
Chapter 10
Fast/slow Dynamical Systems

In previous chapters we employed perturbation methods to study problems in differ-
ential equations where the solution of the leading order problem could be obtained
in a simple explicit form. For problems where the leading order solution cannot be
obtained in a simple form, a different approach is needed. Here we show that ideas
from phase plane analysis (Chap. 1) can be used to circumvent these difficulties
and allow us to apply boundary layer methods (Chap. 7) to separate problems into
dynamics occurring at different scales.

The fundamental principles for formulating rate equations given in Chap.1 are
universally applicable for constructing models. But when the number of equations
in the resulting system is large or the leading order problem for ε = 0 is nonlinear,
then some of the direct approaches that we have seen in previous chapters become
cumbersome and may not be useful.

Similarly, Chap. 9 introduced approaches based on perturbation methods to esti-
mate the behaviour of some models yielding oscillatory behaviours. But those meth-
ods were limited to weakly nonlinear problems, where the leading order solution
satisfied a linear oscillator equation and could be calculated explicitly in terms of
sines and cosines. For some more general nonlinear problems, we will show that
properties of the system can be determined without the need for a closed-form solu-
tion.

The common structure for problems that we will investigate in this chapter is that
of singularly-perturbed dynamical systems. In Chap.7, we’ve learned that singularly
perturbed differential equations exhibit separation of spatial scales, having rapid
variations in boundary layers in contrast to slowly-varying outer solutions. Likewise
in Chap.9, a separation of time-scales occurred between the oscillations on the fast
time scale and evolution of the amplitude functions on slow scales. Extending this
approach to more general dynamical systems, we seek to decompose each problem
into two sub-systems:

• The slow system: the problem in terms of the original (“slow-time”) variable,
whose solution will be treated analogously to the outer solution in a boundary
layer problem.
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• The fast system: a rescaling of the system describing rapid evolution occurring
over shorter times, analogous to the inner solution of a boundary layer problem.

The solution of each sub-system will be sought in the form of a regular perturbation
expansion. For singularly-perturbed problems, the sub-systems will have simpler
structures than the full problem and allow for the slow- and fast-dynamics to poten-
tially be characterised in terms of reduced phase line or phase plane dynamics.

Wewill study twoproblems that could be considered directly in terms of a standard
phase plane analysis, but through the use of perturbation theory (that is also applicable
to higher order systems), wewill show that the underlying dynamics can be separated
into more convenient forms.

10.1 Strongly-Nonlinear Oscillators: The van der Pol
Equation

For oscillatory systems where the leading problem for ε → 0 does not yield the
harmonic oscillator equation, x′′

0 (t)+ x0(t) = 0, the approaches from Chap.9 cannot
be applied in a straightforward manner. As an example of a “strongly nonlinear”
oscillator, we will show how to construct solutions of the van der Pol oscillator,

ε
d2x

dt2
+ (x2 − 1)

dx

dt
+ x = 0 for ε → 0. (10.1)

This equation is similar to the weakly-nonlinear damped oscillator (9.33), but here
the first-order damping term is part of the leading order equation while the second
derivative term is a singular perturbation.1 Since the perturbation parameter heremul-
tiplies the highest order derivative, this type of problem could be called a “singularly
perturbed oscillator” but the more common name is a relaxation oscillator.

We begin by re-writing (10.1) in terms of a convenient formulation for a phase
plane analysis but will use a different choice of intermediate variable y(t) than the
standard velocity (1.37). Notice that the first two terms in (10.1) can be written as a
total derivative,

d

dt

(
ε

dx

dt
+ 1

3x3 − x

)
+ x = 0.

