that Y = Y, @ Y, is the direct sum of Yy and Y, so that every element
y< Y has a unique representation y =y, + ¥, with y,€ Yp, 9, €Y,
(e.g., if Y is a Euclidean space, Y, can be, but need not be, the subspace
of Y orthogonal to Yy). Let P, be the projection of Y onto Yy
annihilating Y,; thusify = y, + y, withy, € Yo, y, € Y}, then Py = y,.

Lemma 6.1. Let A(r) be locally integrable on J and let D be a Banach
space stronger than L(Y). Then there exist constants Co, C, such that if
y(t) is a D-solution of (6.2), then

6.7 lylp < Coliw(O) and yO)Il = C, |yl

Proof. Y, is a subspace of the finite dimensional space Y. In addition,
there is a one-to-one, linear correspondence between solutions y(f) of
(6.2) and their initial points (0). Thus the set of D-solutions of (6.2) is a
finite dimensional subspace of D which is in one-to-one, linear corre-
spondence with Yy. Itisa well known and easily verified fact that if two
finite-dimensional, normed linear spaces can be put into one-to-one
correspondence, then the norm of an element of one space is majorized by
a constant times the norm of the corresponding element of the other
space. [For example, an admissible choice of C, is a

a-Yap(a) exp fo “LAG)] ds

for any a, 0 < a < w. This follows from (6.6) and the choices ¢ =0,
g(s) = 0in (6.5).]

Let B, D be Banach spaces stronger than L(X). Define an operator
T = Ty from D to B as follows: The domain 2(T) < D of Tis the set
of functions y(r), t €J, which are absolutely continuous (on compact
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subintervalis of J), ¥(r) € D, and ¥'(r) — A(t) y(t) € B. For such a function
¥(1), Ty is defined to be y'(t) — A(r) y(t). In other words, Ty = g, where
2(1) € B is given by (6.1).

Lemma 6.2. Let A(t) be locally integrable on J and let B, D be Banach
spaces stronger than L(Y). Then T = Tgy, is a closed operator; that is the
graph of T, 9(T) = {(¥(1), g(1)):¥(1) € D(T),g = Ty}, is a closed set of
the Banach space D x B.

Proof. In order to prove this, it must be shown that if (), ¥5(¢), . . .
are elements of 2(T), g, = Ty,, ¥t) = lim y,(¢) exists in D and g(r) =
lim g, (¢) exists in B, then y(t) € 2(T) and g(t) = Ty.

The basic inequality (6.5) combined with (6.6) and the analogue of
(6.6) for the space B give

1920 = 9000 5 [2 2 14— aly + 2 £~ sle] 30 [ 14O ds.

Hence y(¢) is the uniform limit of y,(?), ¥4(?), . . . on any interval [0, a] < J.
The differential equation (6.1) is equivalent to the integral equation

¥(t) = y(a) +£ A(s)y(s) ds +.[. g(s) ds.

Since the convergence of gy, g5, . . . in B implies its convergence in L(Y), it
follows that (6.1) holds where y = lim y,(r) in D, g = limg,(¢) in B.
Finally, y € D, g € B show that y € 2(T). This proves Lemma 6.2.

The pair of Banach spaces (B, D) is said to be admissible for (6.1) or for
A(1) if each is stronger than L(Y), and, for every g(t) € B, the differential
equation (6.1) has a D-solution. Inother words,themap T = Tgy: 2(T) —
B is onto, i.e., the range of T is B. (For example, if J:0 St < oo,
A(t) is continuous of period p, and B = D is the Banach space of con-
tinuous functions y(t) of period p with norm |yl = sup [[y(t)l, then
(B, D) is admissible for (6.1) if and only if (6.2) has no nontrivial solution
of period p; see Theorem 1.1.)

Lemma 6.3. Let A(t) be locally integrable on J, let (B, D) be admissible
Jor (6.1), and let y,€ Yy. Then, if g(t) €B, (6.1) has a unique D-solution
¥(t) such that Pyy(0) = y,. Furthermore, there exist positive constants
C, and K, independent of g(t), satisfying

(6.8) lylp = Colwel + Kligls.

