
Distributed and Decentralized Optimization

Ernest K. Ryu and Wotao Yin

Large-Scale Convex Optimization via Monotone Operators

Distributed optimization

Distributed optimization uses a set of networked computers, called
agents, to solve optimization problems.

Motivation: When an algorithm running on one computer does not meet
the required performance, one can

1. upgrade the computer (CPU, memory) and run the same algorithm;

2. use more computers, decompose the problem, and run a distributed
optimization algorithm.

Approach 1 is less cost e↵ective and may never reach the required
performance.

Approach 2 is the more favorable (often the only) choice of solving
extremely large optimization problems.

2

Distributed optimization

Distributed optimization uses a set of networked computers, called
agents, to solve optimization problems.

Motivation: When an algorithm running on one computer does not meet
the required performance, one can

1. upgrade the computer (CPU, memory) and run the same algorithm;

2. use more computers, decompose the problem, and run a distributed
optimization algorithm.

Approach 1 is less cost e↵ective and may never reach the required
performance.

Approach 2 is the more favorable (often the only) choice of solving
extremely large optimization problems.

2

Decentralized optimization

We distinguish between distributed methods and decentralized methods.

Distributed methods perform computation over a network (a broader
class).

Decentralized methods do so without central coordination (a subclass).

Roughly speaking, when communication latency and bandwidth cost
much more than computation, decentralized methods are preferred.

Examples: drone fleet control, wireless sensor network, applications of
real-time decisions made based on agents’ local data

3

Decentralized optimization

We distinguish between distributed methods and decentralized methods.

Distributed methods perform computation over a network (a broader
class).

Decentralized methods do so without central coordination (a subclass).

Roughly speaking, when communication latency and bandwidth cost
much more than computation, decentralized methods are preferred.

Examples: drone fleet control, wireless sensor network, applications of
real-time decisions made based on agents’ local data

3

Decentralized optimization

We distinguish between distributed methods and decentralized methods.

Distributed methods perform computation over a network (a broader
class).

Decentralized methods do so without central coordination (a subclass).

Roughly speaking, when communication latency and bandwidth cost
much more than computation, decentralized methods are preferred.

Examples: drone fleet control, wireless sensor network, applications of
real-time decisions made based on agents’ local data

3

Problem and setup

In this lecture, we solve

minimize
x2Rp

nX

i=1

(fi(x) + hi(x)), (1)

where f1, . . . , fn are CCP (and proximable) and h1, . . . , hn are CCP and
di↵erentiable.

Setup: agents i = 1, . . . , n each perform local computation with fi and
hi and communicate over a network to find the (shared) solution x?.

The textbook chapter considers the more general formulation

minimize
x2Rp

r(x) +
nX

i=1

(fi(x) + hi(x)), (2)

where r is CCP and proximable.

4

Problem and setup

In this lecture, we solve

minimize
x2Rp

nX

i=1

(fi(x) + hi(x)), (1)

where f1, . . . , fn are CCP (and proximable) and h1, . . . , hn are CCP and
di↵erentiable.

Setup: agents i = 1, . . . , n each perform local computation with fi and
hi and communicate over a network to find the (shared) solution x?.

The textbook chapter considers the more general formulation

minimize
x2Rp

r(x) +
nX

i=1

(fi(x) + hi(x)), (2)

where r is CCP and proximable.

4

Problem and setup

In this lecture, we solve

minimize
x2Rp

nX

i=1

(fi(x) + hi(x)), (1)

where f1, . . . , fn are CCP (and proximable) and h1, . . . , hn are CCP and
di↵erentiable.

Setup: agents i = 1, . . . , n each perform local computation with fi and
hi and communicate over a network to find the (shared) solution x?.

The textbook chapter considers the more general formulation

minimize
x2Rp

r(x) +
nX

i=1

(fi(x) + hi(x)), (2)

where r is CCP and proximable.

4

Outline

Distributed optimization with centralized consensus

Decentralized optimization with graph consensus

Decentralized optimization with mixing matrices

Distributed optimization with centralized consensus 5

Centralized consensus

Consider a parameter-server network model with a centralized agent
coordinating with n individual agents.

