
Chapter XII

Use of Implicit Function and

Fixed Point Theorems

Many different problems in the theory of differential equations are solved
by the use of implicit function theory—either of the classical type or of a
more general type involving fixed point theorems and/or functional
analysis. This will be illustrated in this chapter. Part I deals with the
existence of periodic solutions of linear and nonlinear differential equations.
Part II deals with solutions of certain second order boundary value prob-
lems. In Part III, a general abstract theory is formulated. Use of this
general theory is illustrated by an application to a problem of asymptotic
integration.

Although Parts I and II are applications of the general theory of Part III,
there are several reasons for giving them separate treatments. The first
reason is the importance and comparative simplicity of the situations
involved. The second reason is that Parts I and II serve as motivation for
the somewhat abstract theory of Part I1I. The third and most important
reason is the fact that, as usual, a general theory in the theory of differential
equations only provides a guide for the procedure to be followed. Its use
in a particular situation generally involves important problems of ob-
taining appropriate estimates in order to establish the applicability of the
general theory.

Two general theorems will be used. The first is a very simple fact:
Theorem 0.1. Let D be a Banach space of elements x, y,... with norms

IxI, lyl..... Let To be a map of the ball I xl < pin D into T satisfying

I T0[x] — T0[y]I 0 Ix — yl for some 0, 0 <0 < 1. Let m = ITO[O]I and
m < p(1 — 0). Then there exists a unique fixed point xo of To, i.e., a
unique point xo satisfying T0[x0] = xo . In fact, xo can be obtained as the
limit of successive approximations x l = T0[0], xs = T0[x1], x3 = To[x,], ... .

Remark. If To maps the ball Ixl 5 p into itself, then the condition
m < p(1 — 0) can be omitted.

Exercise 0.1. Verify this theorem and the Remark.
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Use of Implicit Function and Fixed Point Theorems 	 405

A much more sophisticated fixed point theorem is the following:
Theorem 0.2 (Tychonov). Let D be a linear, locally convex, topological

space. Let S be a compact, convex subset of Z and T° a continuous map of
S into itself. Then T° has a fixed point x0 e S, i.e., T0[r0] = x° .

The following corollary of this will be used subsequently.
Corollary 0.1. Let Z be a linear, locally convex, topological, complete

Hausdorf space (e.g., let D be a Banach or a Frechet space). Let S be a
closed, convex subset of 1) and T. a continuous map of S into itself such
that the image T°S of S has a compact closure. Then T° has a fixed point
x° ES.

Theorem 0.2 was first proved by Schauder under the assumption that
t is a Banach space and this case of the theorem is usually called "Schauder's
fixed point theorem." For a proof of Theorem 0.2, see Tychonov [1].

Parts I and II will use the cases of Corollary 0.1 when D is the Banach
space CO, C'. Part III will use the case when t is a simple Frbchet space,
namely, the space of continuous functions on J : 0 _< t < w (5 oo) with
the topology of uniform convergence on closed intervals in J.

Corollary 0.1 is obtained from Theorem 0.2 in the following way: Let
D, S, T° be as in Corollary 0.1. Let Sl be the closure of TOS, so that S, is
compact. Also Sl a S since S is closed. Under the assumptions on Z,
the convex closure of S l (i.e., the smallest closed convex set containing
Sl) is compact since Sl is. (This is an immediate consequence of Arzela's
theorem in the applications below; cf., e.g., the Remark following the
proof of Theorem 2.2.) Let S° denote this convex closure of S1. Since S
is convex S° C S. Thus T. is a continuous map of the convex compact
S° into itself (in fact, T°S° c T°S c Sl c S°) and the corollary follows
from Theorem 0.2.

Part III will depend on the "open mapping theorem" in functional
analysis. This theorem will be used in the following form:

Theorem 0.3 (Open Mapping Theorem). Let X1 , X$ be Banach spaces
and T° a linear operator from Xl onto Xs with a domain 2(T0), which is
necessarily a linear manifold in X1 , and range -,R(T°) = X8. Let T. be a
closed operator, i.e., let the graph of T°, 9(T0) = {(z1, T°xl) : x, E 2(T0)} be
a closed set in the Banach space X, x X. = {(x,, x,) : xl E X1, x2 E X=)
with norm l(x,, xz)I = max (lx l i, Ix2i). Then there exists a constant K
with the property that, for every x, E X,, there is at least one xl E 2(T0)
such that T°xl = x2 and Ix1 1 _< K 1x2 1 . [In particular, when T° is one-to-one,
so that x1 is unique, then Ix1 1 < K IT°xl 1 holds for all x, 69(T0).]

For a proof of the open mapping theorem in the form that "if P is a
continuous, linear map from a Banach space X to another Banach space
X, with domain 2(P) = X and range .(P) = Xs, then P maps open
sets into open sets," see Banach [1, pp. 38-40]. Theorem 0.3 results byD
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406	 Ordinary Differential Equations

applying this to the projection map F: l(T0) -► X,, where P(x,, Tox,) =
T°x, and noting that a sphere about the origin in 9F(T0) has a P-image
which contains a sphere about the origin in X,.

As a motivation for the procedures to be followed consider the problem
of finding a solution of the differential equation

(0.1)	 y =.%°(t, y)

in a certain set S of functions y(t). Write this differential equation as

y = A(t)y + f(t, y), 	 where f(t, y) = f °(t, y) - A(t)y,

for some choice of A(t). Suppose that for every x(t) E S, the equation

(0.2)	 y' = A(t)y + f(t, x(t))

has a solution y(t) e S. Define an operator To : S -► S by putting y(t) =
TT [x(t)], where y(t) E S is a suitably selected solution of (0.2). It is clear
that a fixed point y0(t) of To [i.e., T0[y0(t)] = yo(t)J is a solution of (0.1)
in S.

For the applicability of the theorems just stated, it will be assumed that
S is a subset of a suitable topological vector space Z. It will generally be
convenient to introduce another space 0 and two operators L and T 1 .

The operator L is the linear differential operator L[yJ = y' - A(t)y, so
that g(t) = L[y(t)) if

(0.3)	 y' = A(t)y + g(t).

It will also be assumed that if x(t) e S, then g(t) =1(1, x(t)) is in 0 and
T1 : S -► 13 is defined by g(t) = T1[x(t)]. Investigations of To are then
reduced to examinations of the linear differential operator L and of the
nonlinear operator Ti.

The applicability of Theorem 0.1 can arise in the following type of
situation: Suppose that 8, Z, are Banach spaces and that Iglu, Iyla
denote the norms of elements g e 8, y e t, respectively. Assume that for
every g(t) e , the equation (0.3) (i.e., L[y] = g) has a unique solution
y(t) e S c Z, that y(t) depends linearly on g(t), and that there exists a
constant K such that Iylk K I SI s. Suppose that, for the map Ti : S-+ 8
there is a constant 0 such that IT,[xiJ - T1 [x2 Jl 15 _<_ 0.Ix, - x,lr, for
x1, x2 e S. Then To satisfies I T0[xi(t)] — To[xs(t)]I a	 OK Ixi — x= I z .
According to Theorem 0.1, the sequence of successive approximations

xi, xs = To[xil, xs = To[x:l, ..

will converge to a fixed point of To (under suitable conditions on S, x1,

and OK).D
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Use of Implicit Function and Fixed Point Theorems	 407

In some situations, the equation L[y] = g may have solutions y satisfy-
ing Iyj z < K IgIn although y is not unique; cf., e.g., Theorem 0.3. In
this case, y need not depend linearly on g but it might be possible to form
convergent successive approximations in the following way: For a given
xl , let x$ = y be a solution of L[y] = T,[x,(t)]. If x,, 22,. . . , xA_1 have
been defined for n > 2, determine an x A from the equation L[x. — x„-1] =

— T1[x,,-2
] 

and the inequality Ix, — xA-Ilz	 K ITi[x„-1] --

T1 [x„_2]I , 3. This situation will not arise below.
When the inequality IT,[x i(t)] — TI [xs(t)]I n < 0 x1 — x= 1 Z is not

available, Theorem 0.2 may still be applicable to assure the existence of
a fixed point of To .

PART I. PERIODIC SOLUTIONS

1. Linear Equations

In this section, unless otherwise specified, the components of the d-
dimensional vectors y, z are real- or complex-valued. Let p > 0 be fixed.
Consider an inhomogeneous system of linear equations

(1.1) y' = A(t)y + g(t)

and the corresponding homogeneous system

(1.2)	 y' = A(t)y,

where A(t) is a continuous d x d matrix and g(t) a continuous vector-
valued function for 0 <_ t S p. In addition, consider a set of boundary
conditions

(1.3) My(0) — Ny(p) = 0,

where M, N are constant d x d matrices. For example, if M = N = I
and A(t), g(t) are periodic of period p, then a solution y(t) of (1.1) or (1.2)
satisfying (1.3) is of period p.

Lemma 1.1. Let A(t) be continuous for 0 S t <p and M, N constant
d x d matrices. Let Y(t) be a fundamental matrix for (1.2). Then a
necessary and sufficient condition for (1.2) to have a nontrivial (0- 0) solution
satisfying (1.3) is that MY(0) — NY(p) be singular. In fact, the number k,
0 _< k S d, of linearly independent solutions of (l.2), (1.3) is the number of
linearly independent vectors c satisfying

(1.4) EM Y(0) — NY(p)]c = 0;

i.e., d — k = rank [MY(0) — NY(p)].
This is clear since the general solution 01 (1.2) is y = Y(t)c.D
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408	 Ordinary Differential Equations

Exercise 1.1. Let A(t) be periodic of period p and

(1.5)	 Y(t) = Z(t)el,	 where Z(t + p) = Z(t)

and R is a constant matrix; cf. the Floquet theory in § IV 6. Then (1.2)
has a nontrivial (190) solution of period p if and only if 2 = 1 is a
characteristic root of (1.2); i.e., eR' — I is singular. In fact, the number
of linearly independent solutions of period p is the number of linearly
independent solutions c of

(1.6)	 [Y(0) — Y(p)]c = 0, 	 i.e., (e'' — I)c = 0.

For algebraic linear equations, the inhomogeneous system Cy = g has a
solution y for every g if and only if the only solution of Cy = 0 is y = 0.
The analogous situation is valid here.

Theorem 1.1. Let A(t) be continuous for 0 _< t < p; M, N constant
d x d matrices such that the d x 2d matrix (M, N) is of rank d. Then (1.1)
has a solution y(t) satisfying (1.3) for every continuous g(t) if and only if
(1.2), (1.3) has no nontrivial (19 0) solution; in which case y(t) is unique and
there exists a constant K, independent of g(t), such that

(1.7)	 Ijy(t)II :5 Kf 11g(s)II ds	 for 0 <_ t < p.
0

Proof. The general solution of (1.1) is given by

(1.8)	 y(t) = Y(t){c +f fe, Y- '(s)g(s) ds};
l

Corollary IV 2.1. This solution satisfies (1.3) if and only if

(1.9)	 [MY(0) — NY(p)]c = NY(p) 1Y -1(s)g(s) ds.
.t o

Assume that (1.2), (1.3) has no nontrivial solution. Then, by Lemma
1.1, the matrix V = MY(0) — NY(p) is nonsingular, thus (1.9) has a
unique solution. Substituting this value of c in (1.8) gives the unique
solution of (1.1), (1.3):

(1.10)	 y(t) = Y(t)t V- 'NJ Y(s)g(s) ds + fo Y— (s)g(s) dsj.
t	 o

It is clear that there exists a constant K satisfying (1.7) for 0 < t < p.
This proves one-half of Theorem 1.1 (and this part did not use the

assumption that rank (M, N) a d). The converse follows from Theorem
1.2.
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Use of Implicit Function and Fixed Point Theorems 	 409

Exercise 1.2. What is the Green's function G(t, s) in the last part of
Theorem 1.1, i.e., what is the function G(t, s), 0 <_ s, t <_ p, such that

Al) = f DG(t, s)g(s) ds
0

is the unique solution (1.10) of (1.1), (1.3)?
Consider the equations adjoint to (1.1), (1.2)

	

(1.11)	 z' + A *(t)z + h(t) = 0,

	(1.12)	 z' + A *(t)z = 0,

where A* is the complex conjugate transpose of A; cf. § IV 7. Consider
also a set of boundary conditions

	(1.13)	 Pz(0) — Qz(p) = 0,

where P, Q are constant d x d matrices. If y(t) is a solution of (1.1) and
z(t) a solution (1.11), the Green formula (IV 7.3) is

	(1.14) 	f [g(s)  • z(s) — y(s) • h(s)] ds = [y(t) • z(t)] o n

When do the boundary conditions (1.3) and (1.13) imply that

	(1.15)	 y(p) • z(P) — y(0) • z(0) = 0,

i.e., that the right side of (1.14) is 0? Note that if M, Q are nonsingular,
then this is the case if and only if 0 = y(p) • Q-'Pz(0) — M-'Ny(p) • z(0) =
(P* Q *-1 — M-'N)y(p) - z(0) = [M- '(MP* — NQ *)Q*-1]y(P) . z(0). In
this case, necessary and sufficient for (1.3), (1.13) to imply (1.15) is that

	(1.16)	 MP* — NQ* = 0.

Lemma 1.2. Let M, N be constant d x d matricessuch that rank(M, N) _
d. Then there exist d x d matrices P, Q satisfying rank (P, Q) = d,
(1.16), and having the property that the relations (1.3), (1.13) imply
(1.15). The pairs of vectors z(0), z(p) satisfying (1.13) are independent of
the choice of P, Q.

Proof. Since rank (M, N) = d, there exist d x d matrices M1, Nl such
that the 2d x 2d matrix

M
—

N
	(1.17)	 W =

Ml Nl

is nonsingular. Write the inverse of W as

	_ Pl * P* \	

rp
, Qi

	W-1 

(Q1* 
Q* J	 or W*-i = 

	Q/
so that (1.16) holds and rank (P, Q) = d.D
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410	 Ordinary Differential Equations

Let y,, y,, z,, z: be d-dimensional vectors and rl = (y,, 92), _ (z 1 , z2)
be corresponding 2d-dimensional vectors. Then

(1.18)	 71 • = W-IWq . = W77 • W*-'^;

thus

(1.19) My,—Nye =0,	 Pz 1 +Qz2 =0	 imply that rl• =0.

The choices y, = y(0), ys = y(p), z, = z(0), z, = —z(p) show that (1.3),
(1.13) imply (1.16). This completes the existence proof.