Proof. Consider first the case that y, = 0, so that we seek D-solutions
y(t) with y(0) € ¥,. For any ge B, (6.1) has a solution y(r)eD, by
assumption. Let y(0) = y, + y;, where y, = Py(0) € Yy, y, € ¥;. Let
¥.(t) be the solution of the homogeneous equation (6.2) such that y,(0) =
¥, SO that yo(r) € D. Then y,(f) = (1) — (1) € D is a solution of (6.1)
and ¥,(0) =y, € Y;.
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1t is clear that ,(r) is a unique D-solution of (6.2) with initial point
in Y,. Thus there is a one-to-one linear correspondence between g € B
and D-solutions ,(t) of (6.2) with y,(0) € Y,. The proof of Lemma 6.2
shows that if T, is the restriction of T = Tgy with domain consisting of
elements y(t) € 2(T) satisfying y(0) € Yy, then T is closed. Thus T; is
a closed, linear, one-to-one operator which maps its domain in D onto 3.
By the Open Mapping Theorem 0.3, there is a constant K such that if
Ty = g, then |yly < K |glg. This proves the theorem for y, = 0.

If y, 7 O, let y,(¢) be the unique D-solution of (6.2) satisfying ¥,(0) € ¥;.
Let y4(t) be the unique D-solution of the homogeneous equation 6.2)
satisfying ¥,(0) = y,. Then y(1) = yo(1) + %(1) is a D-solution of (6.1),
Py(0) = y,, and lylp < lyo()lp + l32(?)lp. By the part of the lemma
already proved, |y,(t)ly = K |glg and, by Lemma 6.1, lyo(f)lp = Co %l
This completes the proof of Lemma 6.3.

7. Green’s Functions

Let ho, (1) be the characteristic function of the interval 0 S 1 < g, so
that hg (1) =1 or 0 according as 0 = ¢ = a does or does not hold.
Similarly, let h,(f) be the characteristic function of the half-line ¢ Z q, so
that h,(f) = 1 or 0 accordingas t Z aor¢ < a.

A Banach space B of functions on J: 0 = 1 < w (S o) will be called
leanat t = o if p(t) € B and 0 < a < w imply that ko, ()y(1), A (Dy(1) €
B; lhoylss hyls < lyle; and |hyplg —0 as a— w. Since h()y(r) =
(1) — ho()y(t) on J, the property “lean at ¢ = «™ implies that the
set of functions hg,(Ny(f) of B vanishing outside of compact intervals
[0, a) < J is dense in B.

Let D be a Banach space stronger than L(Y). As above, let Y; = Y;3 be
a subspace of Y complementary to Yp. Let Py = Pyg be the projection
of Y onto Yy annihilating Y,, and P; = I — Py the projection of Y onto
Y, annihilating Y3. In terms of a fixed basis on Y, P, and P, are
representable as matrices.

Let U(r) be the fundamental matrix for (6.1) on 0 < ¢ < w satisfying
U@©) = I. For0 < s, t < w, define a (matrix) function G(t, s) by

G(t,5) = U)PUX(s) for 0Ss=1,

7.1
G(t,s) = —U@®P,UY(s) for 0=t<s

For a fixed ¢, G(t, 5) is continuous on 0 < s < w, except at s = ¢, where
it has left and right limits, U(®)P,U-%(r) and — U(:)P,UX(1).

