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Abstract

This paper establishes a connection between Nesterovs Accelerated
Gradient Method (NAGM) and a second-order ODE. By deriving
this ODE as the continuous-time limit of NAGM, the authors pro-
vide deeper insights into the algorithm’s dynamics, including its ac-
celerated convergence and oscillatory behavior.

Key contributions include:
1 A rigorous ODE framework for analyzing NAGM.
2 A generalized damping model that extends NAGM to a family

of methods.
3 A restarting technique that enhances performance, especially

for strongly convex functions.

Su, W., Boyd, S., & Candès, E. J. (2015). A Differential Equation for Modeling Nesterov’s Accelerated Gradient

Method: Theory and Insights. arXiv preprint arXiv:1503.01243.
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Nesterov’s Accelerated Gradient Method (NAGM)

NAGM Algorithm:{
xk = yk−1 − s∇f (yk−1)

yk = xk + k−1
k+2(xk − xk−1)

where y0 = x0, step size s ≤ 1
L , and L is the Lipschitz constant of

∇f .

inverse quadratic convergence rate:

f (xk)− f ∗ = O
(
∥x0 − x∗∥2

sk2

)
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Using ODE to model Nesterov’s scheme

By taking small step size in NAGM, one can derive an ODE that is
the exact limit of Nesterov’s scheme:

..
X +

3
t

.
X +∇f (X ) = 0

As step size goes to 0, we have xk ≈ X (k
√

s)
The initial condition is:

X (0) = 0,
.

X (0) = 0

Theorem
For any f ∈ ∪L>0FL (FL denotes the class of convex functions f with LLipschitz continuous gradients), as step
size s → 0, Nesterov’s scheme converges to the ODE above in the sense that for all fixed T > 0:

lim
s→0

∥xk − X(k
√

s)∥
0≤k≤T/

√
s

= 0
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Exploring the Link Between Nesterovs Scheme and ODE

• Objective: Analyze the approximate equivalence between Nes-
terovs scheme and its ODE representation.

• Key Topics:
• Convergence equivalence between Nesterovs scheme and ODE.
• Oscillatory behavior in quadratic and strongly convex functions.
• Comparison of Nesterovs scheme and gradient descent.
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ODE and Nesterovs Scheme: Similar Convergence Rates

Nesterovs Convergence (Discrete):

f (xk)− f ⋆ ≤ 2∥x0 − x⋆∥2

s(k + 1)2 .

ODE Convergence:

f (X (t))− f ⋆ ≤ 2∥x0 − x⋆∥2

t2 .

Proven using an energy functional:

E(t) = t2(f (X (t))− f ⋆) + 2∥X + tẊ/2 − x⋆∥2.

Key Insight: The ODE convergence rate matches Nesterovs scheme
for t ≈ k

√
s.
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Oscillations Explained with Bessel Functions

ODE Solution for Quadratic f = 1
2⟨x ,Ax⟩+ ⟨b, x⟩:

Ẍi +
3
t Ẋi + λiXi = 0.

Solution involves the Bessel function J1(t):

Xi(t) =
2x0,i

t
√
λi

J1(t
√

λi).

Asymptotic Form for Large t:

J1(t) ∼
√

2
πt cos(t − 3π/4).

Oscillations and decay are explained by this solution.
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Oscillation Frequencies for Strongly Convex Functions

Key Insight: Oscillation frequency depends on eigenvalues µ and
L:

O(
√
µ) ≤ frequency ≤ O(

√
L).

Root Spacing for Oscillations:

ti+1 − ti ∼
π√
L
.

This result highlights how strongly convex functions influence the
oscillation behavior of the ODE solution.
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Why Nesterovs Scheme Moves Faster

Square-Root Scaling:

t ≈ k
√

s (Nesterov) vs. t ∝ ks (Gradient Descent).

Numerical Stability:
• ODE stable step size: ∆t ≤ 2/

√
L.

• Nesterovs scheme: s = 1/L.
• Gradient descent requires s = 2/L, slower in practice.

Empirical Comparison: Simulations show that Nesterovs scheme
traverses the solution space faster per iteration.
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Exploring the Const 3

Overview:
• The constant r = 3 in Nesterov’s ODE and discrete schemes:

Ẍ +
r
t Ẋ +∇f (X ) = 0.

• This constant governs the convergence behavior:
• r > 3: High friction, reduced oscillations, maintains O(1/t2).
• r < 3: Low friction, instability, or slower convergence.

• Goals of this section:
• Analyze r > 3 (high friction).
• Examine r < 3 (low friction).
• Extend results to strongly convex functions and discrete schemes.
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High Friction vs. Low Friction

High Friction (r > 3):
• Generalized energy functional:

E(t) = 2t2

r − 1(f (X (t))− f ⋆) + (r − 1)∥X +
t

r − 1 Ẋ − x⋆∥2.