Parameter server

Agent 1 Agent 2 · · · Agent n

We study distributed methods based on the consensus technique.

Distributed optimization with centralized consensus 6

Distributed gradient method

Consider

minimize
x2Rp

1

n

nX

i=1

hi(x),

where h1, . . . , hn are di↵erentiable. With consensus set
C = {(x1, . . . , xn) |x1 = · · · = xn}, obtain the equivalent problem

minimize
x1,...,xn2Rp

1

n

nX

i=1

hi(xi)

subject to (x1, . . . , xn) 2 C.

FBS is:

xk+1/2
i = xk � ↵rhi(x

k)

xk+1 =
1

n

nX

i=1

xk+1/2
i

Distributed optimization with centralized consensus 7

Distributed gradient method

Consider

minimize
x2Rp

1

n

nX

i=1

hi(x),

where h1, . . . , hn are di↵erentiable. With consensus set
C = {(x1, . . . , xn) |x1 = · · · = xn}, obtain the equivalent problem

minimize
x1,...,xn2Rp

1

n

nX

i=1

hi(xi)

subject to (x1, . . . , xn) 2 C.

FBS is:

xk+1/2
i = xk � ↵rhi(x

k)

xk+1 =
1

n

nX

i=1

xk+1/2
i

Distributed optimization with centralized consensus 7

Distributed gradient method

Equivalent to:

ḡk =
1

n

nX

i=1

rhi(x
k)

xk+1 = xk � ↵ḡk

This is the distributed gradient method. Assume a solution exists,
h1, . . . , hn are Lh-smooth, and ↵ 2 (0, 2/Lh). Then xk ! x?.
(When h1, . . . , hn not di↵erentiable, can use subgradient method of §7.)

This method is (centralized) distributed:

(i) Each agent independently computes rhi(xk)

(ii) Agents coordinate to compute ḡk (reduction operation) and the
central agent computes and broadcasts xk+1 to all individual agents.

Distributed optimization with centralized consensus 8

Distributed gradient method

Equivalent to:

ḡk =
1

n

nX

i=1

rhi(x
k)

xk+1 = xk � ↵ḡk

This is the distributed gradient method. Assume a solution exists,
h1, . . . , hn are Lh-smooth, and ↵ 2 (0, 2/Lh). Then xk ! x?.
(When h1, . . . , hn not di↵erentiable, can use subgradient method of §7.)

This method is (centralized) distributed:

(i) Each agent independently computes rhi(xk)

(ii) Agents coordinate to compute ḡk (reduction operation) and the
central agent computes and broadcasts xk+1 to all individual agents.

Distributed optimization with centralized consensus 8

Distributed ADMM

Consider

minimize
x2Rp

nX

i=1

fi(x).

With the consensus technique, obtain the equivalent problem:

minimize
x1,...,xn2Rp

y2Rp

nX

i=1

fi(xi)

subject to xi = y for i = 1, . . . , n.

Rewrite to fit ADMM’s form:

minimize
x1,...,xn2Rp

y2Rp

nX

i=1

fi(xi)

subject to

2

64
I 0 · · · 0
...

. . .
...

0 0 · · · I

3

75

2

64
x1
...
xn

3

75+

2

64
�I
...

�I

3

75 y = 0.

Apply ADMM:

xk+1
i = argmin

xi2Rp

n
fi(xi) + huk

i , xi � yki+ ↵

2
kxi � ykk2

o

yk+1 =
1

n

nX

i=1

✓
xk+1
i +

1

↵
uk
i

◆

uk+1
i = uk

i + ↵(xk+1
i � yk+1).

Simplify the iteration by noting that uk
1 , . . . , u

k
n has mean 0 after the

initial iteration and eliminating yk:

xk+1
i = Prox(1/↵)fi

�
x̄k � (1/↵)uk

i

�

uk+1
i = uk

i + ↵(xk+1
i � x̄k+1)

for i = 1, . . . , n, where x̄k = (1/n)(xk
1 + · · ·+ xk

n). This is distributed
(centralized) ADMM. Convergence follows from convergence of ADMM.