The formulation (1.19) of the implication (1.3), (1.13)	 (1.16) makes
the last part of the lemma clear. For if rl = (y,, y,) # 0 satisfies My, —
Nyr= 0, thenM1 Y1+.Nlys ^A. In fact, since rank (P, Q) = d, the set of
vectors C = (z(0), —z(p)) satisfying Pz(0) — Qz(p) = 0 is the set of
vectors satisfying Tj • C = 0 for all rl = (yl , y=) such that My, — Ny2 = 0.
Since this set of vectors = (z(0), —z(p)) is determined by M, N, the
proof of the theorem is complete.

Boundary conditions (1.13) satisfying the conditions of Lemma 1.2 will
be called the adjoint boundary conditions of (1.3). Correspondingly, the
problems (1.2}{1.3) and (1.12)--(1.13) will be called "adjoint problems."
(Note that the adjoint of the "periodic boundary conditions" y(p) = y(0),
i.e., M = N = I, are equivalent to the "periodic conditions" z(p) = z(0),
i.e., P = Q = 1.)

There is an analogue of the algebraic fact that if C is a d x d matrix,
then the number of linearly independent solutions of Cy = 0 and of the
"adjoint" equation C*z = 0 is the same:

Lemma 1.3. Let A(t) be continuous for 0 _< t <— p; M, N constant
d x d matrices such that rank (M, N) = d; and (1.13) boundary conditions
adjoint (0 (1.3). Then (1.2)-(1.3) and (1.12)-(1.13) have the same number of
linearly independent solutions.

Proof. Since the relationship between (1.2}-(1.3) and (1.12)-(1.13) is
symmetric, it suffices to show that if (1.12)-(1.13) has k linearly independent
solutions, where 0 a k <_ d, then (1.2H1.3) has at least k linearly
independent solutions.

Let Y(t) be a fundamental matrix of (1.2), then Y*- '(t) is a fundamental
solution of (1.12) by Lemma IV 7.1. In terms of (1.17), define a constant
2d x 2d matrix

M Y(0) — NY(p)
(1.20)	 U = W diag [ Y(0), Y(p)l = (M

l Y(0) N, Yip) ,;
so that U is nonsingular and

Y'(0) Qi Y 1(p)
U*-1 = W' diag [ Y*-1(0), Y*-'(p)) _ (

P

P Y*-'(0) Q Y*-1(P)D
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Use of Implicit Function and Fixed Point Theorems 	 411

Thus, if co is a constant d-dimensional vector such that z(t) = Y*-1(t)co

is a solution of (1.12)-(1.13), then U*-'(co, —co) = (b, 0). Here b is a
d-dimensional vector, and if co varies over a set of k linearly independent
vectors, then b varies over a set of k linearly independent vectors, since
U*- ' is nonsingular. From (1.20), it is easy to see that the equation
(co, — co) = U*(b, 0) gives

	(1.21)	 co = Y*(0)M*b = Y*(p)N*b,

so that

	(1.22)	 [ Y*(0)M* — Y*(p)N*Jb = 0.

Hence the matrix Y*(0)M* — Y*(p)N* annihilates k linearly independent
vectors b; therefore, the same is true of its complex conjugate transpose
MY(0) — NY(p). In view of Lemma 1.1, this proves Lemma 1.3.

Remark. For the purpose of the next proof, note that the lemma just
proved implies that (1.22) holds if and only if the vector co in (1.21) is
such that the solution z = Y*-'(t)co of (1.12) satisfies (1.13).

Another algebraic fact is that if C is a singular matrix, then Cy = g has
a solution y if and only if g is orthogonal (i.e., g • z = 0) to all solutions z
of the homogeneous "adjoint" system C*z = 0. Again an analogous
situation is valid here:

Theorem 1.2. Let A(t) be continuous for 0 < t 5 p, M and N constant
d x d matrices such that rank (M, N) = d, and let (1.2)-(l.3) and (1.12>-
(1.13) be adjoint problems. Suppose that (1.2)-(1.3) has exactly k linearly
independent solutions y l(t), ... , y(t) and let z l(t), ... , z(t) be linearly
independent solutions of (1.12)-(1.13). Let g(t) be continuous for 0 < t 5 p.
Then (1.1) has a solution yo(t) satisfying (1.3) if and only if

	(1.23)	 J g(s) • z;(s) ds =0	 for j= 1, ... , k.
0

In this case, the solutions of( 1.1), (1.3) are given by yo(t) + aly,(t) + • • • +
akyk(t), where a l , ... , a,t are arbitrary constants.

Proof. Note that, by the proof of Theorem 1.1, the problem (1.1), (1.3)
has a solution if and only if (1.9) has a solution c. This is the case if and
only if

(N Y(p) f ' Y-l(s)g(s) ds) • b = 0
o

for all solutions b of (1.22). In view of (1.21), this is equivalent to the
condition that

0 J [g(s) . Y*- '(s)Y*(p)N*bj ds = J g(s) • z(s) ds
0	 0D
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412	 Ordinary Differential Equations

for all solutions z = Y*-'(s)co of (1.12H1.13), i.e., that (1.23) holds.
This proves the theorem.

The next theorem is a rather particular result for the case that A(t), g(t)
are of period p.

Theorem 1.3. Lei A(t) be continuous and of period p. Then, for afixed
continuous g(t) of period p, (1.1) has a solution of period p (fand only if (1.1)
has at least one bounded solution for t >_ 0.

Proof. The necessity of the existence of a bounded solution is clear.
In order to prove the converse, assume that (1.1) has a solution y(t)
bounded for t >— 0. Let Y(t) be the fundamental matrix of (1.2) satisfying
Y(0) = I. Then (1.1) has a solution of period p if and only if the equation
c = Y(p)c + b, where

b = Y(p)JPY -1(s)g(s) ds,

has a solution c; cf. (1.9) in the proof of Theorem 1.1.
If c = y(0) in (1.8), then y(p) = Y(p)y(0) + b holds for every solution

y(t) of (1.1). Since y(t + p) is also a solution, y(2p) = Y(p)y(p) + b —
Y2(p)y(0) + Y(p)b + b, or more generally,

y(np) = Y"(p)y(0) +
(R-1

 Yk(P)) b.
k0

Suppose, if possible, that [I — Y(p)]c = b has no solution. Then [Y(p) —
I]* is singular and there exists a vector c0 such that [ Y(p) — 11 *co = 0
and b - co # 0. Thus co = Y*(p)co and co = (Yk(p))*co for k = 0, 1, ... .
Multiply the equation in the last formula line scalarly by co to obtain

y(np) - co = y(0) - co + n(b - co),

since Yk(p)y(0) • co = y(0) - (Yk(p))*co. As b - co ^ 0 and the sequence
y(p), y(2p),... is bounded, a contradiction results. This proves the
theorem.

2. Nonlinear Problems

This section deals with the existence of periodic solutions for non-
linear systems. With very minor changes, the methods and results are
applicable to the situation when the requirement of "periodicity" is
replaced by boundary conditions of the type (1.3). The results depend on
those of the last section for linear equations and, in particular, on the "a
priori bound" for certain solutions of (1.1) given by (1.7). The first two
theorems concern a nonlinear system of the form

(2.1)	 y' = A(t)y +f(t, y)

in which y is a vector with real- or complex-valued components.
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Use of Implicit Function and Fixed Point Theorems 	 413

Theorem 2.1. Let A(t) be continuous and periodic of period p and such
that (1.2) has no nontrivial solution of period p. Let K be as in (1.7) in
Theorem 1.1, where M = N = I. Let f(t, y) be continuous for all (t, y),
of period p in i for fixed y, and satisfy a Lipschitz condition of the form

(2.2)	 IIf(1, zi) —f(t, Y2) il : 8 IIYt — Y,D
for all t, y l , y$ with a Lipschitz constant 0 so small that KOp < 1. Then (2.1)
has a unique solution of period p.

Actually, it is not necessary that f(t, y) be defined for all y. If m =
max II f(t, 0)II, it is sufficient to require that f(t, y) be defined for
Ilyll < r, where

(2.3) 	Kpm < r.
1 — KOp =

Proof. Introduce the Banach space D of continuous periodic functions
g(t) of period p with the norm lgl = max Ig(t)II. Thus convergence of
g1(t),g2(t), ... in Z is equivalent to the usual uniform convergence over
0 =<t<p.

Let g(t) be a continuous function of period p satisfying lg(t)Il < r.
Thus by Theorem 1.1 the equation

(2.4)	 y' — A(t)y = f(t, g(t))

has a unique solution y(t) of period p. Define an operator To on the set of
all such g(t) by putting y(t) = T0[g]. Note that (1.7), (2.4) and (2.2) show
that if z(t) = T0[h], then

(2.5) Iy — zl < KpO Ig — hi; 	 i.e., I To[gl — To[h]I	 KpO Ig — hi,
where lyl = max Ily(t)ll for 0 < t < p. In addition, if m = max 11 1(1, 0)II,
then I To[o]l < Kpm.

Thus Theorem 2.1 follows from Theorem 0.1, for yo(t) is a fixed point of
To, To[y0] = yo, if and only if yo(t) is a solution of (2.1) of period p; cf.
(2.4) where y = T0[g].

In Theorem 2.1, we can omit assumption (2.2) when II f(t, y)II is "small,"
at the cost of losing "uniqueness."

Theorem 2.2. Let A(t), K be as in Theorem 2.1. Let f(t, y) be continuous
for all t and Ilyll : r, of period p in t for fixed y, and satisfy

(2.6)	 KpIlf(t,y)II _<r	 for 0 <t =p, IIyII fir.
Then (2.1) has at least one periodic solution of period p.

Proof. As in the last proof, define y(t) = T0[g] as the unique solution of
(2.4) of period p, where g(t) is of period p and Igl 5 r. In order to prove
the theorem, it suffices to show that To has a fixed point yo, T0[y0] = yo•
This will be proved by an appeal to Corollary 0.1 of Tychonov's theorem.D
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414	 Ordinary Differential Equations

It follows from (1.7) and (2.6) that y = To[gJ satisfies I 15 r. In other
words, if Z is the same BänaCh space as in the last proof, then T o maps
the sphere Igl < r of 2) into itself. Also, (1.7) gives

ITo[gJ — To[h]I 5 K f ' IIf(t, g(t)) — f(t, h(t))II dt.
0

Sincef is continuous, it is clear that if Ig — hl = max Ilg(t) — h(t)II -► 0,
then To[g] — T0[h] -+0. Thus To is a continuous map.

If y = T0[g], then Ily(t)H 5 r and (2.4) show that there is a constant C,
independent of g, such that Qy'(t)u < C. This implies that the set of
funbtions y(t) = T0[gJ in the range of To is bounded and equicontinuous.
Hence, by Arzela's theorem, it has a compact closure in D (i.e., any
sequence yl, ye, ... has a uniformly convergent subsequence). Conse-
quently, Corollary 0.1 implies that To has a fixed point yo. Clearly
y = yo(t) is a periodic solution of period p. This proves the theorem.

Remark. In the deduction of Corollary 0.1 from the Tychonov
Theorem 0.2, it is necessary to know that the convex closure of the
range ß'(T0) of To is compact. This is clear in the proof just completed,
for y(t) in the range of T satisfies the conditions: (i) y(t) is continuous of
period p; (ii) Ily(t)II r; and (iii) IIty(t) — y(s)II < C(: — sl. The convex
hull of .(T0) [i.e., the smallest convex set containing JF(To)] is the set of
functions y(t) representable in the form ,Ily1(t) + • • • + 2„y„(t), where
n= 1,2,...; A,>0andA,+••-+ 2„= 1. It is clear that functions
in this set satisfy (i)-(iii). The closure of this set of functions under the
norm of Z (i.e., under uniform convergence over 0 < t <_ p) gives a set
of functions satisfying (i)-(iii). Thus the compactness of this set in Z is
clear from Arzela's theorem. (A remark similar to this can be made for the
other applications of Corollary 0.1 in this chapter; see Theorem 4.2 and
Theorem 8.2.)

Consider now a system of nonlinear differential equations depending on
a parameter p,

(2.7)	 x' = F(t, x, µ),

where F is continuous, of period p in t for fixed (x, p), and x, F are real
d-dimensional vectors. Suppose that for µ = 0, (2.7) has a periodic
solution x = go(t). Write y = x — go(t); then (2.7) becomes

y = F(t, y + go(t), u) — F(t, go(t), 0).

If F has continuous partial derivatives with respect to x and A(t) _
ö^F(t, go(t), 0), where a.F is the Jacobian matrix of F with respect to x,
then the last equation is of the form (2.1), where

f(t, y) = F(t, y + go(t), µ) — F(t, go(t), 0) — A(t)yD
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Use of Implicit Function and Fixed Point Theorems	 415

and H (t, y)It/IIytI —► 0 as (y, p) -+0 uniformly in I for 0 5 t < p. In
particular, when lµl is small, (2.6) holds for small r> 0; in fact, (2.2)
holds for small Ily^II, IIY211 with arbitrarily small 0 and f(t, 0) 0. It
follows from Theorem 2.1 that if (1.2) has no nontrivial periodic solution
of period p, then (2.7) has a unique solution x(t) = x(t, ,u) of period p
for each small 1 uj. The proof of Theorem 2.1 can also be used to show
that if F depends smoothly on µ, then x(t, µ) depends smoothly on µ.
All of these assertions can, however, be prove&'more directly by the use of
the classical implicit function theorem.

Theorem 2.3. Let x, F be real vectors. Let F(t, x, a) be continuous for
all t, small l µl , and x on some d-dimensional domain. Let F be of period p in
t for fixed (x, µ) and have continuous partial derivatives with respect to the
components of x. Let (2.7), where µ = 0, have a solution x y go(t) of period
p with the property that if A(t) = aF(t, g o(t), 0), then (1.2) has no nontrivial
solution of period p. Then, for each small l uI, (2.7) has a unique solution
x = x(t, µ) of period p with initial point z(0, µ) near go(0); x(t, µ) is a
continuous function of (t, µ), and x(t, 0) = go(t). If, in addition, F has a
continuous partial derivative with respect to y, then x(t, lc) is of class C'.

It will be clear from the proof that if more smoothness is assumed for
F (e.g., F E Ck or F analytic), then x(t, p) is correspondingly smoother (e.g.,
x(t, µ) E C' or z(t, µ) analytic).