Theorem 7.1. Let A(t) be locally integrable on J. Suppose that B, D
are Banach spaces stronger than L(Y); that B is lean at o; and that
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D has the property that if y(t), ¥,(t) are continuous functions from J to Y
and y(t) — y,(t) = 0 near t = w (i.e., y, — yy = 0 except on an interval
[0, a] < J), then y(t) € D implies that y,(t) € D. Then (B, D) is admissible
for (6.1) if and only if, for every g(t) € B,

(] a
(7.2) y() = j G(t, s)g(s) ds = lim f G(t, s)g(s) ds
[} a~o JO
exists in D. In this case, the limit is uniform on compact intervals of J and

is the unique D-solution of (6.1) with y(0) € Y,.
Proof. “Only if”. Let g(1) € B, g.(t) = ho,()g(?). Then (7.2) becomes

03w =[ G 980 ds = [ 6,950 ds,
where the integral exists as a Lebesgue integral for every fixed ¢, since

G(t, s) is bounded for 0 < s < a and g,(s) is integrable over J. In view of
the first part of (7.1), the contribution of 0 £ s S 110 (7.3) is

t ¢ t
VO U018.69 ds = UO [ U089 ds — U, [r©aas

Hence, by the second part of (7.1), (7.3) is

]
(1.4) yelt) = UG f U-Xs)gu(s) ds + U(D3(0),
where
(1.5) 4(0) = —P; f U (9)8.(s) d.

It follows from (7.4) and Corollary IV 2.1 that y,(¢) is a solution of (6.1)
when g(t) is replaced by g,(¢).
An analogue of the derivation of (7.4) gives

walt) = —U() f "U-Hs)gu(s) ds + U()P, jo "UH)els) ds.
Hence

U-a)yula) = Po f "U(s)ga(s) ds € Yo.

Thus for a £t < w, y,(t) is identical with the solution U(r) U Y(a)y,(a)
of the homogeneous equation (6.2). Since the initial point of the latter
solution is in Yy, the property assumed for D implies that y,(¢) € D.

Since y,(0) € ¥, by (7.5), it follows that y,(¢) is the unique solution of
(6.1), where g = g,(¢), satisfying y,(0) € Y,. Hence, by Lemma 6.3,
[Yalo = Klgals.
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Let 0 < a < b < w. Then, since B is lean at 1 = w,
9. = %l S Klg. — gls £ 2Kl gls =0 as a—w

Thus y = lim y,(¢) exists in D as a - w. Also g = lim g(¢) in B. Since
T = Tgp in Lemma 6.2 is closed, y(¢) is a D-solution of (6.1). The proof
of Lemma 6.3 shows that y = lim y,(¢) uniformly on compact intervals
of J. Hence, y(0) = lim y,(0) € Y,. This proves “only if” in Theorem
7.1. The “if” part is easy.

Corollary 7.1. Let w = o, B and D be Banach spaces of class T#;
B’ be the space associate to B; cf. § XII1 9. For the admissibility of (B(Y),
D(Y)),(i) it is necessary that |G(t, -)| € B' for fixed t—thus the integrals
in (1.2) are Lebesgue integrals; (ii) when B is lean at <o, it is necessary and
sufficient that (1.2) define a bounded operator g —y from B(Y) to D(Y);
(iii) it is sufficient that r(t) € D where r(t) = | ||G(t, )l | 5; (iv) when
D = L*, it is necessary and sufficient that r(t) e L®.

Exercise 7.1. Verify this corollary.

8. Nonlinear Equations
Lemmas 6.1-6.3 will be used to study the nonlinear equation
®.) y' =A@y + /0 9).
Let B, D be Banach spaces stronger than L(Y) and Z, the closed ball
Z,={y0): y()ed, llp=p} inD

Theorem 8.1. Let J; 0 St < w (=), A(t) a locally, integrable
d x d matrix function on J, and (B, D) admissible for (6.1). Let f(¢, y(t))
be an element of B for every y(t) € T, and satisfy

(8.2) 1/t (1)) — [0, vl = Blya(1) — wa(Dlp

Jor all y,(1), y(t) € X, and some constant 0; r=|f(1,0)lg; o€ Ygp.
Suppose that if C,, K are the constants in Lemma 6.3, then 0, r, |yl are
so small that

(8.3) Collyol + Kr = p(1 —0K) and 6K < 1.
Then (8.1) has a unique solution y(t) € Z, satisfying
8.4 Poy(Q) = ¥o.