Distributed optimization with centralized consensus 10

Distributed ADMM

xk+1
i = Prox(1/↵)fi

�
x̄k � (1/↵)uk

i

�

uk+1
i = uk

i + ↵(xk+1
i � x̄k+1)

is distributed:

(i) each agent independently performs the uk- and xk+1
i -updates with

local computation

(ii) agents coordinate to compute x̄k+1 with a reduction.

Exercise 11.7: Obtain distributed ADMM by applying DRS to the
equivalent problem

minimize
x1,...,xn2Rp

1

n

nX

i=1

hi(xi)

subject to (x1, . . . , xn) 2 C.

Distributed optimization with centralized consensus 11

Distributed ADMM

xk+1
i = Prox(1/↵)fi

�
x̄k � (1/↵)uk

i

�

uk+1
i = uk

i + ↵(xk+1
i � x̄k+1)

is distributed:

(i) each agent independently performs the uk- and xk+1
i -updates with

local computation

(ii) agents coordinate to compute x̄k+1 with a reduction.

Exercise 11.7: Obtain distributed ADMM by applying DRS to the
equivalent problem

minimize
x1,...,xn2Rp

1

n

nX

i=1

hi(xi)

subject to (x1, . . . , xn) 2 C.

Distributed optimization with centralized consensus 11

Primal decomposition

Consider

minimize
x1,...,xn2Rp

z2Rq

1

n

nX

i=1

fi(xi, z).

With �i(z) = infx fi(x, z), problem is equivalent to

minimize
z2Rq

nX

i=1

�i(z).

If �1, . . . ,�n are di↵erentiable, use distributed gradient method

gki 2 r�i(zk)

zk+1 = zk � ↵

n

nX

i=1

gki

See Exercise 11.2 for computing subgradients of �1, . . . ,�n. When
�1, . . . ,�n not di↵erentiable, can use subgradient method of §7.

Primal decomposition

Consider

minimize
x1,...,xn2Rp

z2Rq

1

n

nX

i=1

fi(xi, z).

With �i(z) = infx fi(x, z), problem is equivalent to

minimize
z2Rq

nX

i=1

�i(z).

If �1, . . . ,�n are di↵erentiable, use distributed gradient method

gki 2 r�i(zk)

zk+1 = zk � ↵

n

nX

i=1

gki

See Exercise 11.2 for computing subgradients of �1, . . . ,�n. When
�1, . . . ,�n not di↵erentiable, can use subgradient method of §7.

Dual decomposition

Consider the equivalent problem

minimize
x1,...,xn2Rp

z1,...,zn2Rq

y2Rq

nX

i=1

fi(xi, zi)

subject to zi = y,

generated by the Lagrangian

L(x, y, z, v) =
nX

i=1

fi(xi, zi)� hvi, zi � yi.

Distributed optimization with centralized consensus 13

The dual problem is

maximize
v1,...,vn2Rq

�
nX

i=1

 i(vi)

subject to v1 + · · ·+ vn = 0,

with
 i(vi) = sup

xi2Rp

zi2Rq

{�fi(xi, zi) + hvi, zii} = f⇤
i (0, vi).

When 1, . . . n are di↵erentiable, use projected gradient in a distributed
manner

gki 2 r i(v
k
i)

vk+1
i = vki � ↵(gki � ḡk)

where ḡk = (1/n)(gk1 + · · ·+ gkn). See Exercise 11.3 for computing
subgradients of 1, . . . , n. (When 1, . . . , n not di↵erentiable, can use
projected subgradient method of §7.)

Outline

Distributed optimization with centralized consensus

Decentralized optimization with graph consensus

Decentralized optimization with mixing matrices

Decentralized optimization with graph consensus 15

Note on the word “graph”

“Graph” has two distinct meanings in mathematics.

The first meaning, as in “we plot the graph sin(x) on a graphing
calculator”, concerns the relationship between the inputs and outputs of
a function. The graph of an operator, which we denote as GraÅ, and
the scaled relative graph uses this first meaning.

