

Connections between NAGM and ODE

Generalizing the Const 3

Restarting 0000 Conclusion

A Differential Equation for Modeling Nesterovs Accelerated Gradient Method

Presenter: Yineng Chen

Department of Mathematics

December 2nd, 2024

Presenter: Yineng Chen

Department of Mathematics

Introd	uction

Connections between NAGM and ODE

Generalizing the Const 3

Restarting 0000 Conclusion

Abstract

This paper establishes a connection between Nesterovs Accelerated Gradient Method (NAGM) and a second-order ODE. By deriving this ODE as the continuous-time limit of NAGM, the authors provide deeper insights into the algorithm's dynamics, including its accelerated convergence and oscillatory behavior.

Key contributions include:

- **1** A rigorous ODE framework for analyzing NAGM.
- A generalized damping model that extends NAGM to a family of methods.
- **3** A restarting technique that enhances performance, especially for strongly convex functions.

Su, W., Boyd, S., & Candès, E. J. (2015). A Differential Equation for Modeling Nesterov's Accelerated Gradient

Method: Theory and Insights. arXiv preprint arXiv:1503.01243.

Presenter: Yineng Chen

Image: A mathematical states and a mathem

- **2** Connections between NAGM and ODE
- **3** Generalizing the Const 3

4 Restarting

Presenter: Yineng Chen

Department of Mathematics

Image: A math a math

- 2 Connections between NAGM and ODE
- **3** Generalizing the Const 3
- 4 Restarting
- **5** Conclusion

- * ロト * @ ト * ヨト * ヨト * ヨー * のへの

Presenter: Yineng Chen

Introduction 0●0	Connections between NAGM and C	DDE	Generalizing the Const 3 00000	Restarting 0000	Conclusion 00
N I					

Nesterov's Accelerated Gradient Method (NAGM)

NAGM Algorithm:

$$\begin{cases} x_k = y_{k-1} - s \nabla f(y_{k-1}) \\ y_k = x_k + \frac{k-1}{k+2} (x_k - x_{k-1}) \end{cases}$$

where $y_0 = x_0$, step size $s \leq \frac{1}{L}$, and *L* is the Lipschitz constant of ∇f .

inverse quadratic convergence rate:

$$f(x_k) - f^* = O\left(\frac{\|x_0 - x^*\|^2}{sk^2}\right)$$

Presenter: Yineng Chen

Department of Mathematics

Image: A match the second s

Introduction	Connections between NAGM and ODE	Generalizing the Const 3 00000	Restarting 0000	Conclusio 00

Using ODE to model Nesterov's scheme

By taking small step size in NAGM, one can derive an ODE that is the exact limit of Nesterov's scheme:

$$\ddot{X} + rac{3}{t}\dot{X} +
abla f(X) = 0$$

As step size goes to 0, we have $x_k \approx X(k\sqrt{s})$ The initial condition is:

$$X(0) = 0, \ \dot{X}(0) = 0$$

Theorem

For any $f \in \bigcup_{L>0} \mathcal{F}_L$ (\mathcal{F}_L denotes the class of convex functions f with LLipschitz continuous gradients), as step size $s \to 0$, Nesterov's scheme converges to the ODE above in the sense that for all fixed T > 0:

$$\lim_{s \to 0} \|x_k - X(k\sqrt{s})\| = 0$$
$$0 \le k \le T/\sqrt{s}$$

Presenter: Yineng Chen

Department of Mathematics

< □ > < 同 > < 三 >

2 Connections between NAGM and ODE

3 Generalizing the Const 3

4 Restarting

Presenter: Yineng Chen

Exploring the Link Between Nesterovs Scheme and ODE

- **Objective**: Analyze the approximate equivalence between Nesterovs scheme and its ODE representation.
- Key Topics:
 - Convergence equivalence between Nesterovs scheme and ODE.
 - Oscillatory behavior in quadratic and strongly convex functions.
 - Comparison of Nesterovs scheme and gradient descent.

Introduction 000	Connections between NAGM and ODE	Generalizing the Const 3	Restarting 0000	Conclusi 00

ODE and Nesterovs Scheme: Similar Convergence Rates

Nesterovs Convergence (Discrete):

$$f(x_k) - f^\star \leq rac{2\|x_0 - x^\star\|^2}{s(k+1)^2}.$$

ODE Convergence:

$$f(X(t)) - f^{\star} \leq \frac{2\|x_0 - x^{\star}\|^2}{t^2}.$$

Proven using an energy functional:

$$\mathcal{E}(t) = t^2(f(X(t)) - f^*) + 2||X + t\dot{X}/2 - x^*||^2.$$

Key Insight: The ODE convergence rate matches Nesterovs scheme for $t \approx k\sqrt{s}$.

