

Statistically Optimal K-means Clustering via Nonnegative Low-rank Semidefinite Programming

Richard Y. Zhang Univ. of Illinois at Urbana-Champaign ryz@illinois.edu

Joint work with

Yubo Zhuang (UIUC), Xiaohui Chen (USC), Yang Yun (UIUC)

Why statistically optimal K-means clustering?

99% "Cat"

Secret sauce: Massive databases of *high-quality* labeled data But need even more labeled data!

Rank	Model	Percentage PARAMS Accu correct	Extra Iracy Training Data	aper	Code	Result	Year
1	EffNet-L2 (SAM)	96.08	~	Sharpness-Aware Minimization for Efficiently Improving Generalization	0	Ð	2020
2	Swin-L + ML-Decoder	95.1	~	ML-Decoder: Scalable and Versatile Classification Head	0	Ð	2021
3	μ 2Net (ViT-L/16)	94.95	~	An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems	0	Ð	2022

Example adapted from Carlini, "Poisoning the Unlabeled Dataset of Semi-Supervised Learning", USENIX Security '21

Formulation: K-Means Clustering

Given data $X_1, ..., X_n \in \mathbb{R}^d$, divide into *K* disjoint clusters $G_1, ..., G_K$, to **minimize distance** between **cluster points** and **cluster centroid**

$$\min_{G_1,...,G_K} \quad \sum_{k=1}^K \sum_{i \in G_k} \left\| X_i - \frac{1}{|G_k|} \sum_{j \in G_k} X_j \right\|^2 \quad \text{s.t.} \quad \bigsqcup_{k=1}^K G_k = [n]$$

	Scalable	Optimal
Lloyd	\checkmark	×
Spectral	\checkmark	×
NMF	\checkmark	×
SDP	×	\checkmark
NLR (ours)	\checkmark	\checkmark

Contribution: State-of-the-art trade-off between scability and optimality

Well-separated Gaussian mixture model with increasing samples

Percentage misclassified vs ground truth

Oral presentation at ICLR 2024 (one of 85 out of 7262 submissions)

Prelim: Exact reform as low-rank optim

Lemma. Let
$$X = [X_1, X_2, ..., X_n]^T$$
. Then, $i \in G_k^* \Leftrightarrow U_{i,k}^* \neq 0$
$$\min_{G_1, ..., G_K} \sum_{k=1}^K \sum_{i \in G_k} \left\| X_i - \frac{1}{|G_k|} \sum_{j \in G_k} X_j \right\|^2 \quad \text{s.t.} \quad \bigsqcup_{k=1}^K G_k = [n]$$
$$\max_{U \in \mathbb{R}^{n \times K}} \left\langle XX^T, UU^T \right\rangle \quad \text{s.t.} \quad UU^T \mathbf{1}_n = \mathbf{1}_n, \ U^T U = I_K, \ U \ge 0.$$

See Carlson, Mixon, Villar, Ward (2017) or Prasad & Hanasusanto (2018) *Proof.*

$$\min_{Z} \frac{1}{2} \langle D, Z \rangle \quad \text{s.t.} \quad Z = \sum_{k=1}^{K} \frac{1}{|G_k|} \mathbf{1}_{G_k} \mathbf{1}_{G_k}^T \text{ where } D_{i,j} = \|X_i - X_j\|^2$$

$$UU^{T} = \sum_{k=1}^{K} \frac{1}{|G_{k}|} \mathbf{1}_{G_{k}} \mathbf{1}_{G_{k}}^{T} \iff UU^{T} \mathbf{1}_{n} = \mathbf{1}_{n}, \ U^{T}U = I_{K}, \ U \ge 0$$
$$D = \mathbf{1}^{T}d + d\mathbf{1}^{T} - XX^{T} \text{ where } d = \text{diag}(XX^{T})$$

Prior work: Semidefinite Programming

Exact reformulation $(U_{i,k}^* \neq 0 \text{ if and only if } i \in G_k^*)$

 $\max_{U \in \mathbb{R}^{n \times K}} \langle XX^T, UU^T \rangle \quad \text{s.t.} \quad UU^T \mathbf{1}_n = \mathbf{1}_n, \ U^T U = I_K, \ U \ge 0.$

SDP relaxation of Peng & Wei 2007 ($Z = UU^T$, $U \ge 0$ implies $Z \ge 0, Z \ge 0$)

 $\leq \max_{Z \succ 0} \langle XX^T, Z \rangle$ s.t. $Z \mathbf{1}_n = \mathbf{1}_n, \quad \operatorname{tr}(Z) = K, \quad Z \geq 0$

Theorem (Chen & Yang 2021). Gaussian mixture: $X_i = \mu_k + \epsilon_i$ where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. Centroid separation: $\Theta = \min_{k \neq k'} ||\mu_k - \mu_{k'}||$. If $\Theta < \overline{\Theta}$, impossible to exactly recover G_1^*, \dots, G_K^* If $\Theta > \overline{\Theta}$, SDP is tight, perfectly recovers $G_1^{\star}, \dots, G_K^{\star}$

Not scalable: Optimize $n \times n$ matrix over n^2 inequalities

Prior work: Nonneg matrix factorization

Exact reformulation $(U_{i,k}^{\star} \neq 0 \text{ if and only if } i \in G_k^{\star})$