Here, we consider the second meaning, the use in discrete mathematics
for representing networks.

Decentralized optimization with graph consensus 16

Networks and graphs

A graph G = (V,E) represents a network. V is set of nodes and E is set
of edges. Assume

I Network is finite and with nodes 1 through n, i.e., V = {1, . . . , n}.
I Graph is undirected, i.e., an edge {i, j} 2 E is an unordered pair of

distinct nodes i and j.

I Graph has no self-loop, i.e., {i, i} /2 E for all i 2 V .

I Graph is connected, i.e., for any i, j 2 V such that i 6= j, there is a
sequence of edges

{i, v1}, {v1, v2}, . . . , {vk�1, vk}, {vk, j} 2 E.

Decentralized optimization with graph consensus 17

With graphs, we can represent networks without a central coordinating
agent. The following graph has V = {1, 2, 3, 4, 5, 6} and
E = {{1, 2}, {1, 4}, {2, 3}, {3, 4}, {4, 5}, {4, 6}}.

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

A node represents a computational agent that stores data and performs
computation, and an edge {i, j} represents a direct connection between i
and j through which agents i and j can communicate.

If {i, j} 2 E, then we say j is adjacent to i and that j is a neighbor of i
(and vice-versa). Write

Ni = {j 2 V | {i, j} 2 E}

for the set of neighbors i and |Ni| for the number of neighbors of i.

Using the notation of graphs, we can recast problem (1) into

minimize
{xi}i2V ⇢Rp

X

i2V

(fi(xi) + hi(xi))

subject to xi = xj 8 {i, j} 2 E.
(3)

Decentralized optimization with graph consensus 19

Why decentralized optimization?

In a connected network, all agents can communicate with each other.
Any optimization method can be executed over the network through
relayed communication over multiple edges.

However, in distributed optimization, communication tends to be the
bottleneck. So we consider algorithms that communicate across single
edges

I without directly relying on long-range relayed communication,

I without creating a bottleneck by communicating with a single
central node.

Not delegating any agent as the central agent also improves reliability
against agent failure and helps data privacy.

Decentralized optimization with graph consensus 20

Decentralized ADMM

Consider h1 = · · · = hn = 0. For e = {i, j}, replace the constraint
xi = xj with xi = ye and xj = ye to obtain the equivalent problem

minimize
{xi}i2V

{ye}e2E

X

i2V

fi(xi)

subject to

(
xi � ye = 0

xj � ye = 0
8 e = {i, j} 2 E.

For each e = {i, j} 2 E, introduce the dual variables ue,i for xi � ye = 0
and ue,j for xj � ye = 0. The augmented Lagrangian is

L↵(x, y, u) =
X

i

fi(xi) +
X

e={i,j}

(hue,i, xi � yei+ hue,j , xj � yei)

+
X

e={i,j}

↵

2

�
kxi � yek2 + kxj � yek2

�
.

Decentralized optimization with graph consensus 21

Apply ADMM and obtain

xk+1
i = argmin

xi2Rp

8
<

:fi(xi) +
X

j2Ni

⇣
huk

{i,j},i, xi � yk
{i,j}i+

↵
2
kxi � yk

{i,j}k2
⌘
9
=

; 8i 2 V

yk+1
e = argmin

ye2Rp

(
X

t=i,j

⇣
huk

e,t, x
k+1
t � yei+

↵
2
kxk+1

t � yek2
⌘)

8e = {i, j} 2 E

uk+1
e,t = uk

e,t + ↵(xk+1
t � yk+1

e) 8e = {i, j} 2 E, t = i, j.

We simplify further.

Decentralized optimization with graph consensus 22

Substitute yk+1
e = 1

2

P
t=i,j(x

k+1
t + 1

↵u
k
e,t):

uk+1
e,i = uk

e,i + ↵

0

@xk+1
i � 1

2

X

t=i,j

✓
xk+1
t +

1

↵
uk
e,t

◆1

A

=
1

2
(uk

e,i � uk
e,j) +

↵

2
(xk+1

i � xk+1
j), 8e = {i, j} 2 E.