Presenter: Yineng Chen

roduction	Connections	between	NAGM	and	ODE
	000000				

Generalizing the Const 3

Restarting 0000 Conclusion

Oscillations Explained with Bessel Functions

ODE Solution for Quadratic $f = \frac{1}{2} \langle x, Ax \rangle + \langle b, x \rangle$:

$$\ddot{X}_i + \frac{3}{t}\dot{X}_i + \lambda_i X_i = 0.$$

Solution involves the Bessel function $J_1(t)$:

$$X_i(t) = rac{2x_{0,i}}{t\sqrt{\lambda_i}}J_1(t\sqrt{\lambda_i}).$$

Asymptotic Form for Large t:

$$J_1(t) \sim \sqrt{rac{2}{\pi t}} \cos(t - 3\pi/4).$$

Oscillations and decay are explained by this solution.

Presenter: Yineng Chen

Department of Mathematics

Oscillation Frequencies for Strongly Convex Functions

Key Insight: Oscillation frequency depends on eigenvalues μ and *L*:

$$O(\sqrt{\mu}) \leq \text{frequency} \leq O(\sqrt{L}).$$

Root Spacing for Oscillations:

$$t_{i+1}-t_i\sim\frac{\pi}{\sqrt{L}}.$$

This result highlights how strongly convex functions influence the oscillation behavior of the ODE solution.

roduction	Connections	between	NAGM	and	ODE
	000000				

Why Nesterovs Scheme Moves Faster

Square-Root Scaling:

 $t pprox k\sqrt{s}$ (Nesterov) vs. $t \propto ks$ (Gradient Descent).

Numerical Stability:

- ODE stable step size: $\Delta t \leq 2/\sqrt{L}$.
- Nesterovs scheme: s = 1/L.
- Gradient descent requires s = 2/L, slower in practice.

Empirical Comparison: Simulations show that Nesterovs scheme traverses the solution space faster per iteration.

12 / 23

Image: A math and A

- 2 Connections between NAGM and ODE
- **3** Generalizing the Const 3
- 4 Restarting
- **5** Conclusion

・ロト・(型ト・モート・モー かんの

Presenter: Yineng Chen

Department of Mathematics

Introduction	Connections	between	NAGM	ODE
000	000000			

Exploring the Const 3

Overview:

• The constant r = 3 in Nesterov's ODE and discrete schemes:

$$\ddot{X} + \frac{r}{t}\dot{X} + \nabla f(X) = 0.$$

- This constant governs the convergence behavior:
 - r > 3: High friction, reduced oscillations, maintains $O(1/t^2)$.
 - r < 3: Low friction, instability, or slower convergence.
- Goals of this section:
 - Analyze r > 3 (high friction).
 - Examine r < 3 (low friction).
 - Extend results to strongly convex functions and discrete schemes.

Introduction	Connections between	NAGM and	ODE
000	000000		

Generalizing the Const 3

Restarting 0000 Conclusion

High Friction vs. Low Friction

High Friction (r > 3):

• Generalized energy functional:

$$\mathcal{E}(t) = rac{2t^2}{r-1}(f(X(t)) - f^{\star}) + (r-1)||X + rac{t}{r-1}\dot{X} - x^{\star}||^2.$$

• Maintains $O(1/t^2)$ convergence, with a larger constant:

$$f(X(t)) - f^{\star} \leq \frac{(r-1)^2 \|x_0 - x^{\star}\|^2}{2t^2}$$

Low Friction (r < 3):

- Instability observed with $O(1/t^r)$ convergence for r < 2.
- Additional structural assumptions needed for $O(1/t^2)$ convergence:

$$(f - f^{\star})^{\frac{r-1}{2}}$$
 must be convex.

Presenter: Yineng Chen

ntroduction	oduction Connections between NAGM and ODE		Generalizing the Const 3 000●0	Restarting 0000	Conclusion		

Strong Convexity and Improved Convergence

Enhanced Rates for Strongly Convex Functions ($f \in S_{\mu,L}$):

• New energy functional:

$$\mathcal{E}(t;\alpha) = t^{\alpha}(f(X(t)) - f^{\star}) + \frac{(2r-\alpha)^2 t^{\alpha-2}}{8} \|X + \frac{2t}{2r-\alpha} \dot{X} - x^{\star}\|^2.$$

• For
$$\alpha = 2r/3$$
, achieves $O(1/t^{2r/3})$:

$$f(X(t)) - f^{\star} \leq \frac{C \|x_0 - x^{\star}\|^2}{\mu^{\frac{\alpha-2}{2}} t^{\alpha}}.$$

Insights:

- Strong convexity allows faster convergence.
- Highlights the role of r > 3 in improving rates for specific problems.