Proof. Let x = ^(t, xo, µ) be the unique solution of (2.7) satisfying the
initial condition x(0) = xo. Then (t, xo, µ) is continuous and has con-
tinuous partial derivatives with respect tö t and the components of xo ;
see Corollary V 3.3. Also, if xo is near to g0(0), then «(t, zo , is) exists on the
interval 0 < t < p; see Theorem V 2.1. The solution x = «(t, x0, au) is
periodic of period p if and only if

(2.8) E(p, zo, ju) — xo = 0.

Since (t, g0(0), 0) = go(t), the equation (2.8) is satisfied if (xo, µ) = (g0(0), 0).
Hence it can be solved for xo = xo(u) if the Jacobian matrix of the left
side, b..^(p, xo, y) — 1, is nonsingular at (x0, µ) = (g0(0), 0). The partial
derivatives of «(t, xo, µ) with respect to a component of xo, when (xo, µ) =
(g0(0), 0), is a solution of the equations of variation (1.2); see Theorem
V 3.1. In fact, Y(t) = aroE(t, g0(0), 0) is a fundamental matrix for (1.2)
satisfying Y(0) = I. Hence the assumption that (1.2) has no periodic
solution is equivalent to the assumption that Y(p) — I is nonsingular;
cf. Lemma 1.1, where M = N =1. Thus the implicit function theorem is
applicable to (2.8) and gives a continuous function xo = xo(s). Corre-
spondingly, x = (t, xo(u), µ) is a periodic solution of (2.7) of period p
and the only such solution with initial point xo near go(0). The other
assertions of Theorem 2.3 also follow from the implicit function theorem.D
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416	 Ordinary Differential Equations

The question of the existence of periodic solutions when

det [Y(p) — I] = 0

has a vast literature and will not be pursued here.
Note that if F in (2.7) does not depend on t and go(t) const., then the

conditions of Theorem 2.3 cannot be satisfied since x = gö (t) is a non-
trivial periodic solution of the equations of variation (1.2). Here, however,
we have the following analogue.

Theorem 2.4. Let x, F be real vectors. Let F(x, Au) be continuous for
small I4I and for x on some d-dimensional domain and have continuous
partial derivatives with respect to the components of x. When p = 0, let

(2.9) x' = F(x, ls)

have a solution x = go(t) 0 const. of period po > 0 such that if A(t) =
a.F(go(t), 0), then exactly one of the characteristic roots of (1.2) is I [i.e.,
ON has 2 = I as a simple eigenvalue; cf. (1.5) where p = po]. Then, for
small ßµI, (2.9) has a unique periodic solution x = x(t, µ) with a period p("),
depending on p, such that x(t, µ) is near go(t) and the period p(u) is near po ;
furthermore x(t, 4u), p(µ) are continuous, x(t, 0) = g0(1), and p(0) = po.

Remarks similar to those for Theorem 2.3 concerning the smoothness of
F and corresponding smoothness of x(t, 4u), p(u) hold.

The geometrical considerations in the proof to follow are clarified by
reference to Lemma IX 10.1, which shows that we obtain all solutions of
(2.9) near z = go(t) by considering solutions with initial points x(0) = x o

near to g0(0) and x0 restricted to be on the hyperplane it normal to
F(g0(0), 0) and passing through go(0).

Proof. Let x = t(t, x0, u) be the unique solution of (2.9) satisfying
x(0) = x0. This solution is of period p if and only if (2.8) holds. The
equation (2.8) is satisfied when (p, x0, µ) = (Po. go(0), 0).

Since solutions of (2.9) are uniquely determined by initial conditions and
go(t) # const., it follows that F(go(t), 0) 0 0 for all t. Suppose that the
coordinates in the x-space are chosen so that g o(0) = 0 and F(0, 0) =
(0, ... , 0, a), a # 0, and let 7r denote the hyperplane z' = 0 through the
point go(0) = 0 normal to F(0, 0). Consider xo on this hyperplane,
xo = (x01, ... , 4 -1 , 0). Then for small Iµ1, the equation (2.8) has a
unique solution for p, zo, in terms of u if the Jacobian matrix of (t, x0, Au)
— x0 with respect to x01,. . .  , 4 -1 and t is nonsingular at (t, xo, µ) _.
(Po+ 0, 0).

The matrix Y(t), in which the columns are the vectors allax', ... ,
ø/dxö -1 and f' at (xo, µ) = (0, 0), is a fundamental matrix for (1.2) and
its last column is F(go(t), 0). At t = 0,

(2.10)	 Y(0) = diag [Id_l, a] = Z(0),D
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Use of Implicit Function and Fixed Point Theorems 	 417

by (1.5). Since (1.2) has, up to constant factors, only the last column
gö (t) of Y(t) at (x0, u) = (0, 0) as a periodic solution of period po, the
matrix Y(po) — Y(0) annihilates vectors c of the form c = (0, ... , 0, cd)

and no others.
The Jacobian matrix J of (t, x0, 1u) — xo with respect to x01 , ... , xö 1,

and t at (t, x, µ) = (po, 0, 0) is

J = Y(po) — diag [la-i, 0],

and the last column of Y(po) is F(go(0), 0) = (0, ... , 0, a), so that J =
[Y(po) — Y(0)] + diag [0, ... , 0, a]. If J is singular, then there exists a
vector c = (cl, ... , c°) 0 0 such that Jc = 0; i.e.,

Y(P0) — Y(0)]c + (0,. . . , 0, acd) = 0.

In view of (2.10) and Z(0) = Z(po), this is the same as

Z(0) {(eR'° — I)c + (0, ... , 0, cd)} = 0	 or
(exv0 -1)c+(0,...,0,c°) =0.

If cd = 0, then c = 0 for e''° — I only annihilates vectors of the form
(0,. . . , 0, cd). If cd 0 0, then (e'Po — I)2c = 0. But this implies that
A = 1 is at least a double eigenvälue of e'Po. This contradiction shows that
J is nonsingular.

Hence the implicit function theorem is applicable to (2.8) and gives the
desired functions xo'(u), ... , xö-1(u), and p(µ). Correspondingly, if
xo(u) = (xal(a), ... , xö- '( s), 0), then x(t, u) = «(t, xo(,u), s) is a periodic
solution of (2.9) and is the only periodic solution having an initial point
xo, with xod = 0, near to go(0) and a period near to po . This proves
Theorem 2.4.

Exercise 2.1. Let dim x = 2; F(t, x) continuous for all t and x,
periodic of period p in t for fixed x. Let the solution x = x(t, to, xo) of

(2.11) x' = F(!, z)

satisfying x(to) = xo be unique for all to,; and exist for t >_ to. Finally,
for some (to, x0), let x(t, to, xo) be bounded for t > to. Then (2.11) has at
least one periodic solution of period p. See Massera [1].

Exercise 2.2. Let a(t) = (x'(t), ... , a°(t)), ß(t) = (ßl(t), ... , ß°(t)) be
piecewise continuously differentiable for 0 <_ t <_ p; a'(t) _< ßf(t) for
j= 1,... , d; and a(0) = a(p), ß(0) = ß(p). Let

f(t, y) = (f'(t, y) , ....fd(t. y))

be continuous on an open set containing S2° = {(t, y): at(t) 5 y' S ß5(t) for
0 _< t _< p} and let f(t, y) be uniformly Lipschitz continuous with respect
to y. Suppose finally that the functions ui(t, y) = of"(t) — ff(t, y', ...
y1-1, a!(t), y'+', ... , y4) and vi(t, y) = ßf,(t) — fi(t, y', ... , y1-1, ß'(t),D
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418	 Ordinary Differential Equations

yf+l, ... , yd) do not change signs (e.g., of >_ 0 or u' <_ 0) and that uivi <_ 0
for all (t, y) e S2°. Then y' = f(t, y) has at least one solution y = y(t),
0 < t < p, such that (t, y(t)) E S2° and y(0) = y(p). See Knobloch [1].

PART IL SECOND ORDER BOUNDARY VALUE PROBLEMS

3. Linear Problems

This part of the chapter concerns boundary value problems involving
a system of second order equations. Consider first a linear inhomogeneous
system of the form

(3.1)	 x" = B(t)x + F(t)x' + h(t)

and the corresponding homogeneous system

(3.2)	 x" = B(t)x + F(t)x'

for a d-dimensional vector x (with real- or complex-valued components).
The problem involves solutions satisfying boundary conditions

(3.3)	 x(0) =;'	 x(p) = xn,

when p> 0, xo, x, are given. For the inhomogeneous equation (3.1), the
conditions (3.3) are not more general than

(3.4)	 x(0) = 0,	 x(p) = 0,

for if x — [(x, — xo)t/p + x0] is introduced as a new dependent variable,
the equation (3.1) goes over into another equation of the same form with
h(t) replaced by h(t) + B(tXx, — xo)t/p + B(t)x0 + F(tXx, — x0)/p.

Actually, the theory of the boundary value problem (3.1), (3.4) is
contained in § 1. In order to see this, write (3.1) as a first order system

(3.5)	 y' = A(t)y + g(t),

where y = (x, x') is a 2d-dimensional vector, g(t) = (0, h(t)), and A(t) is a
2d x 2d matrix
	0 	 I

(3.6)	
A(t) _ (B(t) F(t)

The boundary conditions (3.4) can be written as

(3.7)	 My(0) — Ny(p) - 0,

where M, N are the constant 2d x 2d matrices

	 0
(3.8)	 M= ^0 0) and N= (1 0).
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Use of Implicit Function and Fixed Point Theorems 	 419

Note that
I 0 0 0

rank (M, N) = rank	 = 2d.
0 0 I 0

Instead of restricting M, N to be of the type (3.8), it is possible to choose
more general matrices; in this case, (3.4) is replaced by conditions of the
form

M,1x(0) ± Msax (0) — Ntix(p) — Nisi (p) = 0	 for j = 1, 2,

where M,k, Nit are constant d x d matrices such that

(M, N) —

(M21

M11 M1, N 1

 N
 M=, NE1 Nn/

is of rank 2d. For the sake of simplicity, only the choice (3.8), i.e., only
the boundary conditions (3.4), will be considered.

Lemma 1.1 implies the following:
Lemma 3.1. Let B(t), F(F) be continuous d. x d matrices for 0 < t 5 p;

U(t) the d x d matrix solution of

(3.9)	 U" = B(t) U -} F(t) U',	 U(0)=0,	 U'(0) = I.

Then (3.2) has a nontrivial solution (0- 0) solution satisfying (3.4) if and only
if U(p) is singular. In fact, the number k, 0 < k < d, of linearly independent
solutions of (3.2), (3.4) is the number of linearly independent vectors c
satisfying U(p)c = 0.

The corresponding corollary of Theorem 1.1 is
Theorem 3.1. Let B(t), F(t) be continuous for 0 < t < p. Then (3.1) has

a solution x(t) satisfying (3.4) for every h(t) continuous on [0, p] if and only
if (3.2), (3.4) has no nontrivial (0- 0) solution. In this case, x(t) is unique and
there exists a constant K such that

(3.10)	 IIx(t)II, Ilx'(t)II 	 Kf 9 IIh(s)II ds.
U

Exercise 3.1. Verify Theorem 3.1.
The homogeneous adjoint system for (3.5) is y' = — A *(t)y which is not

equivalent to a second order system without additional assumptions on B
or F. The simplest assumption of this type is that F(t) is continuously
differentiable. In this case, the homogeneous adjoint system y' = -A *(t)y
is equivalent to

(3.11)	 z" = [ß(s) — F*'(t)]z — F*(I)z'

and the corresponding inhomogeneous system is

(3.12)	 z" = [B*(t) — F*'(t)]z — F*(t)z' +f(t).D
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420	 Ordinary Differential Equations

[Actually, the differentiability condition can be avoided by writing the
terms involving F* as (F*z)', and interpreting (3.11), (3.12) as first order
systems for the 2d-dimensional vector (—z' — F*z, z).]

In order to obtain the corresponding Green's relation, multiply (3.1)
scalarly by z, (3.12) by x, subtract and integrate over [0, p] to obtain

(3.13) f'[h(t)-z(t)— x(t)-f(t)]dt=[x'-z—x-z'—Fx-z]o '.

Thus, if x satisfies (3.4) and z satisfies

(3.14)	 z(0) = 0,	 z(p) = 0

then

(3.15)	 fop [h(t) - z(t) — x(t) - f(t)] dt = 0,

so that (3.4) and (3.14) are adjoint boundary conditions.
Exercise 3.2. Verify that (3.2), (3.4) and (3.11), (3.14) are adjoint

boundary problems in the sense of § 1.
Lemma 3.2. Let B(t) be continuous and F(t) continuously differentiable

for 0 <_ t < p. Then (3.2), (3.4) have the same number of linearly inde-
pendent solutions as the adjoint problem (3.11), (3.14).

Finally, a corollary of Theorem 1.2 is
Theorem 3.2. Let B(t) be continuous and F(t) continuously differentiable

on [0, p) and such that (3.2), (3.4) has k, 1 <_ k <_ d, linearly independent
solutions. Let zl(t), ... , z(t) be k linearly independent solutions of (3.11),
(3.14). Let h(t) be continuous on [0, p]. Then (3.1), (3.4) has a solution if
and only if

(3.16)	 f"h(t) • z ;(t) dt = 0	 for j= 1,...,k.

The next uniqueness theorem has no analogue in § 1.
Theorem 3.3. Let B(t), F(t) be continuous d x d matrices on 0 5 t < p

such that

(3.17)	 Re [(B(t) — IF(t)F*(t))x • x] >_ 0

for all vectors x (i.e., let the Hermitian part of the matrix B — }FF* be non-
negative definite). Let g(t) be continuous for 0 < t <_ p. Then

(3.18)	 x' = B(t)x + F(t)x' + h(t)

has at most one solution satisfying given boundary conditions x(0) = xo,

z(p)=x,.D
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Use of Implicit Function and Fixed Point Theorems 	 421

Remark 1. Actually, Theorem 3.3 remains valid if (3.17) is relaxed to

	(3.19)	 2 Re [(B(t) — jF(t)F*(t))x - x] > —(zr/p)s 11 x11 2

for all vectors x 0 0; cf. Exercise 3.3.
Proof. Since the difference of two solutions of the given boundary value

problem is a solution of

	(3.20)	 x" = B(t)x + F(t)x',	 x(0) = x(p) = 0,

it suffices to show that the only solution of (3.20) is x - 0.
Let x(t) be a solution of (3.20). Put r(t) = Ilx(t)II=. Then r' = 2 Re x • x'

and r" = 2 Re (x • x" ♦ Ilx 11 2), so that r" = 2 Re [(B(t)x + F(t)x') • x +

lIx'11 2]. It is readily verified that

Re (B(t)x + F(t)x') • x + lIx'11 2 = Ili + 4F*xIi z + Re (Br — IFF*x) • x.