Using uk
e,i + uk

e,j = 0 for all e = {i, j} and k = 1, 2, . . . , write

yke = 1
2 (x

k
i + xk

j), u
k+1
e,i = uk

e,i +
↵
2 (x

k+1
i � xk+1

j), and

xk+1
i = argmin

xi2Rp

8
<

:fi(xi) +
↵
2

X

j2Ni

����xi �
1
2
(xk

i + xk
j) +

1
↵
uk
{i,j},i

����
2
9
=

;

= argmin
xi2Rp

8
<

:fi(xi) +
↵|Ni|
2

������
xi �

1
|Ni|

X

j2Ni

✓
1
2
(xk

i + xk
j)�

1
↵
uk
{i,j},i

◆������

29=

;

for all i 2 V .

Decentralized optimization with graph consensus 23

Defining vki = 1
|Ni|

P
j2Ni

⇣
1
2 (x

k
i + xk

j)� 1
↵u

k
{i,j},i

⌘
and

aki = 1
|Ni|

P
j2Ni

xk
j and obtain: for every i 2 V

xk+1
i = Prox(↵|Ni|)�1fi(xi)(v

k
i)

ak+1
i =

1

|Ni|
X

j2Ni

xk+1
j

vk+1
i = vki + ak+1

i � 1

2
aki � 1

2
xk
i

for i 2 V . This is decentralized ADMM. Convergence follows from
convergence of ADMM.

Decentralized optimization with graph consensus 24

Decentralized ADMM

xk+1
i = Prox(↵|Ni|)�1fi(xi)(v

k
i)

ak+1
i =

1

|Ni|
X

j2Ni

xk+1
j

vk+1
i = vki + ak+1

i � 1

2
aki � 1

2
xk
i

is decentralized:

(i) Each agent independently performs the xk+1- and vk+1-updates
with local computation.

(ii) Agents send xk+1
i to its neighbors and each agent computes ak+1

i by
averaging the xk+1

j ’s received from its neighbors (reduction
operation in the neighborhood).

Decentralized optimization with graph consensus 25

Synchronization

The above decentralized methods are synchronous, which can be an
unrealistic requirement.

One can use asynchronous decentralized methods, which combine the
asynchrony of §6 with the methods of this section.

Decentralized optimization with graph consensus 26

Outline

Distributed optimization with centralized consensus

Decentralized optimization with graph consensus

Decentralized optimization with mixing matrices

Decentralized optimization with mixing matrices 27

Decentralized notation

Define stack operator and use boldface to denote stacked variables:

x = stack(x1, . . . , xn) =

2

64
— x|

1 —
...

— x|
n —

3

75 2 Rn⇥p.

Write x? 2 Rp and x? = stack(x?, . . . , x?) 2 Rn⇥p for the solution.
For x = stack(x1, . . . , xn) and y = stack(y1, . . . , yn), define

hx,yi =
nX

i=1

hxi, yii.

For A ⌫ 0, define kxk2A = hx, Axi. Specifically, kxk2 = kxk2I = hx,xi.

Define

f(x) =
nX

i=1

fi(xi), h(x) =
nX

i=1

hi(xi)

Prox↵f (x) = stack(Prox↵f1(x1), . . . ,Prox↵fn(xn))

rh(x) = stack(rh1(x1), . . . ,rhn(xn)).

We say x = stack(x1, . . . , xn) is in consensus if x1 = · · · = xn.
Any feasible point of (3) is in consensus. The methods of this section
produce iterates that are in consensus in the limit.

Mixing matrices

Informally, W 2 Rn⇥n is a mixing matrix when an application of W
represents a round of communication and the aggregation of the
communicated information. Write �1, . . . ,�n for the eigenvalues of W .

W is a decentralized mixing matrix with respect to G = (V,E) if
Wij = 0 when i 6= j and {i, j} /2 E. (Wii may be nonzero. Wij may be
nonzero only if i and j are directly linked.)

Wy can be evaluated in a decentralized manner if W is decentralized

(Wy)i =
nX

i=1

Wijyj =
X

j2Ni[{i}

Wijyj .