Defining the expression in parentheses as y = εx′+ 1
3x3−x, we obtain an autonomous

system for (x(t), y(t)),

ε
dx

dt
= y + x − 1

3x3,
dy

dt
= −x, (10.2)

1Attempting to put this equation in the form (9.2) fails because dividing by ε suggests a very fast
oscillation, ω0 = ε−1/2 → ∞, and a large (O(ε−1) → ∞) rather than small perturbation term.

http://dx.doi.org/10.1007/978-3-319-23042-9_9
http://dx.doi.org/10.1007/978-3-319-23042-9_9
http://dx.doi.org/10.1007/978-3-319-23042-9_1
http://dx.doi.org/10.1007/978-3-319-23042-9_9


10.1 Strongly-Nonlinear Oscillators: The van der Pol Equation 203

which is called the Liénard transformation of the van der Pol equation. The
singularly-perturbed nature of this system is clear: for ε = 0, the ODE for x(t)
reduces to an algebraic relation.

We begin by determining the outer (“slow”) solution using regular perturbation
expansions for both x, y:

x(t) = x0(t) + εx1(t) + O(ε2), y(t) = y0(t) + εy1(t) + O(ε2).

Collecting the O(1) terms in the expansions of (10.2), we obtain the leading order
slow system,

0 = y0 + x0 − 1
3x30,

dy0
dt

= −x0. (10.3)

The differential equation for y0(t) allows us to qualitatively describe the dynamics
of the solution in terms of vertical motion in the phase plane as

y0(t) is

{
decreasing for x0 > 0,

increasing for x0 < 0; (10.4a)

hence the y0-axis is the y-nullcline curve (see Sect. 1.5.1) for both the full problem
and the slow system. The remaining equation in (10.3) restricts the slow-time solution
to evolve only on the curve

y0(x0) = 1
3x30 − x0 ≡ S(x0), (10.4b)

which is called the slow manifold (or “slow solution curve”) and is shown in Fig. 10.1.
Restricting the solution to stay on the slowmanifold while following the evolution

described by (10.4a) suggests that starting from any x0 < 0 will drive the solution
upward to approach the local maximum of the curve at y0(−1) = 2/3, while the
dynamics in the right half plane, with x0 > 0 will force solutions to evolve toward
the local minimum at y0(1) = −2/3. At those critical points (extrema), the vertical
motion still follows (10.4a) even though there is no obvious place to go on the slow

Fig. 10.1 Arrows indicating
dynamics of the leading
order solution on the slow
manifold (10.4b) and at the
two critical points of the
curve

http://dx.doi.org/10.1007/978-3-319-23042-9_1
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manifold. The solution therefore gets pushed off the slow manifold2; everything off
the slow manifold in the phase plane is part of the fast problem, to which we now
turn our attention.

Following the analysis in Chaps. 6 and 7, in order to find singular solutions, we
rescale the original system in terms of new variables. To determine the fast variables,
we substitute the general scalings

T = t − t∗
εα

, x = εβX(T), y = εγ Y(T), (10.5)

into (10.2)where the scaling exponentsα,β, γ and the time t∗ when the fast dynamics
occur are to be determined. For this problem, it can be shown that x, y are always
O(1), so we take β = γ = 0 and determine the value for α(≥0) from dominant
balance in

ε1−α dX

dT
= Y + X − 1

3X3, ε−α dY

dT
= −X.

In applying the method of dominant balance to systems of equations, distinguished
limits will typically yield a balance in one equation at a time, while the other equa-
tions yield sub-dominant contributions, where the rate of change will be o(1). The
distinguished limit α = 0 balances the terms in the second equation and reproduces
the original slow system we have already considered, (10.2). The choice α = 1
balances all of the terms in the first equation,

dX

dT
= Y + X − 1

3X3,
dY

dT
= −εX, (10.6)

where we have multiplied the second equation by εα .
Seeking the fast solutions as regular expansions,

X(T) = X0(T) + εX1(T) + O(ε2), Y(T) = Y0(T) + εY1(T) + O(ε2),

yields the leading order fast system,

dX0

dT
= Y0 + X0 − 1

3X3
0 ,

dY0

dT
= 0. (10.7)

The second equation shows that the dynamics in the fast system (everywhere in
the phase plane away from the slow manifold) must have Y0(T) ≡ constant, i.e.
only horizontal motion is admissible. With this in mind, the first equation can be
interpreted as describing motion on a phase-line for X0(T),

dX0

dT
= Y0 − S(X0), (10.8)

2At which point, the solution is no longer described by the dynamics of the slow system.
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where the value of Y0 selects a “slice” through the slow-manifold analogous to
(1.29) from Chap.1. The equilibrium points of (10.8) are given by the solutions of
S(X0) = Y0 with their stability being determined by the sign of −S′(X0), while all
other values for X0 give monotonic increasing or decreasing solutions.