Thus

	(3.21)	 r" = 2 Ilx + JF*x11 2 + 2 Re [(B — }FF*)x • x].

Hence (3.17) implies that r" >_ 0. Since the last part of (3.20) means that
r(0) = r(p) = 0, it follows that r(t) = 0 for 0 < t < p. This proves
Theorem 3.3.

Exercise 3.3. (a) Show that if there exists a continuous real-valued
function q(t), 0 <_ t 5 p, such that the equation

r" + q(t)r = 0

has no solution r(t) 0- 0 with two zeros on 0 5 t < p [e.g., q(t) < (ir/p)2]

and (3.17) is relaxed to

	(3.22)	 2 Re [(B(t) — }F(t)F*(t))x • x] > —q(t) (1x11 $

for all vectors x, then the conclusion of Theorem 3.3 remains valid. (b)
Let there exist a continuously differentiable d x d matrix K(t) on [0, p]
such that

	(3.23)	 Re [B — K' + (4F — KH)(JF* — KH)]x • x >_	 0

for all vectors x and 0 < t 5 p, where K' = 4(K + K*). Then the
conclusion of Theorem 3.3 is valid. [Note that (3.23) reduces to (3.17) if
K(t) = 0, so that (b) generalizes Theorem 3.3, but not part (a) of this
exercise.] The 2 in (3.22), hence in (3.19), is not needed if F = 0.

Remark 2. If F(t) has a continuous derivative, then (3.20) implies that
x = 0 if and only if z =_ 0 is the only solution of

	(3.24)	 z" = [B*(t) — F*'(t)]z — F*(t)i ,	 z(0) = z(p) = 0;

cf. Lemma 3.2. Hence, the conclusion of Theorem 3.3 is valid if B, F in
the criteria (3.17), (3.22), (3.23) arereplacedbyB* — F*', —F*,respectively.D
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422	 Ordinary Differential Equations

4. Nonlinear Problems

Let x and f denote vectors with real-valued components. This section
deals with second order equations of the form

(4.1)	 x" = f(t, x, x')

and the question of the existence of solutions satisfying the boundary
conditions

(4.2)	 x(0) = 0,	 x(p) = 0

or, for given xo and x9,
(4.3)	 x(0) = a0,	 x(p) = xp .

The equation (4.1) will be viewed as an "inhomogeneous form" of

(4.4)	 x" = 0.

The problem (4.2), (4.4) has no nontrivial solution. Thus, by Theorem
3.1, an equation

(4.5)	 x" = h(t)

has a unique solution satisfying (4.2). In fact, this solution is given by

(4.6)	 x(t) _ — — I (p — t) I sh(s) ds + t I D(p — s)h(s) ds
 Jo	 s

This can be verified by differentiating (4.6) twice; cf. (XI 2.18). The
relation (4.6) can be abbreviated to

(4.7)	 x(t) _ — J "G(t, s)h(s) ds,
0

where

(4.8)	 G(t, s) =  (P — t)s 	 or G(t, s) = 1 t(p — s)
P	 P

according as 0 S s < t 5 p or 0< t_<_ s 5 p. Thus

0 < G(t, s) 4 ,	 f G(t,  s) ds = 1 t(p — t) 8=
(4.9)	

fop IG,(t, s)I ds _[:2 + (P — 1)2] < 2
2p

where G, = aG/at. Thus (4.6) or (4.7) and its differentiated form imply

(4.10)	 IIx(t)II 5 8 max Ilh(s)II, 	11x (t)II	 2 max IIh(s)II ,

where the max refers to 0 <— s < p.D
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Use of Implicit Function and Fixed Point Theorems	 423

Theorem 4.1. Let f(t, x, x') be continuous for 0 _< t <_ p and all (x, x')
and satisfy a Lipschitz condition with respect to x, x' of the form

(4.11) Il f(t, x1, x1') — f(t, z2, X2' )11 : eo Ilx1 — x211 + 0 Ilxi — 411

with Lipschitz constants 0 0, 0 1 so small that
Q

(4.12)	 e8 + BZ < 1.

Then (4.1) has a unique solution satisfying (4.2).
Remark 1. Instead of requiring f to be defined for 0 <_ t < p and all

(x, x'), it is sufficient to havefdefineddefined for 0 < t < p, Ilxll R, Ilx II 4R/p,
where R satisfies either

(4.13)	
82=R[1— \-82 +e211

if m = max Ilf(t, 0, 0)1 for 0 t <_ p, or merely

(4.14)	 gp$ <_ R

if M = max Ilf(t, x, 1)1 for Ilxll	 R, Ilx II : 4R/p.
Proof. Let Z be the Ba nach space of functions h(t), 0 < t 5 p, having

continuous first derivatives and the norm

(4.15)	 IhI = max (max Ilh(t)II, ä max h'(t)II)

Consider an h(t) in the sphere Ihl <_ R of Z. Let x(t) be the unique
solution of

(4.16)	 x" = f(t, h(t), h'(t))

satisfying x(0) = x(p) = 0. Define an operator To on the sphere Ih) < r
of Z by putting T0[h(t)] = x(t).

If xo = To[0] and II f(t, 0, 0)1 S m, then

(4.17)	 Ilxo(t)II	 $2 ,	 4 Ilxö(t)II < 8
by the case h = f(t, 0, 0) of (4.10). Thus the norm z0(t) = To[O] E 13
satisfies

(4.18)	 IT0[0]I < gs .
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424	 Ordinary Differential Equations

Also, if xl = T0 [h 1 ], x2 = T0 [h2], then, by (4.10) and (4.11),

Il x,(t) — xs(t)II	 S$ (90 max 11h 1 — hall + 01 max Ilh l ' — hs ll),

Ilxi'(t) — x21(t)It < E (0o max 11h 1 — h211 + 01 max 11h 1' — he'll)•

If the last inequality is multiplied by p14 and 01(p2/8) max Ilhi — h2 '0 is
written as (8,p/2)[(p/4) max 11h 1' — h= II], it follows that

(4.19)	 IT0[h1] — To[hsll < ( 	 + e2) Ih 1 — h21.

Thus the inequalities (4.12), (4.13) and (4.18) show that Theorem 0.1 is
applicable and give Theorem 4.1.

Similarly, if II f(t, x, x')II _< M for lull ^ R, Ilx II	 4R/p, then the
derivation of (4.17) shows that if IhI <— R, then x = T0[h] satisfies Ixl
Mp2/8. Thus if (4.14) holds, To maps the sphere Ih) <_ R into itself and the
Remark following Theorem 0.1 is applicable in view of (4.12). Hence the
proof of Theorem 4.1 and Remark 1 following it is complete.

Corollary 4.1. Let f(t, z, x') be continuous for 0 _< t < p, Ilxll	 R0,
Ilx II	 R, and satisfy (4.11), (4.12) and II f(t, x, x')II 	M. Let

(4.20)
8
2 + Ilxoll Ro,	

MP I) pII c R 1 .

Then (4.1) has a unique solution satisfying

(4.21)	 x(0) = 0	 and x(p) = xo .

Exercise 4.1. (a) Prove Corollary 4.1. (b) In Corollary 4.1, let
Ilf(t, x, x')II <_ M be relaxed to Q f(t, txo/p, xo/p)II <_ m for 0 5 t 5 p and
R be defined by replacing "<" by "=" in (4.13). Show that the con-
clusion of Corollary 4.1 remains valid if R + Ilxoll	 Ro, 4R/p + (IxoII /p
R, replaces (4.20).

Theorem 4.2. Let f(t, x, x') be continuous and bounded, say,

IIf(t,x,z)II 15 m,

for 0 < t < p and all (x, x'). Then (4.1) has at least one solution x(t)
satisfying x(0) = x(p) = 0 and

(4.22)	 Ilx(t)II = !L, 	ux'(t)II < 2
It is sufficient to require that f(t,-x, x') be defined only for Ilxll < mpsl8,

Ilxll =mp/2.
Proof. Let Z be the Banach space of continuously differentiable

functions h (t), 0 t = p, with norm IhI defined (4.15). Consider h(t) in
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Use of Implicit Function and Fixed Point Theorems 	 425

the sphere Ihl<_ mp2/8 of D. For such an h, put x = T0[h], where x(t) is
the unique solution of (4.16) satisfying x(0) = x(p) = 0. Then IIx(t)II
mpa/8 and Ilx (t)II : mp/2, so that To maps the sphere Ih) <_ mp2/8 into
itself.

If Ihil, Ih21	 rip2/8 and xl = To[hi], x2 = To[ha], then (4.7) and (4.9)
imply that

Ixl — xal 	4f
o Ilf(t, h1(t), hi (t)) — f(t, ha(t), h2 (t))II dt.

Since f is a continuous function, it follows that if (hl — ha l —► 0, then
Ixl - x2 1 — 0. Thus To is continuous.

For any x(t) in the range of To, i.e., x = T0[h] for some h, (4.16) implies
Ilx"(t)II < m. It follows that the set of functions x(t) in the range of
T0[h], Ihl 5 mp2/8, are such that x(t), x'(t) are bounded and equicontinuous
since

IIx(ti) — x(t2)II 15 imp It, — tal, IIx'(t1) — x (ta)II : m Its — ta i.

Hence Arzela's theorem implies that the range of T0[h] has a compact
closure. Consequently, Tychonov's theorem is applicable and gives
Theorem 4.2.

Corollary 4.2. Let f(t, x, x') be continuous and satisfy Of II M for
0 5 t < T, IIxII < Ro, Ilx'II : R1. Let p and xa satisfy 0 <p < T and
(4.20). Then (4.1) has a solution satisfying (4.21). (In particular, if 0 <
T < min ((8R0/M)%t, 2R1/M), then there exists a 6 > 0 such that if
Ilxoll < 6, then (4.1) has a solution satisfying (4.21) for p = T.)

Exercise 4.2. Prove Corollary 4.2.
Exercise 4.3. Let f(t, x, x) be continuous for 0 < t <_ p, Ilxil < Ro,

and arbitrary x'. Let there exist positive constants a, b such that
II f(t, x, x') II 5 a px'Ila + b for 0 _< t < p, lx11 < Ro. Assume that
a, b, 11x011 are such that a(bp2 + 2 Ilxoll) < 1 and r* = (ap)-'{1 — [i —
a(bp2 + 2 Ilxoii)]} satisfies r*p + 3 IlxOII <= 4R0. Then the boundary
value problem (4.1),(4.21) has a solution.

Note that Corollaries 4.1 and 4.2 are similar except that in Corollary
4.1 there is the extra assumption that (4.11) and (4.12) hold; corre-
spondingly, there is the extra assertion that the solution of (4.1), (4.21) is
unique. We can prove another type of uniqueness theorem.

Theorem 4.3. Let f(t, x, x') be continuous for 0 _< t 5 p and for (x, x')
on some 2d-dimensional convex set. Let f(t, x, x') have continuous partial
derivatives with respect to the components of x and a'. Let the Jacobian
matrices off with respect to x, z

(4.23)	 B(t, x, a') = d2 f(t, x, x'),	 F(t, x, x') = öz f(t, x, a')D
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426	 Ordinary Differential Equations

satisfy

(4.24)	 2(B — }FF*)z • a> —'^= Ilz II Y
P

for all (constant) vectors z 0. Then (4.1) has at most one solution
satisfying given boundary conditions x(0) = x0, x(p) = x,.

By the use of Exercise 3.3(a), condition (4.24) can be relaxed to

2(B — }F*F)z - z > —q(t) Ilzll',
where q(t) satisfies the conditions of Exercise 3.3(a). Here and in
(4.24), "2" is not needed if f is independent of x'.

Proof. Suppose that there exist two solutions x l(t), x 2(t). Put x(t) _

x2(t) — x1(t), so that

xr = f(t, x:(t ), x: (t )) — f(t, x1(t ), x1 1(t )),	 x(0) = x(p) = 0.

This can be written as

	x" = B1(t)x + F1(t)x',	 x(0) = x(p) = 0,

where

(4.25)	 B1(r) = J 1 B ds,	 F1(t) = J 1

F ds,
0	 0

and the argument of B, F in (4.25) is

(4.26)	 (t, (1 — s)x1(t) + sx2(t), (l — s)xi (t) + sx2 (t))•

This is a consequence of Lemma V 3.1.
For any constant vector z, an application of Schwarz's inequality to

the formula in (4.25) for each component of Fl *(t)z gives

IIF1*(tkll' f 1 1IF*zi 2 ds,
0

where the argument of F* is (4.26). Hence,

[B 1(t) — }F1(t)F1*(t)]z . z > J 1 (B — }FF*]z • z ds.
0

Thus by (4.24)	 2
2[B(t) - }F1(t)Fl*(t)k • z > — ^= Ilzll s

p

for all vectors z # 0. Consequently, Theorem 3.3 and Remark 1 following
it imply that x(t) w 0. This proves the theorem.

Exercise 4.4. Let f(t, x, x') be continuous for 0 _< t < p and (x, x) on
some 2d-dimensional domain and satisfy a Lipschitz condition of the form
(4.11), where

(4.27)	 209 + 4e1' < .
PD
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Use of Implicit Function and Fixed Point Theorems 	 427

Then (4.1) has at most one solution satisfying given boundary conditions
x(0) = xo, x(p) = x i,.

Exercise 4.5. Letf(t, x, x') be continuous for 0 5 t 5 p and (z, x') on
a 2d-dimensional domain. Let Ox = x$ — x,, Ax' = x; — x1 1, Af =
f(t, x2, x$) — f(t, x1i xl ' ), where xl, x2, xl ' , xQ are independent variables
and assume that

Lx•Af +10x'1 2 >0	 if ix 0	 ix'=0.

Then the boundary value problem x" =f(t, x, x'), x(0) = xo, x(p) = x,
has at most one solution.

