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Problem Statement

min
x∈E

f (x) + P(x)

Assumptions

E is a linear space and domP ̸= ∅
f is continuously differentiable

∇f is L-Lipschitz

P is proximable
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Terminology

f P(x) = f (x) + P(x)

ℓf (x ; y) = f (y) + ⟨∇f (y), x − y⟩+ P(x)

D(x , y) = h(x)− h(y)− ⟨∇h(y), x − y⟩
Example: h(x) = 1

2∥x∥
2 → D(x , y) = 1

2∥x − y∥2

Paul Tseng (2008)

Accelerated Proximal Gradient Methods



Background Acceleration Methods Numerical Results

Terminology

f P(x) = f (x) + P(x)

ℓf (x ; y) = f (y) + ⟨∇f (y), x − y⟩+ P(x)

D(x , y) = h(x)− h(y)− ⟨∇h(y), x − y⟩
Example: h(x) = 1

2∥x∥
2 → D(x , y) = 1

2∥x − y∥2

Paul Tseng (2008)

Accelerated Proximal Gradient Methods



Background Acceleration Methods Numerical Results

Terminology

f P(x) = f (x) + P(x)

ℓf (x ; y) = f (y) + ⟨∇f (y), x − y⟩+ P(x)

D(x , y) = h(x)− h(y)− ⟨∇h(y), x − y⟩

Example: h(x) = 1
2∥x∥

2 → D(x , y) = 1
2∥x − y∥2

Paul Tseng (2008)

Accelerated Proximal Gradient Methods



Background Acceleration Methods Numerical Results

Terminology

f P(x) = f (x) + P(x)

ℓf (x ; y) = f (y) + ⟨∇f (y), x − y⟩+ P(x)

D(x , y) = h(x)− h(y)− ⟨∇h(y), x − y⟩
Example: h(x) = 1

2∥x∥
2 → D(x , y) = 1

2∥x − y∥2

Paul Tseng (2008)

Accelerated Proximal Gradient Methods



Background Acceleration Methods Numerical Results

Basic Proximal Gradient

xk+1 = (I + α∂P)−1(I −∇f )xk

O(1/k) convergence

O(n) memory
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Provable Results

Best acceleration: O(1/k2) function value convergence

Duality gap shrinks with bounds depending on choice of
momentum term, θk (qP is dual function).

0 ≤ f P(xk+1 − qP(v̄k) ≤ θ2kL max
x∈domP

D(x , z0)
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Overview

Some algorithms may be better for particular applications

Use “momentum” to accelerate

Momentum decreases over time to hone in

Sometimes overshoots, creating small oscillations
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Algorithm 1

yk = (1− θk)xk + θkzk

zk+1 = arg min
x∈Xk

{ℓf (x ; yk) + θkLD(x , zk)}

x̂k+1 = (1− θk)xk + θkzk+1

with the constraints
1− θk+1

θ2k+1

≤ 1

θ2k

ℓf (xk+1; yk) +
L

2
∥xk+1 − yk∥2 ≤ ℓf (x̂k+1; yk) +

L

2
∥x̂k+1 − yk

Vert2
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Algorithm 1

θk = (1/2)(
√
θ4k−1 + 4θ2k−1 − θ2k−1)

yk = (1− θk)xk + θkzk

zk+1 = (I +
1

θkL
∂P)−1(zk −

1

θkL
∇f (yk))

xk+1 = (1− θk)xk + θkzk+1

O(1/k2) convergence

O(n) memory
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Algorithm 1

Figure: Red: xk , Purple: zk
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Algorithm 2

yk = xk + θk(θ
−1
k−1 − 1)(xk − xk−1)

xk+1 = (I +
1

L
∂P)−1(I − 1

L
∇f )yk

This is the one we did in class, with tk = 1/θk .

Paul Tseng (2008)

Accelerated Proximal Gradient Methods



Background Acceleration Methods Numerical Results

Algorithm 3

yk = (1− θk)xk + θkzk

zk+1 = argmin
x
{

k∑
i=0

ℓf (x ; yi
ϑi

+ Lh(x)}

xk+1 = (1− θk)xk + θkzk+1

Weighted sum of gradients from previous iterations

Typically ϑk = θk , but technically can be relaxed.

{θk} decreasing, so more recent terms weighted higher
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Algorithm 3

yk = (1− θk)xk + θkzk

zk+1 = (I +
1

L
(

k∑
i=0

1

ϑk
)∂P)−1(−1

L

k∑
i=1

∇f (yi ))
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Algorithm 3

Figure: Red: xk , Purple: zk
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Search Region Reduction

∀w , x ∈ domP such that f (x) ≤ inf f + ϵ,
f P(w) + ϵ ≥ f P(x) ≥ ℓf (x ;w) by convexity.

So the half-space ℓf (w ; x)− f P(x) ≤ ϵ contains all
ϵ-minimum points of f P for any w .

So convex combinations of these half spaces do too

Xk =
{
x :

∑
i∈Ik,j

αk,i (ℓf (x ,wk,i )− f P(wk,i )) ≤ ϵ, j = 1, ..., nk
}

Convex combinations of half-spaces are half-spaces

Half spaces relatively easy to search in, but still increases cost
per iteration.
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Not Strongly Convex

Figure: size 300)
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Strongly Convex

Figure: size 300
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