Presenter: Yineng Chen

A Differential Equation for Modeling Nesterovs Accelerated Gradient Method

< 17 ►

Introduction	Connections	between	NAGM	and	ODE

Generalizing the Const 3

Restarting 0000 Conclusion

Extending to Discrete Schemes

Generalized Nesterovs Scheme:

• Updates for r > 3:

$$x_k = y_{k-1} - sG_s(y_{k-1}), \quad y_k = x_k + \frac{k-1}{k+r-1}(x_k - x_{k-1}).$$

- Key Results:
 - O(1/k²) for any r > 3:

$$f(x_k) - f^* \leq \frac{(r-1)^2 \|x_0 - x^*\|^2}{2s(k+r-2)^2}.$$

• $O(1/k^3)$ for $r \ge 9/2$:

$$f(x_k) - f^* \leq \frac{CL \|x_0 - x^*\|^2}{k^3}.$$

Numerical Insights:

- Smaller r: Faster initial progress, higher overshoot.
- Larger r: Slower but stable convergence near the solution.

Presenter: Yineng Chen

- 2 Connections between NAGM and ODE
- **3** Generalizing the Const 3

Department of Mathematics

Image: A math a math

Presenter: Yineng Chen

Connections between NAGM and ODE

Generalizing the Const 3

Restarting 0●00 Conclusion 00

Why Restarting is Necessary?

Challenges with Momentum in Strong Convexity:

- Nesterov's scheme performs worse then vanilla gradient descent in strongly convex function.
- Momentum introduces overshooting, slowing convergence:

O(1/poly(k)) vs. Gradient Method: $O((1 - \mu/L)^k)$.

• NAGM can also achieve linear convergence for strongly convex functions but requires knowledge of μ/L , difficult to estimate.

Existing Restarting Approaches:

- **Gradient Restarting:** Restarts when $f(x_{k+1}) > f(x_k)$.
- Effective but lacks theoretical guarantees.
- New Proposal: Speed Restarting Scheme
 - Maintains high velocity by resetting the trajectory when velocity decreases.
 - Provably achieves linear convergence for strongly convex functions.

Presenter: Yineng Chen

Introduction	Connections between NAGM and OD	
000	000000	

Generalizing the Const 3

Restarting

Conclusion

How Speed Restarting Works

Key Concepts:

• **Speed Restarting Time:** First instance when velocity decreases:

$$T = \sup\{t > 0 : \forall u \in (0, t), \frac{d \|\dot{X}(u)\|^2}{du} > 0\}.$$

• Restart resets 3/t in the ODE:

$$\ddot{X}(t) + \frac{3}{t_{sr}}\dot{X}(t) + \nabla f(X(t)) = 0.$$

Linear Convergence Result:

• For $f \in S_{\mu,L}$, speed restarting achieves:

$$f(X^{sr}(t)) - f^{\star} \leq \frac{c_1 L \|x_0 - x^{\star}\|^2}{2} e^{-c_2 t \sqrt{L}}.$$

• Error reduces by a constant factor with each restart.

Presenter: Yineng Chen

ntroduction	Connections	between	NAGM

Numerical Examples: Speed Restarting in Action

and ODE

Examples:

- Quadratic: $f(x) = \frac{1}{2}x^T A x + b^T x$, A is positive definite.
- Matrix Completion: Combines Frobenius norm and nuclear norm regularization.
- Logistic Regression: Smooth convex objective with and without ℓ_1 -regularization.

Comparison with Other Methods:

- Methods: Speed Restarting (srN), Gradient Restarting (grN), Original Nesterovs Scheme (oN), Proximal Gradient (PG).
- Observations:
 - Speed restarting reduces oscillations and improves stability.
 - Achieves linear convergence empirically, even in non-strongly convex settings.

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 2 Connections between NAGM and ODE
- **3** Generalizing the Const 3
- 4 Restarting

Department of Mathematics

Image: A math a math

Presenter: Yineng Chen

Introduction	Connections	between	NAGM	and	ODI

Discussion and Future Directions

Key Contributions:

- Proposed a second-order ODE framework for analyzing Nesterovs accelerated method.
- Explained oscillations and generalized $O(1/k^2)$ schemes.
- Introduced a speed restarting scheme with linear convergence for strongly convex *f*.

Future Work:

- Develop a theory linking ODEs to discrete updates to simplify analysis.
- Explore alternative velocity coefficients for new accelerated methods.
- Leverage ODE trajectories (e.g., curvature) for better stopping criteria and adaptive step sizes.