Exercise 4.6. (a) Let x be a real variable. Let f(t, x, x') be continuous
and strictly increasing in x for fixed (t, x'). Then (4.1) can have at most
one solution satisfying given boundary conditions x(0) = xo, x(p) = x,,.
(b) Show that (a) is false if "strictly increasing" is replaced by "non-
decreasing." (c) Show that if, in part (a), "strictly increasing" is replaced
by "nondecreasing" and, in addition, f satisfies a uniform Lipschitz
condition with respect to x', then the conclusion in (a) is valid. [For an
existence theorem under the conditions of part (c), see Exercise 5.4.]

Exercise 4.7 (Continuity Method). Let x be a real variable. Let a(t, x'),
ß(t, x') be real-valued, continuous functions for — oo < t, x' < oo with
the properties that (i) a, ß are periodic of period p > 0 in t for fixed x';
(ii) a > 0; (iii) Iß(t, x )I — oo and l a(t, x)/ß(t, x )I --► 0 as Ix'I —. co
uniformly in t. (a) Show that

(4.28)	 x" = xa(t, x') ♦ ß(t, a')

has at most one solution of period p,

(4.29)	 x(0) — x(p) = 0,	 x'(0) — x'(p) = 0.

(b)Show that if C = max Iß(t, 0)I/a(t, 0) and K is so large that Ca(t, x')
j 1ß(t, x')I and Iß(t, 0)1 5 Iß(t, x')I/4 when Ix'I >_ K, then any periodic
solution x(t) of (4.28) satisfies Ix(t)I < C, Ix'(t)I < K. (c) Assume that
a, ß are of class C 1 . By showing that the set of 2-values on 0 < 2 < 1 for
which	 x" = xa(t, x') + ß(t, x) — ß(t,0) + 2ß(t, 0)

has a periodic solution is open and closed on 0 < A _< 1, prove that
(4.28) has a unique periodic solution. (d) Show that the assumption in
(c) that a, ß are of class C' can be omitted.

Exercise 4.8 (Continuation). Let a(t, x, x'), ß(t, x, x') be continuous
for — oo < t, x, x' < oo with the properties that (i) a, ß are periodic of
period p> 0 in t for fixed (x, x'); (ii) a > 0; (iii) there is a constant C
such that Iß(t, x, 0)1 5 Ca(t, x, 0) for —oo < t, x < oo; (iv) Iß(t, x, x )I —.
oo and l a(t, x, x')/ß(t, x, x')I —. 0 as Ix'I -+ oo uniformly on boundedD
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428	 Ordinary Differential Equations

(t, x)-sets. Show that
x" = x(t, x, x') + ß(t, x, z')

has at least one periodic solution.

5. A Priori Bounds

The proofs for the existence theorems for solutions of boundary value
problems in the last section depended on finding bounds for the solution
and its derivative. This section deals with more a priori bounds and their
applications. The main problem to be considered is of the following type:
Given a d-dimensional vector function x(t) of class C' on some interval
0 < t < p, a bound for Hz(t)Il, and some majorants for Ilx"II, find a bound
for Ilx'H. The following result holds for the case when x is a real-valued
function:

Lemma 5.1. Let q^(s), where 0 < s < co, be a positive continuous func-
tion satisfying

(5.1) =r°° s ds	J  ^(s) 	 	 ao.

Let R > 0 and r > 0. Then there exists a number M [depending only on
g'(s), R, r] with the following property: If x(t) is a real-valued function of
class C=for 0 = t < p, where p > r, satisfying

(5.2)	 IxI	 R,	 Ix"I c 9)(14),
thenjzl <Mfor0<t<p.

Proof. In view of (5.1), there exists a number M such that
as

(5.3)	
s ds = 2R.-

IR/, q(S)

It will be shown that M has the desired property. [Instead of assumption
(5.1), it would be sufficient to assume the existence of an M satisfying (5.3).]

Let Ix'(t)I assume its maximum value at a point t = a, 0 < a < p.
We can suppose that x (a) > 0, otherwise x is replaced by —z. If x'(a) >
2R/r, then there exists a point t on 0 S t < p where x'(t) < 2R/p < 2R/r.
Otherwise x(p) — x(0) > 2R which contradicts jxl < R. Assume x'(a) >
2R/r and let t = b be a point nearest t = a where x'(t) = 2R/r. For sake
of definiteness, let b > a. Thus 0 < 2R/r = x'(b) x'(t) _< x'(a) for
a < t < b.

If the second inequality in (5.2) is multiplied by z'(t) > 0, a quadrature
over a < t b gives

fb '"d  <f ' (t) dt 5 2.
 TWO)) D
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Use of Implicit Function and Fixed Point Theorems 	 429

Even though it is not assumed that x" 0 0, the formal change of variables
s = x'(t) is permitted on the left and gives

f_' (° ) s ds
Rlr T(S) - 2R;

cf. Lemma 14.1. From (5.3), it is seen that x'(a) <_ M. Thus it follows
that either x'(a)  <_ 2Rfr or x'(a) <_ M. In either case x'(a) <_ M. Since
x'(a) = max Ix'(t)I for 0 <_ t <_ p, the lemma follows.

Lemma 5.1 is false if x is a d-dimensional vector, d >_ 2, and absolute
values are replaced by norms in (5.2). In order to see this, note that
y'(s) = ys2 + C> 0, where y and C are constants, satisfies the condition
of Lemma 5.1. Let x(t) denote the binary vector x(t) = (cos nt, sin nt).
Thus Ilxll = 1, Ilx (t)II = InI, Ilx"(t)II = n2 = 11z'112. Thus the inequalities
analogous to (5.2),

(5.4)	 Ilxll : R,	 Ilx"II : 04 , 11),
hold for R = 1, p(s) = s 2 + 1. But there does not exist a number M such
that Ilx'(t)II < M for all choices of n. The main result for vector-valued
functions will be the next lemma.

Lemma 5.2. Let q9(s), where 0 <_ s < co, be a positive continuous
function satisfying (5.1). Let a, K, R, r be non-negative constants. Then
there exists a constant M [depending only on q(s), a, R, r, K] with the
following property: If x(t) is a vector-valued function of class C 2 on
0 < t _< p, where p >_ -r, satisfying (5.4) and

(5.5)	 Ilxll <_ R,	 Ilx"II < ar" + K,	 where r = 11x11 2,
then IIxIl :  Mono:5 typ.

Proof. The first step of the proof is to show that (5.5) alone implies the
existence of a bound for Ilx'(t)II on any interval [,u, p — p], 0 <u jp.
LetO<p<pand0 <t5p—µ, then

t+M

(5.6)	 x(t + u) — x(t) — µx'(t) _(t + p — s)x"(s) ds,
e

t + p — s > 0, and (5.5) imply that

9+„
l~ II x (t)II	 2R +	 (t + p — s)(ar"(s) + K) ds.

e

This inequality and the analogue of (5.6) in which x is replaced by r give

is Ilx'(t)II	 2R + a[r(t + u) — r(t) — ur(t)] + 4Ku2 ;
hence

(5.7) p II x (t)II 2R(1 +aR)+ 4Kp2 — apr'(t)	 for 0 < t < p — µD
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430	 Ordinary Differential Equations

Similarly, for p < t 5 p, the relation

z(t) — x(t —	
r

µ) — pz'(t) _ — J  (t — p — .․)x"(s) ds

implies that

(5.8) p (Iz (t)II < 2R(l + azR)f- 1Kp2 + aptr'(t)	 for u 5 t 5 p.

Let

(5.9)	 M1(AP) = 
4R 1+ aR	 + 4Kp.

P

The choice p = 4p in (5.7) and (5.8) gives

(5.10)	 Ilx (t)II	 M1(4P) — «r'(t)	 for 0 < t

(5.11)	 Ilx (t)II	 MdQP) + ai( t)	 for }p < t < p.

Adding (5.10), (5.11) for t = p/2 shows that

(5.12)	 Ilz (4P)II : M1(ijP)•

The assumption (5.4) and (5.10)-(5.11) imply that

(5.13)	 Ix, • x"I < (lx'II	 M1(4P) ± zr',
9ox'll)

where f is required according as I > Jp or 1 <_ }p. Let I(s) be defined by

(5.14)	 'I'(s) _
fas 

u du
 q(u)

Then, by Lemma I 4.1,

(5.15)	 I'b(Iix'(t)II) — D(IIx'(4P)II)I = I f x' • z" 	dt	I ,
where the integral is taken over the t-interval with endpoints t and p/2.
In view of (5.13), the integral is majorized by

IpM1(jp) + « Ir(z) — r'(P)I	 pM1(4p) + 2aR=
Hence

0(Ilx (t)II) cb(Ilz (4P)ID + tlpMi(Jp) + UR.2D
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Use of Implicit Function and Fixed Point Theorems 	 431

In view of (5.12) and the fact that 0 is an increasing function, IIx (t)II
M(p), where

M(p) = 4>- '[cb(M1(Jp)) + JpMi(jp) + 2aR2
]

and cD- ' is the function inverse to 0. If p > r, then t E [0, p] is contained
in an interval of length -r in [0, p]. Thus the considerations just completed
show that p can be replaced by r, and the lemma is proved with M(r) as
an admissible choice of M.

Exercise 5.1. Show that an analogue of Lemma 5.2 remains valid if
(5.5) is replaced by

Ilxll : R,	 Ilx"II

where p(t) is real-valued function of class C 2 on 0 _< 1 p such that
I p(t)I <_ K,. In this case, M depends only on vp(s), a, R, r, and K1 .

The choice q(s) = ys2 + C in Lemma 5.1 gives the following:
Corollary 5.1. Let y, C, a, K, R, r be non-negative constants. Then

there exists a constant M [depending only on y, C, a, R, r, K] such that if
x(t) is of class C 2 on 0 <_ t 5 p, where p > r, satisfying (5.5) and

	(5.16)	 Ilxii:R,	 Ilx"II^yiixuIIQ+C,

then llxp <Mfor0<t5p.
Remark 1. If y in (5.16) satisfies yR < 1, then (5.5) holds with

y

	

(5.17)	
a=2(1—yR)'	 K

__ C
1—yR

Thus assumption (5.5) is redundant in Corollary 5.1 when yR < I (but
the example preceding Lemma 5.2 shows that (5.5) cannot be omitted if
yR = 1). Also if a in (5.5) satisfies 2aR < 1, then (5.16) holds with

	

(5.18)	 y= 2a 	and C=	 K
1 — 2aR	 1 — 2aR

so that (5.16) is redundant in this case. Even if d = 1 (so that x(t) is
real-valued), condition (5.16) cannot be omitted if 2aR > 1).

In order to verify the first part of Remark 1, note that

	

(5.19)	 r" = 2(x - x" + 11x'11 2).

Hence (5.16) shows that r" >_ 2[(1 — yR) Ili II' — CR]. Another applica-
tion of (5.16) gives yr" > 2[(1 — yR)(Ilx"II — C) — CRy] = 2[(1 —
yR) Ilx"I) — C]. This is the same as (5.5) with the choices (5.17). The
proof of the remark concerning (5.18) is similar.

Exercise 5.2. Show that if 2aR > 1, then assumption (5.5) cannot be
dropped in Corollary 5.1.
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432	 Ordinary Differential Equations

The following simple fact will be needed subsequently.
Lemma 5.3. Letf(t, x, x') be a continuous function on a set

(5.20) E(p, R) = {(t, x, x'): 0 5 t < p, Ilzll < R, x' arbitrary),

and let f have one or more of the following properties:

(5.21) z f+Dx'112 >0 	when x x'=0 and Ilxll>0,

(5.22) x - f+IIxIl' >0 	when x-x' =0 and IIx11 =R,

(5.23)	 III II : '(Uz II),

(5.24)	 11111:52a(x•f +Ilxll$) +K.

Let M> 0. Then there exists a continuous bounded function g(t, x, x')
defined for 0 < t _<. p and arbitrary (z, x') satisfying

(5.25) g(t,x,x)-f(t,x,x') for 0 <t <p, (1x11 <R, Ilxll <M

and having the corresponding set of properties among the following:

(5.21') x- g+llxll$>0 	when x•x' =0	 and Ilxll>_0,

(5.22') x•g+IlxII' >0	 when x•x' =0	 and IixII>_R,

(5.23')	 IIgII : P0141),
(5.24')	 Ilgll : 2a(x • g + 114j') + K.

Proof. We can obtain such a function g as follows: Let 6(s), where
0 < s < co, be a real-valued continuous function satisfying 6 = 1,
0 < d < 1,6 = 0accordingas8 <M,M <s2M,s>2M. Put

g(t, x, x') = a(IIx'II)f(t, x, x')	 on E(p, R),

g(t, x, x') = -- g(t, 
I x- ' 

x')	 for ImuI > R.
iilinD

On E(p, R), the identity

x - g + 11x'11' = 60141)(Z .f+  iIx il') + [1 — a(Ilx'll)] 1141 1

makes it clear that g has the desired properties on E(p, R). Furthermore
the validity of any of the relations (5.21')- (5.24') for Ilxll = R implies its
validity for Ilxll > R. This proves the lemma.

Note that inequalities of the type (5.23), (5.24) imply that solutions of

(5.26)	 x"= f(t,x,x)

satisfy (5.4), (5.5), respectively; cf. (5.19).
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Use of Implicit Function and Fixed Point Theorems 	 433

Theorem 5.1. Let f(:, x, x') be a continuous function on the set E(p, R)
in (5.20) satisfying

(5.27) x•f+llx112^0 if x•z'=0 and lid =R,

(5.24) and (5.23), where p(s), 0 <_ s < co, is a positive continuous function
satisfying (5.1). Let 11x011, Ilz,ll : R. Then (5.26) has at least one solution
satisfying x(0) = x0, x(p) = x,,.

It will be clear from the proof that assumption (5.23) can be omitted
if 2R < 1. Furthermore, iff satisfies

	(5.28)	 1IfII'v1Iz1I2+C,
where y, C are non-negative constants and yR < 1, then both assumptions
(5.23) and (5.24) can be omitted.

If the vector x is 1-dimensional, Lemma 5.1 can be used in the proof
instead of Lemma 5.2. This gives the following:

Corollary 5.2. Let x be a real variable andf(t, x, x') be a real-valued
function in Theorem 5.1. Then the conclusion of Theorem 5.1 remains
valid if condition (5.24) is omitted.

Note that, in this case, condition (5.27) becomes simply f(t, +R, 0) > 0
andf(t,—R,0)<0for0_5t_<p.

