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Abstract

This paper establishes a connection between Nesterovs Accelerated
Gradient Method (NAGM) and a second-order ODE. By deriving
this ODE as the continuous-time limit of NAGM, the authors pro-
vide deeper insights into the algorithm’s dynamics, including its ac-
celerated convergence and oscillatory behavior.

Key contributions include:

@ A rigorous ODE framework for analyzing NAGM.

® A generalized damping model that extends NAGM to a family
of methods.

© A restarting technique that enhances performance, especially
for strongly convex functions.

Su, W., Boyd, S., & Candés, E. J. (2015). A Differential Equation for Modeling Nesterov's Accelerated Gradient

Method: Theory and Insights. arXiv preprint arXiv:1503.01243.
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Nesterov's Accelerated Gradient Method (NAGM)

NAGM Algorithm:

{ Xk = Yk—1 — SVF(yk-1)
Vi = Xk + §55 (% — xu—1)

where yy = Xp, step size s < % and L is the Lipschitz constant of
VFf.

inverse quadratic convergence rate:

fox) — =0 (H—H>

sk2
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Using ODE to model Nesterov's scheme

By taking small step size in NAGM, one can derive an ODE that is
the exact limit of Nesterov's scheme:

X+%X+Vf(x):0

As step size goes to 0, we have x, ~ X(k+/s)
The initial condition is:

For any f € Uy~ F| (FL denotes the class of convex functions f with LLipschitz continuous gradients), as step
size s — 0, Nesterov's scheme converges to the ODE above in the sense that for all fixed T > 0:

lim ||lxx — X(k\/3)]| = 0
S0 0<k<T/ V5
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@® Connections between NAGM and ODE
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Exploring the Link Between Nesterovs Scheme and ODE

¢ Objective: Analyze the approximate equivalence between Nes-
terovs scheme and its ODE representation.
e Key Topics:
® Convergence equivalence between Nesterovs scheme and ODE.

® Qscillatory behavior in quadratic and strongly convex functions.
® Comparison of Nesterovs scheme and gradient descent.
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ODE and Nesterovs Scheme: Similar Convergence Rates

Nesterovs Convergence (Discrete):

2]lx0 — x*|?

s -2
) =1 <~ i
ODE Convergence:

2||x0 — x

*”2
t2 '

F(X(t) - " <
Proven using an energy functional:
E(t) = 2(F(X(t)) — F*) + 2| X + tX/2 — x*| 2.

Key Insight: The ODE convergence rate matches Nesterovs scheme
for t ~ ky/s.
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Connections between NAGM and ODE
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Oscillations Explained with Bessel Functions

ODE Solution for Quadratic f = 3 (x, Ax) + (b, x):

. 3.
Xi+ ?X,' + AiXi = 0.

Solution involves the Bessel function Ji(t):

Xi(t) = f} (tv/2):

Asymptotic Form for Large t:

Ji(t) ~ \/Zcos(t — 37 /4).

Oscillations and decay are explained by this solution.

Presenter: Yineng Chen Department of Mathematics

A Differential Equation for Modeling Nesterovs Accelerated Gradient Method



Connections between NAGM and ODE
[e]e]ele] o)

Oscillation Frequencies for Strongly Convex Functions

Key Insight: Oscillation frequency depends on eigenvalues p and
L:
O(y/n) < frequency < O(VL).
Root Spacing for Oscillations:
7'('

tiy1 — i~ ﬁ

This result highlights how strongly convex functions influence the
oscillation behavior of the ODE solution.
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Why Nesterovs Scheme Moves Faster

Square-Root Scaling:
t ~ ky/s (Nesterov) vs. to ks (Gradient Descent).

Numerical Stability:
e ODE stable step size: At < Z/ﬂ
® Nesterovs scheme: s = 1/L.
e Gradient descent requires s = 2/L, slower in practice.

Empirical Comparison: Simulations show that Nesterovs scheme
traverses the solution space faster per iteration.
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Exploring the Const 3

Overview:

® The constant r = 3 in Nesterov's ODE and discrete schemes:
X + §X+Vf(X) =0.