In summary, for the slow system, we have identified the slow manifold and
described how the dynamics on the slow manifold approach the critical points. Tak-
ing those as departure points into the fast system, the subsequent motion is given by
the rapid evolution of x on horizontal lines that terminate at points of intersection
with the slow curve. This qualitative description allows us to sketch the form of tra-
jectories starting from any point in the (x, y) phase plane and identify the four-stage
structure (and global stability) of the stable finite-amplitude limit cycle solution, see
Figs. 10.2 and 10.3. The general features of the limit cycle (maximum, minimum val-
ues and period) can be obtained from these results (see Exercise10.1). The fast-time
dynamics can be asymptotically matched to outer solutions (slow solutions), and so
the fast-dynamics act as “interior” boundary layers (in the terminology of Chap. 7).

Fig. 10.2 Starting from general initial conditions not on the slow manifold, there will first be a
rapid horizontal transition or “jump” 1 to a stable branch of the slow manifold followed by slow
evolution down that branch 2 to the equilibrium point. Dropping off the minimum yields another
fast jump 3 across to the other stable branch of the slow manifold, where slow dynamics drive the
solution upwards 4 to the maximum and on to another fast jump back across to the previous stable
branch of the slow manifold. The resulting (periodic) dynamics correspond to an attracting limit
cycle

Fig. 10.3 Sketch of the
time-profile illustrating the
four stages in the van der Pol
limit cycle
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10.2 Complex Chemical Reactions: The Michaelis-Menten
Model

The reactions described in Sect. 1.2 can be said to be “what you see is what you
get” elementary reactions if the rate equations obtained from direct applications of
the the law of mass action predicts the rates as would be observed in experimental
studies of the systems. However, for general reactions, collisions of three or more
molecules almost never happen exactly simultaneously (only single-molecule decay
or binary collisions typically occur as elementary steps). The term non-elementary
reactions describes the overall relation between reactants and products, but with the
molecular collisions and mass action kinetics involved actually occurring in many
“hidden” intermediate sub-stages. For example, a non-elementary version of (1.14a)
could be

n A + m B → (???) → (???) → (???) → p C + q D.

The temporary products from intermediate reactions are called complexes and are
often unstable compounds that exist only briefly.

To obtain the overall rate of creation of products,we need to analyse the full system
with all intermediate stages expanded out as elementary reactions. Part of the very
difficult work of chemists and bio-chemists is to determine all of the intermediate
reactions. If all of the intermediate reactions are known, then we may have a very
complicated system of rate ODEs. Our goal is to try to condense the system down to
just the overall reaction

reactants � products

and to determine the effective rate equation for the products. The theory of dynamical
systems can be applied to accomplish this for many chemical reaction systems.
Given a complete system of reactions and initial conditions, we illustrate through an
example how to obtain a simple model for the rate equations of the products.

A simple version of an enzyme-mediated chemical reaction process is given by
the system,

S + E
k1−⇀↽−
k2

C
k3−→ P + E, (10.9)

where S is the “substrate” reactant and P is the concentration of the desired product.
An enzyme (or catalyst) is a compound whose special property is that it allows for
intermediate reaction steps that lead to the overall reaction, in this case

S → P, (10.10)

or allow it proceed more rapidly than without the enzyme; in some cases this direct
transformation might not be possible at all without the enzyme.

Let E be the concentration of the enzyme, and C is the intermediate “complex” of
SE bound together. The enzyme is typically a complicated and expensive compound,

http://dx.doi.org/10.1007/978-3-319-23042-9_1
http://dx.doi.org/10.1007/978-3-319-23042-9_1
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but notably it is not actually consumed by (10.9). Consequently, the enzyme may be
given in a small initial concentration E0. The complex C is an unstable temporary
state and none would be present before the reaction starts. We will assume that the
production process begins with no product, and a large initial supply of reactant, S0,
all to be converted into P. Assuming the reaction rate constants k1, k2, k3 are known
finite values, our goal is to determine the rate of production for P and how it can be
represented in simplest form.