It will be clear from the proof that the first part of (8.3) can be replaced
by the assumption

(8.5) Colwel + K| f(ty(Dlg = p  forall y()eZ,
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In fact, the role of the assumption in (8.3) is to assure (8.5). In (8.4), P,
is the projection of Y onto Yy, annihilating a fixed subspace Y,, where
Y=Y,0Y,

Proof. Theorem 8.1 is an immediate consequence of Theorem 0.1 and
Lemma 6.3. Since f(t, 2(t)) € B for any z(t) e Z,, Lemma 6.3 and the
assumption that (B, D) is admissible imply that

(8.6) y = Ay + f(t, =(1))

has a unique D-solution y(¢)satisfying (8.4) and (6.8), whereg(r) = f(s, z(1)).
Define the operator T, from X, into D by y(t) = T,[»(1)]. In particular,
if m = |T,{0]|5, then

3.7 m = G, llyoll + Kr,  where r=|[f(¢,0)g.

If 2,(1), 2(t1) € Z, and y, = Tolz,}, 92 = Tilzy), it foliows that y,(r) —
¥s(t) is the unique D-solution of

¥ =A@y + (1, 2,() — f(1, 2o(0))
satisfying Poy(0) = 0. Hence, by Lemma 6.3 and by (8.2),
8.8 v = wilp S 0K |z, — zly,.

Consequently, Theorem 0.1 is applicable, and so T, has a unique fixed
point y(t) € X,. This proves Theorem 8.1.

The statement of the next theorem involves the space C(Y) of continuous
functions y(¢) from J to Y with the topology of uniform convergence on
compact intervals in J. The theorem will also involve an assumption
concerning the continuity of the map T,[y(t)] = f(¢, ¥(t)) from the closure
of the subset Z, N C(Y) of C(Y) into B. This condition is rather natural
in dealing with Banach spaces B, D of continuous functions on J with
norms which imply uniform convergence on J. This is the case in Parts
I and 11, where J is replaced by a closed bounded interval 0 £ ¢ < p.
This continuity condition will also be satisfied under different circumstances
in Corollary 8.1. ‘

Theorem 8.2. Let A(t) be locally integrable on J; B, D Banach spaces
stronger that L(Y); I, the closed ball of radius p in D; and S the closure
of T, N C(Y) in C(Y). Let A(t)and f(1, y) satisfy (i) (B, D) is admissible
for (6.1); (ii) y(t) — f(t, y(t)) is a continuous map of the subset S of the
space C(Y) into B; (iii) there exists an r > 0 such that

(8.9) If(t, g Sr  for y(1)eS;
and (iv) there exists a function A(t) € L such that
(8.10) W@, vl S 4()  for teld, y(t)es.
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Let C,, K be the constants of Lemma 6.3 and let y, € Yy. Letr, ||yl be so
small that

8.1 Collgoll + Kr = p.

Then (8.1) has at least one solution y(t) € I, satisfying Poy(0) = y,.

Proof. Asin the last proof, define an operator T, of S into D by putting
y = T,[z], where z(t)e S and y(r) is the unique D-solution of (8.6)
satisfying (8.4). Thus, by Lemma 6.3,

lylp = Co llyoll + K 1S (1, x(Dlg = Co ligell + Kr.
Hence assumption (8.11) implies that T, maps S into itself, in fact, into
I, NCY)cs.
Note that the basic inequality (6.5) implies that

byl < E f “lo)l ds + f “leo)l ds} exp L | A()] ds

for 0 £t Z aif g(t) = f(1, z(1)). Since D is stronger than L(Y), (6.6)
holds. Also there is a similar inequality for elements g € 8 with a suitable
constant ag (a). Hence, for0 =17 =g,

®12) IOl S {i x5(@) 19l + a8(a) Igls: exp f "VA) ds.

