Steepest Descent
$$\begin{cases} X_{k+1} = X_k - \eta_k \nabla f(X_k) \\ \eta_k = \underset{\eta>0}{\operatorname{argmin}} f(X_k - \eta \nabla f(X_k)) \end{cases}$$

Theorem 2.13. For a twice continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, assume $\mu I \leq \nabla^2 f(x) \leq LI$ where $L > \mu > 0$ are constants (eigenvalues of Hessian have uniform positive bounds), thus f is strongly convex has a unique minimizer \mathbf{x}_* . Then the steepest descent method (2.9) satisfies

$$f(\mathbf{x}_{k+1}) - f(\mathbf{x}_*) \le \left(1 - \frac{\mu}{L}\right)^k [f(\mathbf{x}_0) - f(\mathbf{x}_*)].$$

Remark: D With Strong convexity, and L-Cont. ∇f , $|| \times_{k} \times^{*}||^{2} \le \left(1 - \frac{2\eta UL}{U+L}\right)^{k} || \times_{o} - \times^{*}||^{2}$

 $f(x_k) \leq f(x_k) + \nabla f(x_k)^T \left[x_k - x_k \right] + \frac{L}{z} ||x_k - x_k||^2$

 \Rightarrow fixe) - fixx) $\leq \frac{L}{z} ||x_{k-}x_{*}||^{2}$

 $N = \frac{2}{L+M} \Rightarrow \left(\frac{L-M}{L+M}\right)^2 < 1 - \frac{M}{L}$

>> provable rate of Steepest Descent is worke...

D For a quadratic cost function, the

better vote (L-M) can be proven for steepest descent.

Numerical Example fox = \frac{1}{2} xTKX - xTb+c

$$\nabla^{2}f(x) = K \in \mathbb{R}^{n \times n}$$

$$K = \frac{1}{\Delta \chi^{2}} \begin{pmatrix} 2^{-1} \\ -1 \end{pmatrix}, \Delta X = \frac{1}{n+1}$$

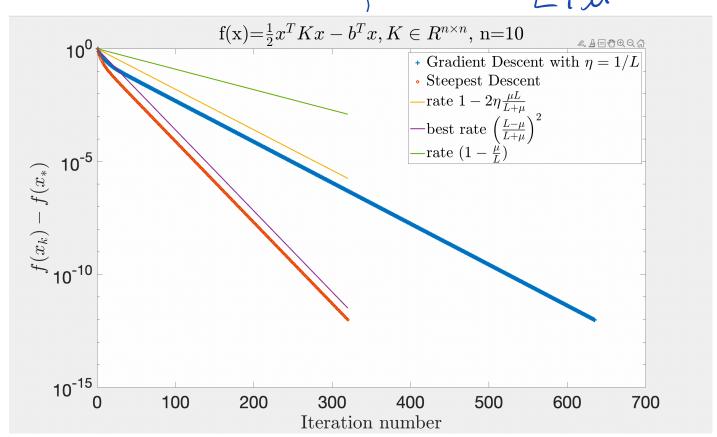
$$M = \lambda_{1}(K) \leq - \cdot - \leq \lambda_{n}(K) = L$$

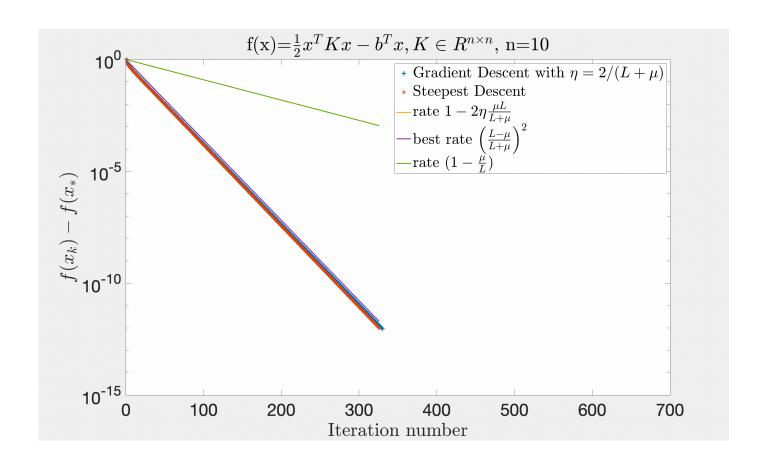
$$\frac{U}{\Delta \chi^{2}} \sin^{2}(\frac{\pi}{2}\Delta X) = \frac{4}{\Delta \chi^{2}} \sin^{2}(\frac{\pi}{2}n\Delta X) \Rightarrow \frac{L}{M} = O(n^{2})$$
Phovable Rates for $f(x_{R}) - f(x_{R}) = C^{R}$