Decentralized optimization with mixing matrices 30

Example: Local averaging matrix

With mixing matrix

Wi,j =

⇢ 1
|Ni| if {i, j} 2 E

0 otherwise

for i, j 2 {1, . . . , n} and

f̃(x) =
nX

i=1

1

|Ni|
fi(xi),

we can express decentralized ADMM as

xk+1 = Prox↵f̃ (v
k)

ak+1 = Wxk+1

vk+1 = vk + ak+1 � 1

2
ak � 1

2
xk.

Decentralized optimization with mixing matrices 31

Example: Decentralized averaging

Agent i 2 V has a vector xi 2 Rp. The goal is to compute the average
x̄ = 1

n

Pn
i=1 xi in a decentralized manner.

(This is a special case of (1) with fi(x) =
1
2kx� xik2.)

Decentralized averaging method:

xk+1 = Wxk

with the starting point x0 = stack(x1, . . . , xn) and a decentralized
mixing matrix W 2 Rn⇥n.

Converges to x̄ = stack(x̄, . . . , x̄) for all x0 if and only if W1 = 1,
1|W = 1|, and 1 = |�1| > |�2| � · · · � |�n|. (See Exercise 11.4)

Condition W1 = 1 implies x-vectors in consensus are fixed points.
Condition 1|W = 1| implies mean is preserved throughout the iteration.
The eigenvalue condition implies the iteration converges.

Decentralized optimization with mixing matrices 32

Assumptions on mixing matrices

A mixing matrix W 2 Rn⇥n used in decentralized optimization often
satisfies some or all of the following assumptions:

W = W | (4a)

N (I �W) = span(1) (4b)

1 = |�1| > max {|�2|, . . . , |�n|}. (4c)

(4a) was not assumed in decentralized ADMM or averaging, but it is
common; methods with symmetric W tend to be easier to analyze.
(4b) implies x is in consensus if and only if x = Wx and is required for
almost all decentralized optimization methods.
(4c) is assumed to establish the convergence of certain methods. Note
that (4a) implies the eigenvalues are real.

Decentralized optimization with mixing matrices 33

Example: Laplacian-based mixing matrix

The mixing matrix

W = I � 1

⌧
L 2 Rn⇥n

where L is the so-called graph Laplacian defined by

Li,j =

8
<

:

|Ni| if i = j
�1 if {i, j} 2 E
0 otherwise

for i, j 2 {1, . . . , n} and ⌧ is a constant satisfying ⌧ > 1
2�max(L) satisfies

W = W |, W1 = 1, and 1 = �1 > max {|�2|, . . . , |�n|}.

Decentralized optimization with mixing matrices 34

Example: Metropolis mixing matrix

The mixing matrix

Wi,j =

8
<

:

1
max{|Ni|,|Nj |}+" if {i, j} 2 E

1�
P

j2Ni
Wi,j if i = j

0 otherwise

for i, j 2 {1, . . . , n} and " > 0 satisfies W = W |, W1 = 1, and
1 = �1 > max {|�2|, . . . , |�n|}.

Decentralized optimization with mixing matrices 35

Relationship with stochastic matrices

P 2 Rn⇥n satisfying Pij � 0 8 i, j and P1 = 1 is a stochastic matrix.
Mixing matrices and stochastic matrices share some apparent similarities,
but they do have some key di↵erences.

One di↵erence is that mixing matrices can have negative entries. (Cf.
Exercise 11.16.)

Another di↵erence is in their primary use as linear operators. With a
stochastic matrix P satisfying P1 = 1 (total probability mass of 1 is
preserved) the key operation is the vector-matrix product

(⇡k+1)| = (⇡k)|P.

With mixing matrix W satisfying W1 = 1 (vector in consensus remains
in consensus) the key operation is the matrix-(stacked vector) product

xk+1 = Wxk.

Decentralized optimization with mixing matrices 36

When a mixing matrix is a stochastic matrix, one can utilize the classical
Markov chain theory based on the Perron–Frobenius theorem. For
example, if W 2 Rn⇥n is a stochastic matrix for an irreducible Markov
chain, then N (I �W) = span(1) holds; if the Markov chain is
irreducible and aperiodic, then 1 = �1 > max{|�2|, . . . , |�n|} holds.