Beginning by expanding (10.9) into its full set of elementary reactions,

S + E
k1−→ C S + E

k2←− C C
k3−→ P + E, (10.11)

the law of mass action yields the rate equations for consumption/production of each
chemical species in the dimensional form

dP
dT

= k3C,
dC
dT

= k1SE − k2C − k3C, (10.12a)

dS
dT

= −k1SE + k2C,
dE
dT

= −k1SE + k2C + k3C,

subject to initial conditions at t = 0,

S(0) = S0, E(0) = E0, C(0) = 0, P(0) = 0. (10.12b)

We now nondimensionalize system (10.12a, 10.12b). Given the one-to-one corre-
spondence between S and P and between E and C as reactants/products in (10.11),
we scale these pairs by the respective initial concentrations

S(T) = S0s(t), P(T) = S0p(t), (10.13)

E(T) = E0e(t), C(T) = E0c(t), T = Tt.

We will go on to select the timescale T later below. Through these scalings, the
nondimensional concentrations are all normalised such that

0 ≤ {s(t), p(t), e(t), c(t)} ≤ 1.

Our previous intuition related to the transformation of enzyme to complexmolecules,
E � C, can be made concrete by noting that the total amount of the two substances
is conserved for all times, following directly from (10.12a),

d

dT
(C + E) = 0 =⇒ C(T) + E(T) = E0,

so that c + e = 1. This allows us to use e = 1 − c to eliminate the enzyme from the
system, leaving the problem in terms of s, c, p.
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We take the initial amount of substrate to be finite, S0 = O(1), and assume that
we begin with a relatively small amount of enzyme, E0 � S0. We now select the
timescale T in order to make the consumption rate ds/dt = O(1). This choice yields
T = 1/(k1E0). The resulting scaled system is therefore given by

ds

dt
= −s(1 − c) + λc, s(0) = 1, (10.14)

ε
dc

dt
= s(1 − c) − μc, c(0) = 0,

dp

dt
= (μ − λ)c, p(0) = 0,

where we have relabelled dimensionless combinations of parameters as

ε = E0

S0
� 1 λ = k2

k1S0
= O(1) μ = k2 + k3

k1S0
= O(1). (10.15)

We will consider the limit of a very small amount of enzyme in the system (ε → 0)
for our perturbation analysis. Noting that the equations for s, c are independent of
p, we first solve for the s, c system and then use the results to determine p from the
final equation in (10.14).

Since (10.14) is a singularly perturbed system for ε → 0, we expect a separation
between fast and slow time scales. Beginning with the slow system, we consider reg-
ular expansions for the solutions, s = s0(t) + O(ε), c = c0(t) + O(ε). Substituting
these into (10.14) yields the leading order slow system,

ds0
dt

= −s0(1 − c0) + λc0, 0 = s0(1 − c0) − μc0, (10.16)

with the second equation giving an algebraic relationship between the complex and
substrate concentrations,

s0(c0) = μc0
1 − c0

; (10.17)

this is the slow manifold for this problem.
We note that our initial conditions, c(t = 0) = 0, s(t = 0) = 1 do not lie on the

slowmanifold and hence there must be a brief initial layer at t∗ = 0, governed by the
dynamics of the fast system, that describes the transition from the initial conditions to
the slow manifold. To determine the form of the fast system, we rescale the variables
as

s = S(T), c = C(T), T = t

εα
,

yielding

ε−α dS

dT
= −S(1 − C) + λC, ε1−α dC

dT
= S(1 − C) − μC.
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The distinguished limit for the fast system is found to occur when α = 1 and the
leading order fast system is then given by

dS0
dT

= 0,
dC0

dT
= S0(1 − C0) − μC0, (10.18)

with initial conditions S0(0) = 1 and C0(0) = 0. Consequently there is no change
to the substrate concentration in the initial layer at leading order, and it remains at
its initial value, S0(T) ≡ 1. For completeness, we could determine C0(T) from this
system, but bearing in mind that our final goal is to determine p(t), we only actually
need to find s(t) as we can replace c(t) in terms of s(t) (at leading order) in (10.14)
using the slow manifold (10.17). Asymptotic matching of the fast and slow solutions
for s yields the initial conditions for the slow solution,

lim
T→∞ S0(T) = 1 = lim

t→0
s0(t).