It will first be verified that T,: S — S is continuous where S is considered
to be a subset of C(Y). Let z,(t) € S, g,(r) = f(1, (1), y(t) = Tolz(2)]
for j =1, 2, then y,(t) — y,(t) is the unique D-solution of (6.1), where
g = &1 — &y satisfying Py[y,(0) — y4(0)] = 0. Hence Lemma 6.3 implies
that

1 — ¥alp = Klg1 — gals-

Also, 8.12) holds if y =y, —y,and g =g, — g,. Thus,for0 St < a
l a
1520 = 901 = {Lca@)K + 2o(@)] les = il exp [ 14O .

Since, by assumption (ii), z,(t) — 2,(¢f) in C(Y) implies g, — g; in B, it
follows that y,(t) — y4(¢) uniformly on intervals [0, a] of J; i.e., y,(f) —
y«(?) in C(Y). This proves the continuity of 7,: S — S.

It will now be shown that the image TS of S has a compact closure in
C(Y). It follows from (8.12), where g(t) = f(t, 2(t)) and y(t) = T,[x(t)]
that,for0 £t Z qa,

ly(Dll = ia»(a)p + as(a)r} CXPJ:"A(S)“ ds.

Thus the set of functions y(t) € T,S are uniformly bounded on every
interval [0, a] of J. If ¢(a) is the number on the right of the last inequality,
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then (8.6) and (8.10) show that

uy(r)—y(s)ugc(a)f 1AW du + f'l(u)du for 0Ss<1<a.

Therefore, the functions y(¢) in the image T,S of S are equicontinuous on
every interval [0,a] < J. Consequently, Arzela’s theorem shows that
T,S has a compact closure in C(Y). Since S is convex and closed in
C(Y), it follows from Corollary 0.1 that T, has a fixed point y(r) € S.
Thus Theorem 8.2 is a consequence of the fact that y(r) = T,[y(r)] €
Z, N C(Y).

It is convenient to have conditions on B, D, f(1, y), A(t) which imply
(ii), (iii), (iv) in Theorem 8.2.

Assumption (H,) on B = B(X): Let B = B(X) (¢f. §6), where X is a
subspace of Y and B is a Banach space of real-valued functions on J such
that (i) B is stronger than L; (ii)Bisleanat t = w(cf. § 7); (iii) B contains
the characteristic function ho(t) of the intervals [0,a) < J; and (iv) if
@:1(1) € B and @y(t) is a measurable function on J such that |@,(t)] < g, (0),
then py(t) € B and |p,lg < |pyls.

It is important to have 8 = B(X)rather than B = B(Y)for applications
to higher order equations, If such equations are written as systems of
differential equations of the first order, the “inhomogeneous term (¢, y)”
will generally belong to a subspace X of Y; e.g., f(1, ¥) might be of the
form (4,0,...,0).

Examples of spaces B satisfying the conditions in (H,) are B = L?,
1 £p < o, and B= L,” (but not B = L®). Other such spaces B can
be obtained as follows: Let y(¢f) > 0 be a measurable function such that
v(t) and 1/y(t) arebounded on every interval 0 < ¢ < a (<w). Denote
by B = L, the space of functions ¢(f) on J such that ¢(t)/y(t) € L,
with the norm |plg = |p/yl,. The space B = L, satisfies conditions
(i)(iv). For this space, A(t) € B holds if

A(D)
. = =< d == 50 — .
(8.13) 0= = vt an ) as t—w

Assumption (H,) on f(t,y): Let f(t, y) be continuous on the product set
of J and the ball ||y < p in Y, let f have values in X, and let there exist a
function Xt) € L such that

(8.14) I/ I = A@) for teJ, |yl = p.

Corollary 8.1. Let A(t) be locally integrable on J, (B, D) admissible for
(6.1), B satisfies (Hy), D = L°(Y) [or D = Ly*(Y)), f(t, y) satisfies (H,)
and Xt) € B with r = |A|g. Let yo€ Yy. Then, if (8.11) holds, (8.1) has
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at least one solution y(t) on 0 = t < w satisfying Pyy(0) = y,, ly(OI = p
[and y(t) = 0 as t — w).