® This constant governs the convergence behavior:
® r > 3: High friction, reduced oscillations, maintains O(1/t?).
® r < 3: Low friction, instability, or slower convergence.
® Goals of this section:
® Analyze r > 3 (high friction).
® Examine r < 3 (low friction).
® Extend results to strongly convex functions and discrete schemes.
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High Friction vs. Low Friction

High Friction (r > 3):
® Generalized energy functional:
2t2

E(t) = = (FX(1) = 1) + (r = DIX + —=X —x"||2.

® Maintains O(1/t?) convergence, with a larger constant:

*H2

oo (r=1)x0 —x
Fx(e) - o< U
Low Friction (r < 3):
® Instability observed with O(1/t") convergence for r < 2.
e Additional structural assumptions needed for O(1/t?) conver-
gence:

r—1

(F = )7

must be convex.
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Strong Convexity and Improved Convergence

Enhanced Rates for Strongly Convex Functions (f € S, ;):

® New energy functional:

(2r — a)?t>2 2t
X
8 | +2r —

E(t; o) = t(F(X(t))—F*)+ aX—x*H?

e For a = 2r/3, achieves O(1/t"/3):
Clixo — x*]?

a—2

pnozote

F(X(1)) - " <

Insights:
® Strong convexity allows faster convergence.

® Highlights the role of r > 3 in improving rates for specific
problems.
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Extending to Discrete Schemes

Generalized Nesterovs Scheme:
e Updates for r > 3:

k—1
X = Yk—1 = SGs(yk—-1); vk = Xk + m(xk — Xk—1)-
® Key Results:
® O(1/k?) for any r > 3:
o o (r=12|x —x*|?
—fr <
Foa) - F7 < 2s(k +r—2)?

® O(1/k3) for r >9/2:
CL||xo — x*||?
f(Xk) - f* S T.
Numerical Insights:
® Smaller r: Faster initial progress, higher overshoot.
® Larger r: Slower but stable convergence near the solution.
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Restarting
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Why Restarting is Necessary?

Challenges with Momentum in Strong Convexity:
® Nesterov's scheme performs worse then vanilla gradient descent
in strongly convex function.
® Momentum introduces overshooting, slowing convergence:

O(1/poly(k)) vs. Gradient Method: O((1 — p/L)*).

® NAGM can also achieve linear convergence for strongly convex
functions but requires knowledge of p/L, difficult to estimate.
Existing Restarting Approaches:
¢ Gradient Restarting: Restarts when f(xx+1) > f(xk).
o Effective but lacks theoretical guarantees.
New Proposal: Speed Restarting Scheme
® Maintains high velocity by resetting the trajectory when velocity
decreases.

® Provably achieves linear convergence for strongly convex func-
tions.
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How Speed Restarting Works

Key Concepts:

® Speed Restarting Time: First instance when velocity de-
creases:

d|| X (u)|1?

T =sup{t >0:VYue(0,t), »

> 0}.

® Restart resets 3/t in the ODE:

3 .
X(t)+ t—X(t) + VF(X(t)) =0.
Sr
Linear Convergence Result:
® For f €S, speed restarting achieves:
L UK |12
Fx () - < AP0 X et

® Error reduces by a constant factor with each restart.
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Numerical Examples: Speed Restarting in Action

Examples:
* Quadratic: f(x) = 3xTAx + bTx, A'is positive definite.
e Matrix Completion: Combines Frobenius norm and nuclear

norm regularization.

® Logistic Regression: Smooth convex objective with and with-
out /1-regularization.

Comparison with Other Methods:
¢ Methods: Speed Restarting (srN), Gradient Restarting (grN),
Original Nesterovs Scheme (oN), Proximal Gradient (PG).
® Observations:

® Speed restarting reduces oscillations and improves stability.
® Achieves linear convergence empirically, even in non-strongly
convex settings.
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Discussion and Future Directions

Key Contributions:
® Proposed a second-order ODE framework for analyzing Nes-
terovs accelerated method.
® Explained oscillations and generalized O(1/k?) schemes.

® |ntroduced a speed restarting scheme with linear convergence
for strongly convex f.

Future Work:
® Develop a theory linking ODEs to discrete updates to simplify
analysis.
e Explore alternative velocity coefficients for new accelerated meth-
ods.
® Leverage ODE trajectories (e.g., curvature) for better stopping
criteria and adaptive step sizes.
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