A Markov chain is irreducible if every state can be reached from every
other state. A state of a Markov chain is periodic if the chain can return
to the state only at multiples of some integer larger than 1. A Markov
chain is aperiodic if none of its states is periodic.

Decentralized optimization with mixing matrices 37

Inexact decentralized methods (using a mixing matrix)

Consider the setup with f1 = · · · = fn = 0 and a mixing matrix
W 2 Rn⇥n satisfying W = W |, N (I �W) = span(1), and
�1 > max {�2, . . . ,�n}. We write (1) equivalently as

minimize
x2Rn⇥p

h(x)

subject to (I �W)x = 0.
(5)

We consider inexact decentralized methods, DGD and Di↵usion, which
solve penalty formulations that approximate (5). These inexact methods,
when they converge, converge to an approximation solution.

Decentralized optimization with mixing matrices 38

Decentralized gradient descent (DGD)

Consider the penalty formulation

minimize
x2Rn⇥p

h(x) +
1

2↵
kxk2I�W .

We expect this formulation to approximate (5) well when ↵ > 0 is small.

Gradient descent with stepsize ↵ applied to this penalty formulation is

xk+1 = xk � ↵

✓
h(xk) +

1

↵
(I �W)xk

◆

= Wxk � ↵rh(xk).

This is decentralized gradient descent (DGD) or the combine-then-adapt
method. If the penalty formulation has a solution, h1, . . . , hn are
Lh-smooth, and ↵ 2 (0, (1 + �n(W))/Lh), then xk converges to a
solution of the penalty formulation.

Decentralized optimization with mixing matrices 39

Di↵usion

Further assume W � 0 and consider the penalty formulation

minimize
x2Rn⇥p

h(x) +
1

2↵
kxk2W�1�I .

Variable metric gradient descent §2.8 with ↵�1W�1 as the metric is

xk+1 = xk � ↵W

✓
rh(xk)� 1

↵
(W�1 � I)(xk)

◆

= W (xk � ↵rh(xk)).

This is the method of di↵usion or the adapt-then-combine method. If the
penalty formulation has a solution, h1, . . . , hn are Lh-smooth, and
↵ 2 (0, 2/Lh), then xk converges to a solution of the penalty
formulation.

Decentralized optimization with mixing matrices 40

DGD vs. Di↵usion

Advantages of di↵usion:

I Di↵usion allows larger stepsizes, which often leads to faster
convergence.

Advantages of DGD:

I Does not require the additional assumption W � 0; Wxk and
↵rh(xk) can be computed simultaneously.

When W ⌥ 0, we can still use di↵usion with (1� ✓)I + ✓W and
✓ 2 (0, 1/(1� �min(W))). Since �min(W) > �1, ✓ = 1

2 always works.

Decentralized optimization with mixing matrices 41

Exact decentralized methods (using a mixing matrix)

Since I �W ⌫ 0, there exists a symmetric U 2 Rn⇥n such that

U2 =
1

2
(I �W).

This U satisfies N (U) = span(1).

The general problem (1) is equivalent to

minimize
x2Rn⇥p

f(x) + h(x)

subject to Ux = 0.
(6)

We present two methods, PG-EXTRA and NIDS, what converge to its
exact solution. They utilize W , while U is used only in analysis.

Decentralized optimization with mixing matrices 42

Exercise 3.5: Condat-Vũ, the other version

Consider the problem

minimize
x2Rn

f(x) + h(x) + g(Ax),

In the derivation of Condat-Vũ, if we instead use the metric

M =


(1/↵)I A|

A (1/�)I

�
,

then we get the method

uk+1 = Prox�g⇤(uk + �Axk)

xk+1 = Prox↵f (x
k � ↵A|(2uk+1 � uk)� ↵rh(xk)).

If total duality holds, ↵,� > 0, ↵L/2 + ↵��max(A|A) < 1, and h is
L-smooth, then xk ! x? and uk ! u?.