Exercise 8.1. Verify Corollary 8.1.

Exercise 8.2. Let Y be expressed as a direct sum Yy @ Y;; let Py
be the projection of Y onto Yy annihilating Y,, and P, =/ — P, the
projection of Y onto Y, annihilating Yy. Let A(r) be locally integrable
onJ: 05t < . Define G(1, s) by (7.1) and suppose that there exist
constants N, » > 0 such that |G(t, s)| £ Ne="¥~* for s, 1 =2 0. Let
f{(t, y) be continuous for 0 < 1 < oo, |yl < p, and let | f(1, )il = r. Let
Yo € Yp. Show that if ||yl and r > O are sufficiently small, then (8.1) has
a solution y(¢) for 0 <t < oo satisfying [y()f < p and Py(0) = y,.
(For necessary and sufficient conditions assuring these assumptions on G,
see Theorems XIII 2.1 and XIII 6.4.)

9. Asymptotic Integration

In this section, letJ be the half-lineJ: 0 £t < oo (sothat w = ©). As
a corollary of Theorem 8.2, we have:

Theorem 9.1. Let A(t) be continuous onJ: 0 St <oo. Let f(t,y) be
continuous for t Z 0, llyll = p, satisfy

é.n el =4) for 120, |yl =p

and have values in a subspace X of Y. Assume either (i) that A(t) € L' and
that (L\(X), D), where D = L*(Y) [or D = Ly*(Y)), is admissible for

9.2) Y = Ay + g(t);

or (ii) that there exists a measurable function w(t) > 0 on J such that
w(t) and 1/y(t) are locally bounded, that

9.3) 0SA()=yw() and A -0 as t— o,
¥()
and that for every g(t) € L(X), for which
64 ED) o a5 1o,
W)
(9.2) has a D-solution. Then if t, is sufficiently large, the system
9.5) y =AMy +f(ty)

has a solution for t = t, such that |y(t)ll < p [and y(t) — 0 as t — o],
Remark 1. Assumption (ii) merely means that (L3(X), D) is admis-

sible for (9.2). Actually, assumption (i) is a special case of (ii) but isisolated

for convenience. For a discussion of conditions necessary and sufficient
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for (LY(X), L*(X)) or (L}(X), L,°(X)) to be admissible for (9.2), where
X = Y, see Theorem XIII 6.3.
Remark 2. Let U(r) be the fundamental solution for

(9.6) y' = Ay

satisfying U(0) = 1. Let yo€ Yy. Then if ||yl is sufficiently small and
1, = 0 is sufficiently large, the solution y(¢) in Theorem 9.1 can be chosen
s0 as to satisfy

U=Y1o)y(te) = Yo-

Let C,, K be the constants of Lemma 6.3 associated with the admissibility
of the appropriate pairs of spaees (L'(X), D) or (L5(X), D). According
as (i) or (ii) is assumed, the conditioas of smallness on {ly,|l and largeness
of t, are

Ki
Co llwoll + Kf ADdi ZEp or Colyl + — (1) <y

w()

Proof. Let B = L'(X) or B = L3(X) according as (i) or (ii) is
assumed. Then Theorem 9.1 is a consequence of Corollary 8.1 obtained
by replacing f(t,y), A(r) by the functions h,(1)/(t,y), h(t)A(r), where
a = tyand h,(t)is 1 or 0 accordingast = aort < a.

Exercise 9.1. The following type of question often arises: Let y,(r) be
a solution of the homogeneous linear system (9.6). When does (9.5) have
a solution y(r) for large r such that y — y, —0 as t— 00? Deduce
sufficient conditions from Theorem 9.1.

As an application of Theorem 9.1, consider a second order equation

9.7 u" = h(t, u, u')

for a real-valued function u. Assume that h(t, u, ') is continuous for
t 2 0and arbitrary (4, «’). Let «, f be constants and consider the question
whether (9.7) has a solution for large ¢ satisfying

for t Z 1,.