Hence, while the initial layer has a dramatic effect on the concentration of the com-
plex, it essentially leaves the initial condition on s from (10.14) unchanged. The
initial layer is effectively a boundary layer with respect to time for the initial value
problem for c in (10.14). Figure10.4 shows a comparison of the numerical solution
of (10.14) against the leading order fast/slow dynamics (the slow manifold being
described by (10.17)).

Substituting (10.17) into (10.14), we get the slow system,

ds0
dt

= − μ − λ

μ + s0
s0,

dp0
dt

= μ − λ

μ + s0
s0, (10.19)

and we can finally confirm our expectation that the total of the substrate and product
is conserved, d(s0 + p0)/dt = 0. Using the initial conditions, we have effectively
reduced the original problem to solving a single first order ODE for s0(t), with p0(t)
then being given by p0(t) = 1 − s0(t). This effective nonlinear rate law is called
the Michaelis-Menten law and is used extensively in the modelling of biochemical
systems.

Fig. 10.4 The cs phase
plane showing the slow
manifold curve (10.17) and a
numerical solution of the full
system (10.14) for ε = 1/5
starting from initial
condition (c, s) = (0, 1)
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10.3 Further Directions

More extensive presentations of dynamical systems are given in many texts, both
from more theoretical [43, 70], and more applied standpoints [54, 94]. Many books
illustrate in detail the use of perturbation methods for studying dynamical systems
[47, 54, 56, 73, 102], with the van der Pol oscillator being a classic example. Mod-
elling and applications of chemical kinetic systems are presented more thoroughly
in [37, 49, 57, 74]. Some alternative limiting cases of the enzyme kinetics system
are explored in [87, 90].

10.4 Exercises

10.1 Consider the van der Pol equation for x(t) with 0 < ε � 1,

ε
d2x

dt2
+ (3x2 − 6x − 9)

dx

dt
+ 4x = 0.

(a) Determine f (x) so that this equation can be written as a Liénard phase plane
system in the form

ε
dx

dt
= f (x) + 4y,

dy

dt
= −x.

(b) For fixed ε > 0, find the equilibrium point(s) in the phase plane, find their
eigenvalues, and classify their linear stability.

(c) Use the expansions x(t) = x0(t)+εx1(t)+O(ε2), y(t) = y0(t)+εy1(t)+O(ε2),
to determine the equations for the leading order slow solution. Sketch the slow
manifold, indicate the direction of motion on each part, and identify the two
attracting points on the curve.

(d) Use the expansions x(t) = X0(T) + εX1(T) + O(ε2), y(t) = Y0(T) + εY1(T) +
O(ε2) with T = t/ε to obtain the equations for the leading order fast solution.

(e) Use the phase plane to determine the maximum and minimum values of x(t)
during anoscillation, seeFig. 10.2. Sketch x(t) as a functionof time, seeFig. 10.3.

(f) Using the time required for the slow motions in (c) (neglecting the short times
for the fast solutions (d)), determine the leading order estimate for the period P
of oscillation of the limit cycle.
Hint: Find the time spent moving along each of the slow curves by obtaining an
equation dx0/dt = g(x0) from (c) and then separate variables to write

dx0
dt

= g(x0) =⇒ P =
∫ tend

tstart
dt =

∫ xend

xstart

dx

g(x)
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and finally integrate over the ranges in x that are appropriate to each of the two
slow segments and adding together those two times.

