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Secret sauce: Massive databases of high-quality labeled data

But need even more labeled data!

99% “Cat”

Why statistically optimal K-means clustering?
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Example adapted from Carlini, “Poisoning the Unlabeled Dataset of Semi-Supervised Learning”, USENIX Security '21
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(Feature space)
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Example adapted from Carlini, “Poisoning the Unlabeled Dataset of Semi-Supervised Learning”, USENIX Security '21
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Example adapted from Carlini, “Poisoning the Unlabeled Dataset of Semi-Supervised Learning”, USENIX Security '21
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Formulation: K-Means Clustering

Given data 𝑋1, … , 𝑋𝑛 ∈ ℝ𝑑, divide into 𝐾 disjoint clusters 𝐺1, … , 𝐺𝐾, 

to minimize distance between cluster points and cluster centroid

Centroids
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Contribution: State-of-the-art trade-off 

between scability and optimality

Nonnegative

low-rank SDP

(ours)

Classic

SDP

Fast but

suboptimal

heuristics
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Oral presentation at ICLR 2024 

(one of 85 out of 7262 submissions)

Well-separated Gaussian mixture model with increasing samples
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Prelim: Exact reform as low-rank optim

Lemma. Let 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑛
𝑇. Then, 𝑖 ∈ 𝐺𝑘

⋆ ⇔ 𝑈𝑖,𝑘
⋆ ≠ 0

See Carlson, Mixon, Villar, Ward (2017) or Prasad & Hanasusanto (2018)

Proof.
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Prior work: Semidefinite Programming

Theorem (Chen & Yang 2021).

Gaussian mixture: 𝑋𝑖 = 𝜇𝑘 + 𝜖𝑖 where 𝜖𝑖~𝒩 0, 𝜎2 . 

If Θ < Θ, impossible to exactly recover 𝐺1
⋆, … , 𝐺𝐾 

⋆

If Θ > Θ, SDP is tight, perfectly recovers 𝐺1
⋆, … , 𝐺𝐾 

⋆

Not scalable: Optimize 𝑛 × 𝑛 matrix over 𝑛2 inequalities

SDP relaxation of Peng & Wei 2007 (𝑍 = 𝑈𝑈𝑇 , 𝑈 ≥ 0 implies 𝑍 ≽ 0, 𝑍 ≥ 0)

Centroid separation: Θ = min
𝑘≠𝑘′

𝜇𝑘 − 𝜇𝑘′ .

Exact reformulation (𝑈𝑖,𝑘
⋆ ≠ 0 if and only if 𝑖 ∈ 𝐺𝑘

⋆)
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Prior work: Nonneg matrix factorization

Not optimal: Relaxed constraints are critical for exact recovery.

Substitute 𝑋𝑋𝑇 − 𝑈𝑈𝑇
𝐹
2 = 𝑋𝑋𝑇

𝐹
2 + 𝑈𝑈𝑇

𝐹
2 − 2 𝑋𝑋𝑇 , 𝑈𝑈𝑇  and relax

Scalable: Proj gradient descent easily scales to 𝑛 = 106.

Critical question: How to design algorithm that is 

as scalable as NMF, but as optimal as SDP?

Rank overparameterization: Empirically, fewer spur loc min as 

search rank 𝑟 increases; compare with Zhang (2022).

Exact reformulation (𝑈𝑖,𝑘
⋆ ≠ 0 if and only if 𝑖 ∈ 𝐺𝑘

⋆)
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Proposed formulation

Exact reformulation of K-means clustering

Proposed nonnegative low-rank SDP relaxation

Classical SDP relaxation (𝑍 = 𝑈𝑈𝑇 , 𝑈 ≥ 0 implies 𝑍 ≽ 0, 𝑍 ≥ 0)

Optimal: At least as tight as SDP, which is already provably tight.

Scalable: Proj gradient descent easily scale to 𝑛 = 106.
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Proposed Algorithm

Closed-form projectionHard to enforce

Easily solved using proj grad desc, but no perfect recovery.

Better idea, enforce using augmented Lagrangian method

Solve primal using proj grad desc, update dual, repeat.

Combined algorithm is like NMF; five lines of code.

First try, relax difficult constraint into quadratic penalty
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Main theoretical result:

NLR + ProjGD → Primal-dual local linear 

convergence, even with rank overparam

Theorem [Zhuang, Chen, 
Yang, Zhang, 2024] 

Assume Gaussian Mixtures.

(Initialization) If 𝑈0 within 
an 𝑂(1) neighborhood of the 
optimal solution 𝑈∗

(Search rank) and 𝑟 ≥ 𝐾, 

Then 𝑈𝑡 converges to 𝑈∗ at 
a linear rate.

Overall time complexity of NLR:



Validation on synthetic data

• Best performance with SDP and NLR, error goes to zero as n increases.

• SDP and NLR have similar performance, but SDP cannot scale past n=2000.

• Compute time of NLR and KM/SC/NMF scale linearly to sample size n.



Validation on real-world data

• SDP and NLR are similarly optimal and consistent, but only NLR scales.

• KM and NMF can be optimal, but inconsistent between datasets and trials.

• Spectral clustering works well, but SDP and NLR are provably tighter.

Mass Cytometry (CyTOF) dataset

Sample size n=1800 and n=46258

CIFAR-10 dataset 

(color images of size 32x32x3)

Sample size n=1800 and n=4000



Conclusions
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- Thank you!
• Various approximations and relaxations for K-means clustering: 

Lloyd, spectral, nonnegative matrix factorization (NMF), 

semidefinite programming (SDP). 

• SDP achieves sharp information-theoretical threshold for exact 

recovery.

• Goal: computational scalability and statistical optimality.

• This paper: an algorithm simultaneously achieving O(n) per 

iteration complexity + local linear convergence + same SDP 

recovery guarantee.

• Future work: Partial recovery? Optimization landscape?
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