(9.8) ut) —at—p—-0 and W({t)—a—0 as t—©
Introduce the change of variables u — v, where

9.9) u=at+f+v,

then (9.7) becomes

(9.10) V=h(t,at + B + v, a + V)

and (9.8) is v, v’ — 0 as t = co. Theorem 9.1 implies the following:
Corollary 9.1 Let h(t, u, u’) be continuous for t Z 0 and arbitrary (u, u')
such that
Wt ot + B+ w0+ W S M) for Jul, ] S p,
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where A(t) is a function satisfying
f tA(1) dt < co.

Then (9.7) has a solution u(t) for large t satisfying (9.8).

Exercise 9.2. (a) Verify Corollary 9.1. (b) Apply it to the case that
h = f(1)g(u), where « % 0 or « = 0. (c) Generalize it by replacing (9.7)
by u'®) = h(t, u, o, ..., u4"M).

Actually Corollary 9.1 is a special case of Theorem X 13.1, but Theorem
X 13.1 can itself be deduced from Theorem 9.1; cf. Exercise 9.3 below.

Many problems involving asymptotic integrations can be solved by the
use of Theorem 9.1. Often these problems can be put into the following
form: Let Q(¢) be a continuously differentiable matrix for ¢ = 0. Does
the nonlinear system (9.5) have a solution y(¢) such that if

9.11) y = Q1)
then ¢ = lim x(¢) exists as r — c0? The differential equation for z(¢) is
(9.12) 2’ = Q7 N[4(MQM) — @'}z + 7S, Q(1)2).

The change of variables

(9.13) z=x—¢

transforms (9.12) into

9.14) 2= QAQ — Q)2 + g(t, 2, ),

where

(9.15) gt z,¢) = O07N(4Q — Q') + Q7Y (1, 0z + Qo).

The problem is thus reduced to the question: Does (9.14) have a solution
z(t) for large ¢ such that z(r) -0 as r — o? Clearly, Theorem 9.1 is
adapted to answer such questions.

We should point out that if the answer is affirmative, then (9.11) and
the conclusion z(t) — ¢ — 0 as # — oo need not be very informative unless
estimates for [z(f) — c|| are obtained [e.g., if Q(r) is the 2 x 2 matrix
O(1) = (g.(1)), where g, = (—1)te~*, gy = e fork = 1,2 and ¢ = (1, 0),
then we can only deduce y(t) = o(e’), but not an asymptotic formula of
the type y(t) = (=1 + o(1), 1 + o(l))e~* as t - c0.]

Exercise 9.3. Follow the procedure just mentioned and deduce
Theorem X 13.1 by using Theorem 9.1 (instead of Lemma X 4.3).

Notes

INTRODUCTION. The use of fixed point theorems in function spaces was initiated by
Birkhoff and Kellogg [1]. For Theorem 0.2, see Tychonov [1]. For Schauder’s fixed
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point theorem, see Schauder [1]. For the remark at the end of the Introduction, see
Graves [1). As mentioned in the text, Theorem 0.3 is a result of Banach [1].

SECTION 1. Results analogous to those of this section but dealing with one equation
of the second order, ¢.g., go back to Sturm. Boundary value problems for systems of
second order equations were considered by Mason [1]. The results of this section
(except for Theorem 1.3) are due to Bounitzky [1]; the treatment in the text follows
Bliss (1). These results are merely the introduction to the subject which is usually
concerned with eigenfunction expansions; see Bliss [1] for older references to Hilde-
brandt, Birkhoff, Langer, and others. For an excellent recent treatment for the singular,
seif-adjoint problem; see Brauer [2). Theorem 1.3 is given by Massera {1}, who at-
tributes the proof in the text to Bohnenblust.