Decentralized optimization with mixing matrices 43

PG-EXTRA

Apply the last slide to (6) with g = �0 (thus Prox�g⇤ = â) and
A = A| = U to get

uk+1 = uk + �Uxk

xk+1 = Prox↵f
�
xk � ↵rh(xk)� ↵U(2uk+1 � uk)

�
.

Simplify the method by choosing � = ↵�1 and introduce wk = 1
�Uuk to

get the PG-EXTRA method:

xk+1 = Prox↵f (Wxk � ↵rh(xk)�wk)

wk+1 = wk +
1

2
(I �W)xk.

(Initialize x0 arbitrarily and w0 = 0, which voids computing Uu0)

PG-EXTRA is decentralized when W is decentralized. If total duality
holds, 0 < ↵ < (1 + �min(W))/L (using �max(U2) = 1

2 � 1
2�min(W)),

and h1, . . . , hn are L-smooth, then we have xk ! x?.
Decentralized optimization with mixing matrices 44

Review of PD3O

Consider
minimize
x2Rn⇥p

f(x) + h(x) + g(Ax)

where h is L-smooth. PD3O is the method

xk+1 = Prox↵f
�
xk � ↵A|uk � ↵rh(xk)

�

uk+1 = Prox�g⇤
�
uk + �A(2xk+1 � xk + ↵rh(xk)� ↵h(xk+1))

�
.

(PD3O can be obtained by applying DYS FPI and BCV to the problem.)

If total duality holds, ↵,� > 0, ↵��max(A|A)  1, and ↵  2/L, then
xk+1/2 ! x?.

Decentralized optimization with mixing matrices 45

NIDS

Apply PD3O to

minimize
x2Rn⇥p

f(x) + h(x) + �{0}(Ux).

to get

xk+1 = Prox↵f (x
k � ↵Uuk � ↵rh(xk))

uk+1 = uk + �U
�
2xk+1 � xk + ↵

�
rh(xk)�rh(xk+1)

��

Decentralized optimization with mixing matrices 46

To eliminate U , define zk = xk �↵Uuk �↵rh(xk). Use � = ↵�1 to get

xk+1 = Prox↵f (z
k)

zk+1 = zk � xk+1 +
1

2
(I +W)

�
2xk+1 � xk + ↵

�
rh(xk)�rh(xk+1)

��

with arbitrary x0 and z0 = x0 � ↵rh(x0). This uses u0 = 0, which
avoids computing Ux0.

This is the Network InDependent Step-size (NIDS) method. If total
duality holds, h1, . . . , hn are Lh-smooth, and ↵ 2 (0, 2/Lh), then
xk ! x?.

The choice of ↵ 2 (0, 2/Lh) is independent of the mixing matrix and,
thus, the network topology.

Decentralized optimization with mixing matrices 47

PG-EXTRA vs NIDS

The step size ↵ of PG-EXTRA depends on the eigenvalues of W . This
not only limits the size of ↵ but also make the choice of ↵ more di�cult
when the network is not fully known. In contrast, NIDS allows the
stepsize ↵ to be larger and to be chosen independent of W .

On the other hand, PG-EXTRA can compute Wxk and rh(xk)
simultaneously, but NIDS cannot.

With f = 0 and fW = 1
2 (W + I), the methods simplify to

PG-EXTRA: xk+1 = fW (2xk � xk�1) + ↵(rh(xk�1)�rh(xk))

NIDS: xk+1 = fW
�
2xk � xk�1 + ↵(rh(xk�1)�rh(xk))

�
.

PG-EXTRA resembles DGD while NIDS resembles di↵usion.

Decentralized optimization with mixing matrices 48

Conclusion

Distributed optimization takes advantages of problem structures and can
solve extremely large optimization problems.

With a central coordinator, the methods rely on aggregating distributed
gradients or averaging distributed iterates through a reduce operation.

Decentralized optimization uses neighborhood communication (i.e.,
decentralized mixing) instead of a global reduce operation.

By applying splitting and variable metric techniques, we obtain
decentralized optimization methods.

Decentralized optimization with mixing matrices 49