Proof of Theorem 5.1. The proof will be given first for the case thatf
satisfies (5.22) instead of (5.27). Let M> 0 be a constant (with p = r)
supplied by Lemma 5.2. Let g(t, x, x') be a continuous bounded function
for 0 < t _< p and arbitrary (x, x') satisfying (5.25), (5.22'), (5.23'), and
(5.24'). By Theorem 4.2, the boundary value problem

x" = g(t, x, x'), x(0) = x0, and x(p) = xn

has a solution x(t). Condition (5.22') means that r = Ilx(t)11 2 satisfies
r" > 0 if r' = 0 and r >_ R2 ; cf. (5.19). Hence r(t) does not have a
maximum at any point t, 0 < t < p, where r(t) >_ R2. Since r(0) =
11z0ll 2, r(p) = lIx,11 2 satisfy r(0), r(p) < RE, it follows that r(t) < R2 (i.e.,
Ilx(t)II < R) for 0 _< t <_ p. By virtue of z' = g and (5.23'), (5.24'),
Lemma 5.2 is applicable to x(t) and implies that Ilx'(t)II < M for 0 < t <_ p.

Consequently, (5.25) shows that x(t) is a solution of (5.26). This proves
Theorem 5.1 provided that (5.27) is strengthened to (5.22). In order to
remove this proviso, note that if E > 0, the function f(t, x, x') + cx

satisfies the conditions of Theorem 5.1 as well as (5.22) if q', K in (5.23),
(5.24) are replaced by p7 + eR, K + ER, respectively. Hence

x'=f(t,x,x')+ex

has a solution x = x f(t) satisfying the boundary conditions. It is clear that
IIx.(t)II < R and that there exists a constant M (independent of e, 0 < e <
1) such that 1IxE (t)II < M. Consequently, if N = max Ilf(t, x, 1) 11 + 1D
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434	 Ordinary Differential Equations

for 0 < t <p, Ilxll ^ R, Ilz II	 M, then IIxE"(t)II < N. Thus the family
of functions x(t), xf'(t) for 0 <_ t S p are uniformly bounded and equi-
continuous. By Arzela's theorem, there is a sequence I > e l > €> - -
such that e. —► 0 as n —► oo, and x(t) = lim x(t) exists as e = e„ —+0 and
is a solution of (5.26) satisfying x(0) = x0, x(p) = x i,. This completes the
proof of Theorem 5.1.

Exercise 5.3. Show that if (5.27) in Theorem 5.1 is strengthened to

(5.29)	 x  11111 0	 when x•x' =0,

then (5.26) has a solution x(t) satisfying x(0) = x0, x(p) = 0, and

(5.30)	 r > 0,	 r' < 0	 if r = 11x11 2 .
Exercise 5.4. Let u be a real variable. Let h(t, u, u) be real-valued

and continuous for 0 < t <_ p and all (u, u'),  and satisfy the following
conditions: (i) h is a nondecreasing function of u for fixed (t, u'); (ii) Ihl <
9'(lü I) where q(s) is a positive, continuous, nondecreasing function for
s >_ 0 satisfying (5.1); (iii) u" = h(t, u, u') has at least one solution
u0(t) which exists on 0 5 t < p [e.g., (ii) and (iii) hold if IhI < a Iü I ♦ K
for constants a, K]. Let u0, u, be arbitrary numbers. Then u" = h (t, u, u')
has at least one solution u(t) satisfying u(0) = u0, u(p) = u9. [For a related
uniqueness assertion, see Exercise 4.6(c).]

Theorem 5.2. Let f(t, x, x') be continuous in

(5.31)	 E(R) = {(t, x, x'): 0 <_ t < oo, Ilxll 	R, x' arbitrary}.

For every p> 0, let f satisfy the conditions of Theorem 5.1 on E(p, R) in
(5.20), where ç(s) and the constants a, K in (5.23), (5.24) can depend on p.
Let 11x011 5 R. Then (5.26) has a solution x(t) which satisfies x(0) = xo

and exists for t > 0.
Exercise 5.5. (a) Prove Theorem 5.2. (b) Show that if, in addition,

(5.27) is strengthened to (5.29) in Theorem 5.2, then the solution x(t) can
be chosen so that (5.30) holds. (c) Furthermore, if (5.29) is strengthened to
x -f+ Ilxll = ? 0, then r >0, r' <0, r"> 0 fort 0. (d) If x is 1-
dimensional, show that condition (5.24) can be omitted from Theorem 5.2
and parts (b) and (c) of this exercise.

Exercise 5.6. Let f(t, x, x') be continuous on the set E(R) in (5.31).
For every m, 0 <m < R, let there exist a continuous function h(t) =

h(t, m) for large t such that J  th(t) dt = oo and x • f(t, x, x') > h(t) >_ 0

for large t, 0 <m < IIxII c R, x' arbitrary. Let x(t) be a solution of
(5.26) for large t. Then x(t) —. 0 as t —. co.

Exercise 5.7. Let f(t, x, x') be continuous on E(R) in (5.31) and have
continuous partial derivatives with respect to the components of x, x';

let the Jacobian matrices (4.23) satisfy }(B + B") — }FF' >_ 0; cf. (3.17).
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Use of Implicit Function and Fixed Point Theorems 	 435

Let 11x011 <= R. Then (5.26) has at most one solution satisfying x(0) =;
and Ilx(t)II < R for t >_ 0.

Remark 2. The main role of the assumptions involving (5.23) and /or
(5.24) in Theorems 5.1, 5.2 is to assure that the following holds:

Assumption (A,). There exists a constant M = M(p) with the property
that if x(t) is a solution of x" = f(t, x, x') for 0 5 t < p satisfying
IIx(t)II : R, then Ilx (t)II : M for 0 < t <_ p.

Exercise 5.8. Let f(t, x, x) be continuous on E(R) in (5.31) and
satisfy assumption (A,) for all p >_ Po> 0. Suppose that, for each xo in
11x0 11 < R, (5.26) has exactly one solution x(t) = x(t, x) satisfying x(0) =
x0 and existing for t > 0 (cf., e.g., Theorem 5.2 and Exercise 5.7.) (a) Show
that x(t, x0) is a continuous function of (t, x0) for t >_ 0, Ilxoll : R.
(b) Suppose, in addition, that f(t, x, x') is periodic of period Po in t for
fixed (x, x'). Then (5.26) has at least one solution x(t) of period po .

PART III. GENERAL THEORY

6. Basic Facts

The main objects of study in this part of the chapter will be a linear
inhomogeneous system of differential equations

(6.1)	 y' = A (t)y + g(t),

the corresponding homogeneous system

(6.2)	 y' = A (t)y,

and a related nonlinear system

(6.3)	 y = A (t)y + f(t, y).

Let J denote a fixed t-interval J: 0 5 t < to ( co). The symbols
x, y, f, g,... denote elements of a d-dimensional Banach space Y over
the real or complex number field with norms IlxII, Ilyll, Ilill, Ilgll,
(Here Ilxll is not necessarily the Euclidean norm.) In (6.1), g = g(t) is a
locally integrable function on J (i.e., integrable on every closed, bounded
subinterval of J). A (t) is an endomorphism of Y for (almost all) fixed t
and is locally integrable on J. Thus if a fixed coordinate system is chosen
on Y, A (t) is a locally integrable d x d matrix function on J.D
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436	 Ordinary Differential Equations

When y(t) is a solution of (6.1) on the interval [0, a] C J, the fundamen-
tal inequality

(6.4) 	fly(t)II c {Ily(t')II + f a llg(s)II ds) exp la	IIA(s)II ds	 for 0 5 t, t'S a
0

follows from Lemma IV 4.1. If this relation is integrated with respect to
t.' over [0, a], we obtain

(6.5)	 II ✓(t)II : ^Ifa jjy(s)jj  ds + f IIg(s)II ds) exp f aIIA(s)II ds
a 	0	 0

for0 <_ t <— a.
Let L = L , denote the space of real-valued functions q(t) on J with

the topology of convergence in the mean Lt on compact intervals of J.
Thus L is a Frechet (= complete, linear metric) space. For example, the
following metric, which will not be used below, can be introduced on
L: let 0 = to < t t < t2 < ... , t„ —' w as n eo, and let the distance
between q7, +y e L be

d(97, y') _„^ 2" [1 2-f. 1(n)] ' 	where /(n) = J Iq9 — vI dt.
0

Correspondingly, let C = C. denote the space of continuous, real-
valued functions 97(t) on J with the topology of uniform convergence on
compact interval of J. Thus C is also a Fr6chet space. A metric on C,

e.g., is
m(n) 	‚	 where m(n) = max Iy'(t) — p(t)I .d(4^, V') = ^i 

2"[1 + m(n)]	 to.h,1

The symbols L' = L1 ', 1 < p < oo, denote the usual Banach spaces of
real-valued functions T(t) on J: 0 < t < w (5 oo) with the norm

tra

1971, = (fj I7(t)I 9 dt)	 if 1 < p < ao,

	14'Im = ess sup 197(1)1	 if p = oo.
J

Lo°° is the subspace of L°° consisting of functions 97(1) satisfying q(t) -+0

as t —► w. For other Banach spaces B of real-valued, measurable functions
ip(t) in J, the notation Iy^IB will be used for the norm of 97(1) in B.

Remark. Strictly speaking, the spaces L, L, Lo°°, ... are not spaces
of "real-valued functions" but rather spaces of "equivalence classes of
real-valued functions," where two functions are in the same equivalence
class if they are equal except on a set of Lebesgue measure zero. Since no
confusion will arise, however, over this "abuse of language,” the
abbreviated terminology will be used. In this terminology, the meaning
of a "continuous function in L" or the "intersection L n C" is clear.
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Use of Implicit Function and Fixed Point Theorems 	 437

L (Y), L'(Y), B (Y),... will represent the space of measurable vector-
valued functions y(t) on J: 0 _< t < Co (< c) with values in Y such that
q(t) = Ily(t)II is in L, L', B..... With Ln or B, the norm Ig91, or I9PIB
will be abbreviated to Iy1,, or 1y18.

A Banach space Z will be said to be stronger than L(Y) when (i) Z is
contained in L ( Y) algebraically and (ii) for every a, 0 <a <w, there is a
number a = oc,(a) such that y(t) E Z implies

(6.6) f dt < a IyI D, where a= aa(a).

[It is easily seen from the Open Mapping Theorem 0.3 that condition (ii) is
equivalent to: "convergence in D implies convergence in L(Y)."]

If Z is a Banach space stronger than L ( Y), a t-solution y(t) of (6.1) or
(6.2) means a solution y(t) E Z. Let YY denote the set of initial points
y(0) e Y of X-solutions y(t) of (6.2). Then YD is a subspace of Y. Let Y,
be a subspace of Y complementary to Ya ; i.e., Y, is a subspace of Y such
that Y = Yz ( Y, is the direct sum of YY and Y1, so that every element
y E Y has a unique representation y = yo + y, with yo E YY, yl E Yl

(e.g., if Y is a Euclidean space, Y l can be, but need not be, the subspace
of Y orthogonal to YY). Let P0 be the projection of Y onto YY

annihilating Y1 ; thus if y = yo + yl with yo E Y,, y, E Y,, then P0y = yo .
Lemma 6.1. Let A(t) be locally integrable on J and let Z be a Banach

space stronger than L (Y). Then there exist constants Co, Cl such that if
y(t) is a D-solution of (6.2), then

(6.7) Iyla Co Ily(0)II and Ily(0)II C1 Iyk .
Proof. Ya is a subspace of the finite dimensional space Y. In addition,

there is a one-to-one, linear correspondence between solutions y(t) of
(6.2) and their initial points y(0). Thus the set of D-solutions of (6.2) is a
finite dimensional subspace of t which is. in one-to-one, linear corre-
spondence with Y. It is a well known and easily verified fact that if two
finite-dimensional, normed linear spaces can be put into one-to-one
correspondence, then the norm of an element of one space is majorized by
ä constant times the norm of the corresponding element of the other
space. [For example, an admissible choice of C, is a

a-laz(a) exp f4 JJA(s)JJ  ds

for any a, 0 <a < w. This follows from (6.6) and the choices t = 0,
g(s) = 0 in (6.5).]

Let 0, Z be Banach spaces stronger than L(X). Define an operator
T = TT9 from 3J to 13 as follows: The domain 2(T) c D of T is the set
of functions y(t), t EJ, which are absolutely continuous (on compactD
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438 Ordinary Differential Equations

subintervals of J), y(t) e Z, and y'(t) — A(t) y(t) e 0. For such a function
y(t), Ty is defined to be y'(t) — A(t) y(t). In other words, Ty = g, where
g(t) E is given by (6.1).

Lemma 6.2. Let A(t) be locally integrable on J and let B, Z be Banach
spaces stronger than L( Y). Then T = T, is a closed operator; that is the
graph of T, 4(T) = {(y(t), g(t)): y(t) E (T), g = Ty), is a closed set of
the Banach space Ti x Q5.

Proof. In order to prove this, it must be shown that if yl(t), y2(t), .. .
are elements of -9(T), g„ = Typ, y(t) = lim y(t) exists in Z and g(t) _
lim g(t) exists in 8, then y(t) E 21(T) and g(t) = Ty.

The basic inequality (6.5) combined with (6.6) and the analogue of
(6.6) for the space '.8 give

IIy.(t) — ym(t)II	 ^a az ly,s — ymla + « a Ign — g,,J } expf IIA(s)II ds.

Hence y(t) is the uniform limit of yl(t), y2(:),. . . on any interval [0, a] c J.
The differential equation (6.1) is equivalent to the integral equation

y(t) = y(a) +J tA(s)y(s) ds -}- f 
t

g(s) ds.
o Ja

Since the convergence of g1, g,, ... in implies its convergence in L(Y), it
follows that (6.1) holds where y = lim y(i) in Z, g = lim g(t) in 2$.
Finally, y e Z, g E $ show that y e 21(T). This proves Lemma 6.2.

The pair of Banach spaces (23, T) is said to be admissible for (6.1) or for
A(t) if each is stronger than L( Y), and, for every g(t) E'.B, the differential
equation (6.1) has a 3-solution. In other words, the map T = T: 21(T) —►
0 is onto, i.e., the range of T is '.g. (For example, if J:0 < t C oo,
A(t) is continuous of period p, and 8 = Z is the Banach space of con-
tinuous functions y(t) of period p with norm Iyla = sup IIy(t)II, then
(43, Z) is admissible for (6.1) if and only if (6.2) has no nontrivial solution
of period p; see Theorem 1.1.)