SECTION 2. Theorems 2.1 and 2.2 are similar to Theorems 4.1 and 4.2, respectively.
Exercise 2.1 is a result of Massera (1] and generalizes a theorem of Levinson [2]; its
proof depends on a (2-dimensional) fixed point theorem of Brouwer. Exercise 2.2 is a
result of Knobloch (1], who uses a variant of Brouwer's fixed point theorem due to
Miranda [1); cf. Conti and Sansone [1, pp. 438-444].

Theorems 2.3 and 2.4 are due to Poincaré [5, I, chap. 3 and 4]; sce Picard {2, 1II,
chap. 8]. Problems concerning ‘“‘degencrate” cases of Theorems 2.3 and 2.4 when the
Jacobians in the proofs vanish were also treated by Poincaré and since then by many
others, including Lyapunov. For some more recent work and older references, sce
E. Holder (1), Friedrichs [1], and J. Hale [1]; for the problem in a very general setting,
see D. C. Lewis [4].

SECTION 3. The scalar case of Theorem 3.3 is a result of Picard [4]; the extension to
systems is in Hartman and Wintner [22]. In the scalar case, (3.17) can be relaxed to the
condition Re B(f)x - z Z 0, Rosenblatt [2]; see also Exercise 4.5(c). The uniqueness
criterion in Exercise 3.3(b), among others, is given by Hartman and Wintner [22].
Sturm types of comparison theorems for self-adjoint systems have been given by Morse
).

SECTION 4. Theorem 4.1 and its proof are due to Picard [4, pp. 2-7]. For related
results in the scalar case, see Nagumo [2], [4), references in Hartman and Wintner [8)
and Lees [1] to Rosenblatt, Cinquini, Zwirner, and others. Theorem 4.2 is a result of
Scroza-Dragoni [1). The uniqueness Theorem 4.3 is due to Hartman [19]. For Exercise
4.6(b), see Hartman and Wintner [8); for part (c), with the additional condition that
£ has a continuous partial derivative 9f]dx 2 0, see Rosenblatt [2]. For Exercises 4.7
and 4.8, see Nirenberg [1).

SECTION 5. Lemma 5.1 and Corollary 5.2 are results of Nagumo {2]. The example
following Lemma 5.1 is due to Heinz [I]. The other theorems of this section are
contained in Hartman [19]. Exercise 5.4 is a gencralization of a result of Lees (1] who
gives a very different proof from that in the Hints. For the scalar case in Exercise
5.5(d), see Hartman and Wintner [8]; this result was first proved by A. Kneser [2] (see
Mambriani {1]) for the case when f does not depend on z’. For related results, see
Exercises XIV 2.8 and 2.9. A generalization of Exercise 5.9 involving almost periodic
functions is given in Hartman [19] and is based on a paper of Amerio [1].

secTioN 6. Part III is an outgrdwth of a paper of Perron [12], whose results were
carried farther by Persidskil [1], Malkin [1], Krein {1}, Beliman [2], KuZer {1], and
Maizel' {1]. Except for Kuger, these authors deal, for the most part, with the case
B = L2(Y), D = L®(Y). (For a statement concerning the results of these earlier
papers, sec Massera and Schiffer [1, I).) The results of this section are due to Massera
and Schiffer [1] who deal with the more general situation when the space ¥ need not be
finite-dimensional.
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seCcTION 7. For the notion of “lean at w,” see¢ Schiffer [2, VI). [he Green's functions
G of this section occur in Massera and Schiffer [1, I and IV]). Theorem 7.1 and
Corollary 7.1 may be new.

SECTION 8. Theorem 8.1 is a result of Cordunecanu [1}. Theorem 8.2 is a corrected
version of a similar result of Corduneanul] (see Hartman and Onuchic [1]); also
Massera [8]. For Corollary 8.1, see Hartman and Onuchic [9]. For Exercise 8.2, see
Massera and Schiffer [1, I or IV].

SECTION 9. This application of the results of § 8 is given by Hartman and Onuchic
{1). For Corollary 9.1, see Hale and Onuchic [1).