10.2 We now consider different limits for a dynamical system describing a chemical
reaction problem in terms of three variables, see (4.50). Consider the limit ε → 0
for each of the following cases,

(a) For the system

dx

dt
= 2 − y, x(0) = 1,

dy

dt
= x − z, y(0) = 3, (10.20)

ε
dz

dt
= y − y2 + 1

3y3 − z, z(0) = 0.

Identify the surface z = S(x, y) that defines the slow manifold. Find the equi-
librium point of the leading order slow phase plane system and show that it is
asymptotically stable for t → ∞. Also determine the form of the initial layer
that describes the transition from the initial conditions to the slow manifold.

(b) For the system

dx

dt
= 2 − y, x(0) = 0,

ε
dy

dt
= x − z, y(0) = 3, (10.21)

dz

dt
= y − y2 + 1

3y3 − z, z(0) = 1.

Show that the slowmanifold reduces to a curve that could bewritten in parametric
form as x = x(z), y = y(z), z = z. Determine the asymptotic solution for
t → ∞. Also determine the form of the initial layer that describes the transition
from the initial conditions to the slow manifold.

10.3 Consider the problem of forming a “tri-mer” (a three segment polymer mole-
cule) from three mono-mer molecules,

3A → A3.

This is an example of polymerisation. It is a non-elementary reaction and takes place
via intermediate stages. Call the tri-mer “C” and the di-mer (A2) “B”. Suppose that
the full reaction mechanism is given by

A + A
k1−⇀↽−
k2

B A + B
k3−→ C

http://dx.doi.org/10.1007/978-3-319-23042-9_4
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(a) Write the dimensional rate equations.
(b) Nondimensionalize using the scalings

A(T) = A0a(t) B(T) = B0b(t) C(T) = A0c(t) T = Tt

where A0 is the initial concentration.
(c) Let T = 1/(k1A0) and assume that ε = B0/A0 → 0.

Identify the other dimensionless parameters (call them Π1,Π2) and state what
asymptotic relations on the rate constants kn must hold if we assume that only
the εdb/dt terms vanishes from the leading order slow system.
Hint: Normalise the coefficient of the +a2 term.

(d) Find the leading order slow manifold and write the dimensional equations for
the long-term rate of production, and hence find G(A) and F(A) in

dA
dT

= −G(A),
dC
dT

= F(A).

10.4 Consider the system of chemical reactions

A + X
k1−→ Y A + Y

k2−→ 2X A
k3−→ Y 2Y

k4−→ P

where the concentration of A is kept constant and k1, k2, k3, k4 are given.

(a) Write the rate equations for x(t) and y(t).
(b) Nondimensionalize using T = Tt, X = Xx, Y = Yy. Let T = 1/(k1A).

Determine X and Y so that: (1) all of the terms in the dx/dt equation and (2) the
y2 term in the dy/dt equation are normalised.

(c) Determine the remaining independent dimensionless parameters (call themα, β)
and write the nondimensionalized equations.

(d) In terms of α, β, determine the concentrations x, y for the positive equilibrium
solution.

10.5 In chemistry, a widely-used short-cut avoiding the full scaling and slow/fast
perturbation analysis is to jump to the leading order slow equations using the assump-
tion that the rate of production of all intermediates equilibrate (i.e. reduce to steady
algebraic relations, like ε dc

dt = 0); this is called the Quasi-Steady-State Assumption
(QSSA).
Use the QSSA approach to consider the overall reaction for the formation of
hydrogen-bromide: H2 + Br2 → 2HBr. The reaction takes place through several
steps:

Br2
k1−⇀↽−
k2

2Br Br + H2
k3−⇀↽−
k4

H + HBr H + Br2
k5−→ HBr + Br

Consider the atomic forms H and Br to be unstable intermediates (similar to com-
plexes being unstable intermediates). Apply the QSSA to obtain the dimensional
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rate law for the production of HBr (written here using the chemistry-notation of [X]
being the concentration of chemical X) [6],

d[HBr]
dT

= α[H2][Br2]3/2
[Br2] + β[HBr]

Find α, β. Hint: Write A = [H2], B = [Br2], C = [Br], D = [H], P = [HBr] for
doing your algebra.
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