• Maintains O(1/t2) convergence, with a larger constant:

f (X (t))− f ⋆ ≤ (r − 1)2∥x0 − x⋆∥2

2t2 .

Low Friction (r < 3):
• Instability observed with O(1/tr ) convergence for r < 2.
• Additional structural assumptions needed for O(1/t2) conver-

gence:
(f − f ⋆)

r−1
2 must be convex.
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Strong Convexity and Improved Convergence

Enhanced Rates for Strongly Convex Functions (f ∈ Sµ,L):
• New energy functional:

E(t;α) = tα(f (X (t))−f ⋆)+(2r − α)2tα−2

8 ∥X+
2t

2r − α
Ẋ−x⋆∥2.

• For α = 2r/3, achieves O(1/t2r/3):

f (X (t))− f ⋆ ≤ C∥x0 − x⋆∥2

µ
α−2

2 tα
.

Insights:
• Strong convexity allows faster convergence.
• Highlights the role of r > 3 in improving rates for specific

problems.
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Extending to Discrete Schemes

Generalized Nesterovs Scheme:
• Updates for r > 3:

xk = yk−1 − sGs(yk−1), yk = xk +
k − 1

k + r − 1(xk − xk−1).

• Key Results:
• O(1/k2) for any r > 3:

f (xk)− f ⋆ ≤ (r − 1)2∥x0 − x⋆∥2

2s(k + r − 2)2 .

• O(1/k3) for r ≥ 9/2:

f (xk)− f ⋆ ≤ CL∥x0 − x⋆∥2

k3 .

Numerical Insights:
• Smaller r : Faster initial progress, higher overshoot.
• Larger r : Slower but stable convergence near the solution.
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Why Restarting is Necessary?
Challenges with Momentum in Strong Convexity:

• Nesterov’s scheme performs worse then vanilla gradient descent
in strongly convex function.

• Momentum introduces overshooting, slowing convergence:
O(1/poly(k)) vs. Gradient Method: O((1 − µ/L)k).

• NAGM can also achieve linear convergence for strongly convex
functions but requires knowledge of µ/L, difficult to estimate.

Existing Restarting Approaches:
• Gradient Restarting: Restarts when f (xk+1) > f (xk).
• Effective but lacks theoretical guarantees.

New Proposal: Speed Restarting Scheme
• Maintains high velocity by resetting the trajectory when velocity

decreases.
• Provably achieves linear convergence for strongly convex func-

tions.
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How Speed Restarting Works

Key Concepts:
• Speed Restarting Time: First instance when velocity de-

creases:

T = sup{t > 0 : ∀u ∈ (0, t), d∥Ẋ (u)∥2

du > 0}.

• Restart resets 3/t in the ODE:

Ẍ (t) + 3
tsr

Ẋ (t) +∇f (X (t)) = 0.

Linear Convergence Result:
• For f ∈ Sµ,L, speed restarting achieves:

f (X sr (t))− f ⋆ ≤ c1L∥x0 − x⋆∥2

2 e−c2t
√

L.

• Error reduces by a constant factor with each restart.
Presenter: Yineng Chen Department of Mathematics
A Differential Equation for Modeling Nesterovs Accelerated Gradient Method 20 / 23



Introduction Connections between NAGM and ODE Generalizing the Const 3 Restarting Conclusion

Numerical Examples: Speed Restarting in Action

Examples:
• Quadratic: f (x) = 1

2xT Ax + bT x , A is positive definite.
• Matrix Completion: Combines Frobenius norm and nuclear

norm regularization.
• Logistic Regression: Smooth convex objective with and with-

out ℓ1-regularization.

Comparison with Other Methods:
• Methods: Speed Restarting (srN), Gradient Restarting (grN),

Original Nesterovs Scheme (oN), Proximal Gradient (PG).
• Observations:

• Speed restarting reduces oscillations and improves stability.
• Achieves linear convergence empirically, even in non-strongly

convex settings.
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Discussion and Future Directions

Key Contributions:
• Proposed a second-order ODE framework for analyzing Nes-

terovs accelerated method.
• Explained oscillations and generalized O(1/k2) schemes.
• Introduced a speed restarting scheme with linear convergence

for strongly convex f .

Future Work:
• Develop a theory linking ODEs to discrete updates to simplify

analysis.
• Explore alternative velocity coefficients for new accelerated meth-

ods.
• Leverage ODE trajectories (e.g., curvature) for better stopping

criteria and adaptive step sizes.
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