Lemma 6.3. Let A(t) be locally integrable on J, let (13, Z) be admissible
for (6.1), and let yo E YD. Then, rf g(t) e 18, (6.1) has a unique D-solution
y(t) such that Pi(0) = ye. Furthermore, there exist positive constants
Co and K, independent of g(t), satisfying

(6.8) Iyla Collyoll + K Igl13•
Proof. Consider first the case that Ye = 0, so that we seek t-solutions

y(t) with y(0) e Y1. For any g e 18, (6.1) has a solution y(t) e Z, by

assumption. Let y(0) = ye + yl, where yo = P0y(0) e YY, y, e Y1. Let
y0(t) be the solution of the homogeneous equation (6.2) such that yo(0) =
yo, so that yo(t) e Z. Then y1(t) = y(t) — yo(t) E D is a solution of (6.1)
and y1(0) = yl e Y1.
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Use of Implicit Function and Fixed Point Theorems 	 439

lt is clear that y1(t) is a unique Z-solution of (6.2) with initial point
in Y1• Thus there is a one-to-one linear correspondence between g e
and D-solutions y1(t) of (6.2) with y,(0) E Y,. The proof of Lemma 6.2
shows that if Tl is the restriction of T = T%z with domain consisting of
elements y(t) E 2(T) satisfying y(0) e Y,, then Tl is closed. Thus Ti is
a closed, linear, one-to-one operator which maps its domain in Z onto '.
By the Open Mapping Theorem 0.3, there is a constant K such that if
Tiy = g, then ly6 5 K IgIs. This proves the theorem for yo = 0.

If yo 0 0, let y1(t) be the unique Z-solution of (6.2) satisfying y l(0) E Y1 .

Let y0(t) be the unique t-solution of the homogeneous equation (6.2)
satisfying yo(0) = yo . Then y(t) = yo(t) + y(z) is a D-solution of (6.1),
P0y(0) = yo, and lyla < Iyo(t)la + Iyi(t)Iz. By the part of the lemma
already proved, Iyt(t)k, c K II and, by Lemma 6.1, Iyo(t)I D _< Co Ilyoll•
This completes the proof of Lemma 6.3.

7. Green's Functions

Let h..(t) be the characteristic function of the interval 0 < t a, so
that h3(t) = I or 0 according as 0 <_ t 5 a does or does not hold.
Similarly, let ha(t) be the characteristic function of the half-line t > a, so
that ha(t) = I or 0 according as t >_ a or t < a.

A Banach space F8 of functions on J: 0 _<. t < w (5 co) will be called
lean at t = w if y,(t) E'. l3 and 0 <a <w imply that h(t)p(t), h,(t)y^(t) E

; Iho.VJ$, IhatPIs : I4; and IhaipI -  0 as a -► cu. Since ha(t»(t) =

,(t) - h,,j{t)i,(t) on J, the property "lean at t = w" implies that the
set of functions h^(t)p(t) of s$ vanishing outside of compact intervals
[0, a] a J is dense in F8.

Let il be a Banach space stronger than L(Y). As above, let Yl = Y1z be
a subspace of Y complementary to Y. Let Po = Po9 be the projection
of Y onto YY annihilating Y,, and PI = I - Pa the projection of Y onto
Yl annihilating Y. In terms of a fixed basis on Y, P 0 and Pi are
representable as matrices.

Let U(t) be the fundamental matrix for (6.1) on 0 t <w satisfying
U(0) = I. For 0 <_ s, t <o, define a (matrix) function G(t, s) by

G(t, s) = U(t)Po U-'(s)	 for 0 < s < t,

(7.1)
G(t, s) = - U(t)P1 U '(s)	 for 0 < t <s.

For a fixed t, G(t, s) is continuous on 0 < s < w, except at s = t, where
it has left and right limits, U(t)PO U-'(t) and -U(i)P1 U-'(t).

Theorem 7.1. Let A(t) be locally integrable on J. Suppose that 0, Z
are Banach spaces stronger than L(Y); that Z is lean at w; and that
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440	 Ordinary Differential Equations

Z has the property that if y(t), y1(t) are continuous functions from J to Y
and y(t) — y1(t) = 0 near t = w (i.e., yl — ys = 0 except on an interval
[0, a] c J), then y(t) e 2) implies that y1(t) e 2). Then (SB, X)) is admissible
for (6.1) if and only if, for every g(t) e $,

(7.2)	 y(t) =J ^G(t, s)g(s) ds = lim fG(t, s)g(s) ds
0	 o -'m

exists in Z. In this case, the limit is uniform on compact intervals of J and
is the unique t -solution of (6.1) with y(0) e Y1 .

Proof. "Only If ' . Let g(t) e F8, g(t) = ho,(t)g(t). Then (7.2) becomes

(7.3)	 ya(t) = fo",
G(:, s)g(s) ds = J G

G(t, s)g(s) ds,
 0

where the integral exists as a Lebesgue integral for every fixed t, since
G(t, s) is bounded for 0 S s 5 a and ge(s) is integrable over J. In view of
the first part of (7.1), the contribution of 0 = s _< t to (7.3) is

U(t)Pof U1(s)g(s) ds = U(t) f 'U 1(s)g0(s) ds — U(t)P1 I U 1(s)g(s) ds.
0	 0 	Jo

Hence, by the second part of (7.1), (7.3) is

(7.4)	 ya(t) = U(t) f U-1(s)ga(s) ds + U(t)ya(0),
0

where

(7.5) 	y(0) = —PiJ a'U- '(s)go(s) ds.
0

It follows from (7.4) and Corollary IV 2.1 that y(t) is a solution of (6.1)
when g(t) is replaced by ga(t).

An analogue of the derivation of (7.4) gives

y(t) _ — U(t) f aU-1(s)ga(s) ds + U(t)P0 f aU-1(s)ga(s) ds.
e	 o

Hence

U-l(a)ya(a) = Pof f", U-1(s)go(s) ds e Yn.

Thus for a _< t < w, y0(t) is identical with the solution U(t) U- '(a)y,(a)
of the homogeneous equation (6.2). Since the initial point of the latter
solution is in YY, the property assumed for Z implies that ya(t) e Z.

Since ya(0) e Yl by (7.5), it follows that y(t) is the unique solution of
(6.1), where g = g,(t), satisfying y,(0) E Y1. Hence, by Lemma 6.3,
It✓ola K Ig.1s.D
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Use of Implicit Function and Fixed Point Theorems 	 441

Let 0 < a < b < w. Then, since is lean at t = w,

ly0 — Yoko KIga — gel13 ^ 2KIhagI --'0	 as a—'w

Thus y = lim ya(t) exists in D as a -+ to. Also g = lim g0(i) in 8. Since
T = Tja in Lemma 6.2 is closed, y(t) is a D-solution of (6.1). The proof
of Lemma 6.3 shows that y = lim ya(t) uniformly on compact intervals
of J. Hence, y(0) = lim y(0) e Y1. This proves "only if" in Theorem
7.1. The "if" part is easy.

Corollary 7.1. Let to = ao; B and D be Banach spaces of class .-#;
B' be the space associate to B; cf. § XIII 9. For the admissibility of (B(Y),
D(Y)),(i) it is necessary that QG(t, -)II E B' for fixed t—thus the integrals
in (7.2) are Lebesgue integrals; (ii) when B is lean at o0, it is necessary and
sufficient that (7.2) define a bounded operator g -. y from B(Y) to D(Y);
(iii) it is sufficient that r(t) E D where r(t) = I IIG(t, •)II IB•; (iv) when
D = L, it is necessary and sufficient that r(t) e L.

Exercise 7.1. Verify this corollary.

8. Nonlinear Equations

Lemmas 6.1-6.3 will be used to study the nonlinear equation

(8.1)	 y' = A(t)y + f(t, y).

Let' 8, D be Banach spaces stronger than L(Y) and Eo the closed ball

Ep _-{y(t):  y(t) E Z,	 IyJ15	 P}	 in D.

Theorem 8.1. Let J; 0 < t <to (< oo); A(t) a locally, integrable
d x d matrix function on J, and (93, D) admissible for (6.1). Let f(t, y(t))
be an element of 11 for every y(t) e EP and satisfy

(8.2)	 If(t, y1(t)) — f(t, y2(t)) IV ! BIi^(t) — y:(t)Iz

for all yl(t), y2(t) E E,, and some constant 0; r = I f(t, 0)I$ ; yo E Y.
Suppose that if Co, K are the constants in Lemma 6.3, then 0, r, Ilyoll are
so small that

(8.3)	 Collyoll + Kr <_ p(1 - OK)	 and OK < 1.

Then (8.1) has a unique solution y(t) e E. satisfying

(8.4)	 P0y(0) = Ito.

It will be clear from the proof that the first part of (8.3) can be replaced
by the assumption

(8.5)	 Co Ilyoll + K I f(t, y(t)I g < p	 for all y(t) e E,.D
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442 Ordinary Differential Equations

In fact, the role of the assumption in (8.3) is to assure (8.5). In (8.4), P0

is the projection of Y onto YY annihilating a fixed subspace Y1, where
Y= Yz G Y1 .

Proof. Theorem 8.1 is an immediate consequence of Theorem 0.1 and
Lemma 6.3. Since f(t, x(t)) E 8 for any x(t) e Eo, Lemma 6.3 and the
assumption that (0, t) is admissible imply that

(8.6) y' = A(t)y + f(t, x(t))

has a unique t -solution y(t)satisfying(8.4) and (6.8), whereg(t) = f(t, x(t)).
Define the operator To from Eo into Z by y(t) = T0[x(t)]. In particular,
if m = IT0[0]6,, then

(8.7) m < Co Ilyoll + Kr, where r = I f(t, 0)I $.

If xl(t), x2(t) c- Eo and yl = To[xl ], y: = T0[;], it follows that y1(t) —
y=(t) is the unique Z-solution of

y = A(t)y + f(t, x1(t )) — f(t, x2(t ))

satisfying P0y(0) = 0. Hence, by Lemma 6.3 and by (8.2),

(8.8)	 Iy1 — yilz	 6KIxl — x:I1.

Consequently, Theorem 0.1 is applicable, and so To has a unique fixed
point y(t) E E,. This proves Theorem 8.1.

The statement of the next theorem involves the space C( Y) of continuous
functions y(t) from J to Y with the topology of uniform convergence on
compact intervals in J. The theorem will also involve an assumption
concerning the continuity of the map T,[y(t)] = f(t, y(t)) from the closure
of the subset Z. t1 C( Y) of C( Y) into 8. This condition is rather natural
in dealing with Banach spaces F8, Z of continuous functions on J with
norms which imply uniform convergence on J. This is the case in Parts
I and II, where J is replaced by a closed bounded interval 0 <_ t < p.
This continuity condition will also be satisfied under different circumstances
in Corollary 8.1.

Theorem 8.2. Let A(t) be locally integrable on J; F8, Z Banach spaces
stronger that L( Y); Eo the closed ball of radius p in 2); and S the closure
of E, t1 C( Y) in C( Y). Let A(t) and f(t, y) satisfy (i) (8, t) is admissible
for (6.1); (ii) y(t) —+ f(t, y(t)) is a continuous map of the subset S of the
space C(Y) into 48; (iii) there exists an r> 0 such that

(8.9) I f(t, y(t))Is < r for y(t) E S;

and (iv) there exists a function 1(t) E L such that

(8.10)	 II f(t, y(t)) II -< 1(t)	 for t EJ, y(t) E S.D
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Use of Implicit Function and Fixed Point Theorems	 443

Let Co , K be the constants of Lemma 6.3 and let yo E Y,,. Let r, I1yoll be so
small that

	(8.11)	 C011yoll +Kr<p.

Then (8.1) has at least one solution y(t) E E. satisfying P0y(0) = yo .
Proof. As in the last proof, define an operator To of S into D by putting

y = T0[x], where x(t) E S and y(t) is the unique Z-solution of (8.6)
satisfying (8.4). Thus, by Lemma 6.3,

II n c Co IlyoII + K If(t, x(t))I z < Co Ilyull + Kr.
Hence assumption (8.11) implies that T0 maps S into itself, in fact, into
Eo o C(Y) S.

Note that the basic inequality (6.5) implies that

Iiy(t)II	 {1 fa lly(s)JI  ds + f a lig(s)II ds) exp f aDDA(s)II ds
a 	 0	 0

for 0 < t 5 a if g(t) = f(t, x(t)). Since T is stronger than L( Y), (6.6)
holds. Also there is a similar inequality for elements g E Z with a suitable
constant aB (a). Hence, for 0 < t _< a,

	(8.12)	 ly(t)II ^ {1 aa(a) IIz + a8(a) II} exp fo HA(s)II ds.
a 

It will first be verified that T0 : S -^ S is continuous where S is considered
to be a subset of C( Y). Let x;(t) E S, gf(t) = f(t, x,(t)), y,(t) = T0[xXt)]
for j = 1, 2, then y,(t) — y2(t) is the unique D-solution of (6.1), where

g = g 1 — g0, satisfying P0[y,(0) — y=(0)] = 0. Hence Lemma 6.3 implies
that

Iy^ — y2I	 K Igo — g2IB•

Also, (8.12) holds if y = y, — ys and g = g, —g2. Thus, for 0 < t <_ a

	11y1(t) — y2(t)I	
(a

 °C‚(a)K + as(a)} 191 — g21, expJo IIA(s)II ds.

Since, by assumption (ii), xl(t)—► xz(t) in C(Y) implies g, —► gs in 3, it
follows that y,(t) —► Y2(t) uniformly on intervals [0, a] of J; i.e., y1(t) —►
y,(t) in C(Y). This proves the continuity of To : S —► S.

It will now be shown that the image TOS of S has a compact closure in
C( Y). It follows from (8.12), where g(t) = f(t, x(t)) and y(t) = T0[x(t)]

that, for 0 <_ t < a,

	

Ily(t)II 	az(a)p + as+(a)r} exp f
'a

IIA(s)II ds.
a 

Thus the set of functions y(t) E TOS are uniformly bounded on every
interval [0, a] of J. If c(a) is the number on the right of the last inequality,D
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444	 Ordinary Differential Equations

then (8.6) and (8.10) show that

Ily(t) — y(s)II c(a) f'IIA(u)II du +5 92(u) du for 0 < s < t 5 a.

Therefore, the functions y(t) in the image TOS of S are equicontinuous on
every interval [0, a] C J. Consequently, Arzela's theorem shows that
T0S has a compact closure in C(Y). Since S is convex and closed in
C( Y), it follows from Corollary 0.1 that To has a fixed point y(t) E S.
Thus Theorem 8.2 is a consequence of the fact that y(t) = To[y(t)] E
Eo r1 C(Y).