 $\max_{U \in \mathbb{R}^{n \times K}} \left\langle XX^T, UU^T \right\rangle \text{ s.t. } UU^T \mathbf{1}_n = \mathbf{1}_n, \ U^T U = I_K, \ U \ge 0.$

Substitute $||XX^T - UU^T||_F^2 = ||XX^T||_F^2 + ||UU^T||_F^2 - 2\langle XX^T, UU^T \rangle$ and relax

$$\leq \frac{1}{2} \left(\|XX^T\|_F^2 + K \right) - \min_{U \in \mathbb{R}^{n \times r}_+} \frac{1}{2} \|XX^T - UU^T\|_F^2$$

Scalable: Proj gradient descent easily scales to $n = 10^6$.

Rank overparameterization: Empirically, fewer spur loc min as search rank r increases; compare with Zhang (2022).

Not optimal: Relaxed constraints are critical for exact recovery.

Critical question: How to design algorithm that is as scalable as NMF, but as optimal as SDP?

Proposed formulation

Exact reformulation of K-means clustering

 $\max_{U \in \mathbb{R}^{n \times K}} \quad \left\langle XX^T, UU^T \right\rangle \quad \text{ s.t. } \quad UU^T \mathbf{1}_n = \mathbf{1}_n, \quad U^T U = I_K, \quad U \ge 0.$

Proposed nonnegative low-rank SDP relaxation

$$\leq \max_{U \in \mathbb{R}^{n \times r}} \langle XX^T, UU^T \rangle \quad \text{s.t.} \quad UU^T \mathbf{1}_n = \mathbf{1}_n, \quad \text{tr}(UU^T) = K, \quad U \geq 0$$

Classical SDP relaxation $(Z = UU^T, U \ge 0 \text{ implies } Z \ge 0, Z \ge 0)$ $\leq \max_{Z \ge 0} \langle XX^T, Z \rangle \quad \text{s.t.} \quad Z\mathbf{1}_n = \mathbf{1}_n, \quad \operatorname{tr}(Z) = K, \quad Z \ge 0$

Optimal: At least as tight as SDP, which is already provably tight. Scalable: Proj gradient descent easily scale to $n = 10^6$.

Proposed Algorithm

$$\operatorname{proj}_{\Omega}(U) = \frac{\sqrt{K} \cdot \max\{U, 0\}}{\|\max\{U, 0\}\|_{F}}$$

$$\max_{U \in \mathbb{R}^{n \times r}} \langle XX^T, UU^T \rangle \quad \text{s.t.} \quad UU^T \mathbf{1}_n = \mathbf{1}_n, \quad \text{tr}(UU^T) = K, \quad U \ge 0$$

Hard to enforce Closed-form projection

First try, relax difficult constraint into quadratic penalty $\min_{U \in \Omega} \quad \left\langle -XX^T, UU^T \right\rangle + \frac{\beta}{2} \|UU^T \mathbf{1}_n - \mathbf{1}_n\|^2$ where $\Omega \stackrel{\text{def}}{=} \{\mathbb{R}^{n \times r} : U \ge 0, \|U\|_F = \sqrt{K}\}$

Easily solved using proj grad desc, but no perfect recovery.

Better idea, enforce using **augmented Lagrangian method** $U \leftarrow \arg \min_{U \in \Omega} \langle -XX^T, UU^T \rangle + \langle y, UU^T \mathbf{1}_n - \mathbf{1}_n \rangle + \frac{\beta}{2} \|UU^T \mathbf{1}_n - \mathbf{1}_n\|^2$ $y \leftarrow y + \beta (UU^T \mathbf{1}_n - \mathbf{1}_n)$

Solve primal using proj grad desc, update dual, repeat. Combined algorithm is like NMF; five lines of code.

Main theoretical result: $NLR + ProjGD \rightarrow Primal-dual$ local linear convergence, even with rank overparam

Overall time complexity of NLR: $O(nrK^6)$

Validation on synthetic data

- Best performance with SDP and NLR, error goes to zero as n increases.
- SDP and NLR have similar performance, but SDP cannot scale past n=2000.
- Compute time of NLR and KM/SC/NMF scale linearly to sample size n.

Validation on real-world data

Mass Cytometry (CyTOF) dataset Sample size n=1800 and n=46258 CIFAR-10 dataset (color images of size 32x32x3) Sample size n=1800 and n=4000

- SDP and NLR are similarly optimal and consistent, but only NLR scales.
- KM and NMF can be optimal, but inconsistent between datasets and trials.
- Spectral clustering works well, but SDP and NLR are provably tighter.

Conclusions - Thank you!

- Various approximations and relaxations for K-means clustering: Lloyd, spectral, nonnegative matrix factorization (NMF), semidefinite programming (SDP).
- SDP achieves sharp information-theoretical threshold for exact recovery.
- Goal: computational scalability and statistical optimality.
- This paper: an algorithm simultaneously achieving O(n) per iteration complexity + local linear convergence + same SDP recovery guarantee.
- Future work: Partial recovery? Optimization landscape?

C3.ai Digital Transformation Institute