It is convenient to have conditions on 0, t, f(t, y), 1(t) which imply
(ii), (iii), (iv) in Theorem 8.2.

Assumption (Ho) on % = B(X): Let 8 = B(X) (cf. § 6), where Xis a
subspace of Y and B is a Banach space of real-valued functions on J such
that (i) B is stronger than L; (ii) B is lean at t = w (cf. § 7); (iii) B contains
the characteristic function h,,(t) of the intervals [0, a] C J; and (iv) if
q(t) E B and q%=(t) is a measurable function on J such that I9'2(t)I i4'^(t)I.
then q'2(t) E B and 1992113 I4'119•

It is important to have fB = B(X) rather than = B( Y) for applications
to higher order equations. If such equations are written as systems of
differential equations of the first order, the "inhomogeneous term f(t, y)"
will generally belong to a subspace X of Y; e.g., f(t, y) might be of the
form (h, 0, ... , 0).

Examples of spaces B satisfying the conditions in (H o) are B = L',
1 5 p < oo, and B = Lo°° (but not B = L). Other such spaces B can
be obtained as follows: Let ,(t)> 0 be a measurable function such that
v(t) and I/y,(t) are - bounded on every interval 0 _< t _< a (<W). Denote
by B = LA the space of functions q (t) on J such that p(t)/y<t) E Lo °°
with the norm I4'Is = ( q'/ vI.. The space B = L satisfies conditions
(i) -(iv). For this space, 2(t) E B holds if

(8.13) 0 _< 2(t) = t,v(t) and —► 0 as t --► w.
p( t)

Assumption (H,) on f(t, y): Let f(t, y) be continuous on the product set
of I and the ball IlYII <_ p in Y, let f have values in X, and let there exist a
function 2(t) E L such that

(8.14) Ilf(t, y)II < 2(t) for t eJ, Ilyll < p.

Corollary 8.1. Let A(t) be locally integrable on J, (13, Z) admissible for
(6.1), B satisfies (H0), D = L(Y) [or t = Lo °°(Y)], f(t, y) satisfies (H l)
and 2(t) e B with r = IAI B. Let Ye e Y1,. Then, if (8.11) holds, (8.1) has
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Use of Implicit Function and Fixed Point Theorems	 445

at least one solution y(t) on 0 5 t < w satisfying Poy(0) = yo, IIy(t)II	 p
[and y(t) -► 0 as I -► w].

Exercise 8.1. Verify Corollary 8.1.
Exercise 8.2. Let Y be expressed as a direct sum Ya Q+ Y1 ; let Pa

be the projection of Y onto YY annihilating Y1 , and Pl = I — Po the
projection of Y onto Yl annihilating Y. Let A(t) be locally integrable
on J: 0 <= t < cc. Define G(t, s) by (7.1) and suppose that there exist
constants N, v> 0 such that IIG(t, s)II <_ Ne- ' 1' - ` 1 for s, t >_ 0. Let
f(t, y) be continuous for 0 < t < cc, IIylI ^ p, and let I) f(t, y)II —< r. Let
yo E Y5,. Show that if Ilyoll and r > 0 are sufficiently small, then (8.1) has
a solution y(t) for 0 < t < co satisfying Ily(t)Q < p and Poy(0) = yo.
(For necessary and sufficient conditions assuring these assumptions on G,
see Theorems XIII 2.1.and XIII 6.4.)

9. Asymptotic Integration

In this section, let J be the half-line J: 0 < t < oo (so that w = co). As
a corollary of Theorem 8.2, we have:

Theorem 9.1. Let A(t) be continuous on J: 0 <_ t < oo. Let f(t, y) be
continuous for t > 0, Ilyll	 p, satisfy

(9.1)	 II f(t, y)II <_ 2(t)	 for t >_ 0, IIytI	 p,

and have values in a subspace X of Y. Assume either (i) that 2(t) E L' and
that (L'(X), 21), where Z = L(Y) [or 2) = Lo'(Y)], is admissible for

(9.2)	 y' = A(t )y + g(t);

or (ii) that there exists a measurable function v(t) > 0 on J such that
tp(t) and l/tp(t) are locally bounded, that

(9.3)	 0 < 2(t) < p(1) and	 s -^ 0	 as t -,. cc,

and that for every g(t) E L(X), for which

(9.4)	 £(i),.ø	 as t-+ao,

(9.2) has a T.-solution. Then if t o is sufficiently large, the system

(9.5)	 +J' = A(t)y +f(t, y)

has a solution for t > to such that IIJ(t)II	 p [and y(t) -► 0 as t -► cc].
Remark 1. Assumption (ii) merely means that (L(X), t) is admis-

sible for (9.2). Actually, assumption. (i) is a special case of (ii) but is isolated
for convenience. For a discussion of conditions necessary and sufficientD
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446	 Ordinary Differential Equations

for (L'(X), L(X)) or (L'(X), Lo (X)) to be admissible for (9.2), where
X = Y, see Theorem XIII 6.3.

Remark 2. Let U(t) be the fundamental solution for

(9.6)	 y' = A(t)y

satisfying U(0) = I. Let yo E Y. Then if 1 ly011 is sufficiently small and
to > 0 is sufficiently large, the solution y(t) in Theorem 9.1 can be chosen
so as to satisfy

U-'(to)y(to) = yo•

Let Co , K be the constants of Lemma 6.3 associated with the admissibility
of the appropriate pairs of spaces (L'(X), D) or (L;(X), Z). According
as (i) or (ii) is assumed, the conditions of smallness on Ilyoll and largeness
of to are

CoIlyoll +Kf
o

'01(t)dt 5 p orCo11yoll + K2(t) <_p for t>_to .

 tp(t)

Proof. Let '8 = L'(X) or '.B = L(X) according as (i) or (ii) is
assumed. Then Theorem 9.1 is a consequence of Corollary 8.1 obtained
by replacing f(t, y), A(t) by the functions ha(t)f(t, y), ha(t)2(t), where
a = to and ha(t) is I or 0 according as t >_ a or t < a.

Exercise 9.1. The following type of question often arises: Let y,(t) be
a solution of the homogeneous linear system (9.6). When does (9.5) have
a solution y(t) for large t such that y - y l -► 0 as t -► oo? Deduce
sufficient conditions from Theorem 9.1.

As an application of Theorem 9.1, consider a second order equation

(9.7)	 u" = h(t, u, u')

for a real-valued function u. Assume that h(t, u, u') is continuous for
t > 0 and arbitrary (u, u').  Let a, ß be constants and consider the question
whether (9.7) has a solution for large t satisfying

(9.8)	 u(t)-at-ß-► 0	 and ü(t)-a-► 0	 as t -► oo

Introduce the change of variables u -► v, where

(9.9)	 u = at + ß + v,

then (9.7) becomes

(9.10)	 v"= h(t,at+ß+v,a +v')

and (9.8) is v, ü -► 0 as I -► oo. Theorem 9.1 implies the following:
Corollary 9.1 Let h(t, u, u') be continuous for t > 0 and arbitrary (u, u')

such that

	

Ih(t,at +ß +u,a +u)I <= 2(t)	 for Jul,lül < p,
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Use of Implicit Function and Fixed Point Theorems	 447

where A(t) is a function satisfying

fo tA(t)  dt < oo.

Then (9.7) has a solution u(t) for large t satisfying (9.8).
Exercise 9.2. (a) Verify Corollary 9.1. (b) Apply it to the case that

h = f(t)g(u), where a 0 0 or a = 0. (c) Generalize it by replacing (9.7)
by u  h(t, u, ü und-1").

Actually Corollary 9.1 is a special case of Theorem X 13.1, but Theorem
X 13.1 can itself be deduced from Theorem 9.1; cf. Exercise 9.3 below.

Many problems involving asymptotic integrations can be solved by the
use of Theorem 9.1. Often these problems can be put into the following
form: Let Q(t) be a continuously differentiable matrix for t >_ 0. Does
the nonlinear system (9.5) have a solution y(1) such that if

(9.11)	 y = Q(1)x,

then c = lim x(t) exists as r - ► oo? The differential equation for x(t) is

(9.12)	 x = Q-1(t)[A(t)Q(t) - Q'(t)]x + Q-'(t)f(t, Q(t)x)•

The change of variables
(9.13)	 z=x-c
transforms (9.12) into

(9.14)	 z' = Q-1(AQ - Q')z + g(t, z, c),

where

(9.15)	 g(t, z, c) = Q-'(AQ - Q')c + Q-lf (t, Qz + Qc).

The problem is thus reduced to the question: Does (9.14) have a solution
z(t) for large t such that z(t) --,. 0 as t -► oo? Clearly, Theorem 9.1 is
adapted to answer such questions.

We should point out that if the answer is affirmative, then (9.11) and
the conclusion x(t) - c -+0 as t -► oo need not be very informative unless
estimates for II x(t) - c fl are obtained [e.g., if Q(t) is the 2 x 2 matrix
Q(1) _ (qf^(t)), where qx, = (-1)te- ', qk2 = et for k = 1, 2 and c = (1, 0),
then we can only deduce y(t) = o(e`), but not an asymptotic formula of
the type y(t) = (-1 + o(l), I + o(l ))e- ' as t -+ co.]

Exercise 9.3. Follow the procedure just mentioned and deduce
Theorem X 13.1 by using Theorem 9.1 (instead of Lemma X 4.3).

Notes

INTRODUCTION. The use of fixed point theorems in function spaces was initiated by
Birkhoff and Kellogg [11. For Theorem 0.2, see Tychonov [1]. For Schauder's fixedD
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448	 Ordinary Differential Equations

point theorem, see Schauder [1]. For the remark at the end of the Introduction, see
Graves [1]. As mentioned in the text, Theorem 0.3 is a result of Banach [1].

SECTION 1. Results analogous to those of this section but dealing with one equation
of the second order, e.g., go back to Sturm. Boundary value problems for systems of
second order equations were considered by Mason [1]. The results of this section
(except for Theorem 1.3) are due to Bounitzky [1]; the treatment in the text follows
Bliss [1]. These results are merely the introduction to the subject which is usually
concerned with cigenfunction expansions; see Bliss [l] for older references to Hilde-
brandt, Birkhoff, Langer, and others. For an excellent recent treatment for the singular,
self-adjoint problem; see Brauer [2]. Theorem 1.3 is given by Massera [1], who at-
tributes the proof in the text to Bohnenblust.

sEcnoN 2. Theorems 2.1 and 2.2 arc similar to Theorems 4.1 and 4.2, respectively.
Exercise 2.1 is a result of Massera [1] and generalizes a theorem of Levinson [2]; its
proof depends on a (2-dimensional) fixed point theorem of Brouwer. Exercise 2.2 is a
result of Knobloch (1], who uses a variant of Brouwer's fixed point theorem due to
Miranda [1]; cf. Conti and Sansone [1, pp. 438-444].

Theorems 2.3 and 2.4 are due to Poincarb [5, I, chap. 3 and 4]; see Picard [2, III,
chap. 81. Problems concerning "degenerate" cases of Theorems 2.3 and 2.4 when the
Jacobians in the proofs vanish were also treated by Poincarb and since then by many
others, including Lyapunov. For some more recent work and older references, see
E. Hölder [1], Friedrichs [1], and J. Hale [1]; for the problem in a very general setting,
see D. C. Lewis [4].

SECTION 3. The scalar case of Theorem 3.3 is a result of Picard [4]; the extension to
systems is in Hartman and Wintner [22]. In the scalar case, (3.17) can be relaxed to the
condition Re B(t)x • x >_ 0, Rosenblatt [2]; see also Exercise 4.5(c). The uniqueness
criterion in Exercise 3.3(b), among others, is given by Hartman and Wintner [22].
Sturm types of comparison theorems for self-adjoint systems have been given by Morse
[ 1 ].

SECTION 4. Theorem 4.1 and its proof are due to Picard [4, pp. 2-7]. For related
results in the scalar case, see Nagumo [2], [4], references in Hartman and Wintner [8)
and Lees [l ] to Rosenblatt, Cinquini, Zwirner, and others. Theorem 4.2 is a result of
Scroza-Dragoni (I). The uniqueness Theorem 4.3 is due to Hartman [19]. For Exercise
4.6(b), see Hartman and Wintner [8]; for part (c), with the additional condition that
f has a continuous partial derivative af]öx 0, see Rosenblatt [2]. For Exercises 4.7
and 4.8, see Nirenberg [1].

sECnoN 5. Lemma 5.1 and Corollary 5.2 are results of Nagumo [2]. The example
following Lemma 5.1 is due to Heinz [l J. The other theorems of this section are
contained in Hartman [19]. Exercise 5.4 is a generalization of a result of Lees [1] who
gives a very different proof from that in the Hints. For the scalar case in Exercise
5.5(d), see Hartman and Wintner (8]; this result was first proved by A. Kneser [2] (see
Mambriani (11) for the case when! does not depend on x'. For related results, see
Exercises XIV 2.8 and 2.9. A generalization of Exercise 5.9 involving almost periodic
functions is given in Hartman [19] and is based on a paper of Amerio [I].

SECTION 6. Part III is an outgrdwth of a paper of Perron [12], whose results were
carried farther by Persidskil [1], Malkin [1], Krein (1), Bellman [2], Kufer [1], and
Maisel' [1]. Except for Kuper, these authors deal, for the most part, with the case

L°D(Y), Z = L*'(Y). (For a statement concerning the results of these earlier
papers, see Massera and Schäffer [1, I].) The results of this section are due to Massera
and Schäffer [1] who deal with the more general situation when the space Y need not be
finite-dimensional.
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secrtoN 7. For the notion of "lean at w," see Schäffer [2, VI]. The Green's functions
G of this section occur in Massera and Schäffer [l, I and IV]. Theorem 7.1 and
Corollary 7.1 may be new.

sEcnoN 8. Theorem 8.1 is a result of Corduneanu [1]. Theorem 8.2 is a corrected
version of a similar result of Corduneanu[1] (see Hartman and Onuchic [1]); also
Massera [8]. For Corollary 8.1, see Hartman and Onuchic [9]. For Exercise 8.2, see
Massera and Schiffer [1, I or IV].

SECTION 9. This application of the results of § 8 is given by Hartman and Onuchic
[1]. For Corollary 9.1, see Hale and Onuchic [1].
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