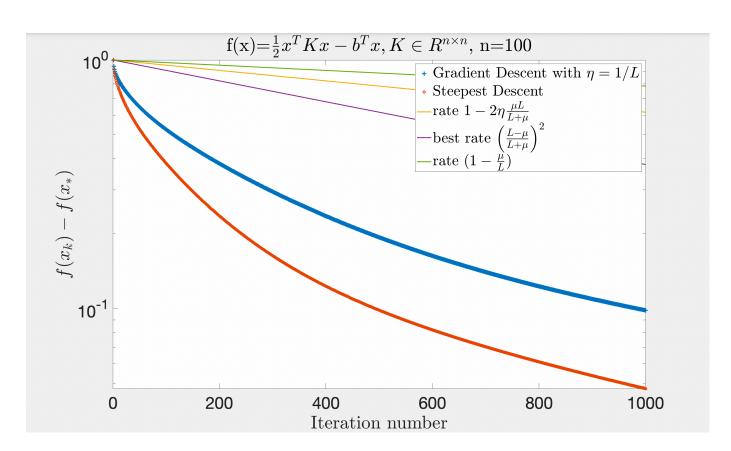
$$GD \text{ with } \eta \leq \frac{2}{L+M}$$

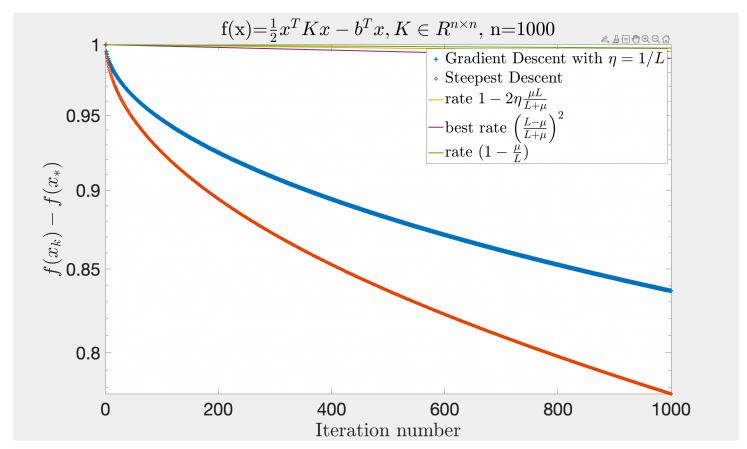
$$C = (\frac{L-M}{L+M})^{2}$$
Steapest Descent for quadratics
$$C = (\frac{L-M}{L+M})^{2}$$

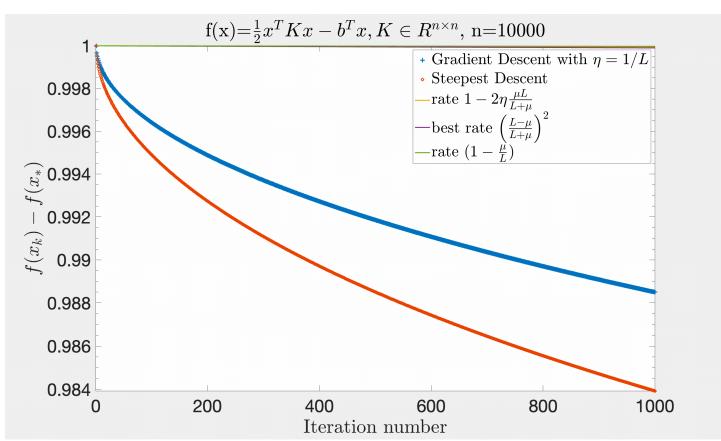
$$C = (\frac{L-M}{L+M})^{2}$$
Steapest Descent for quadratics
$$C = (\frac{L-M}{L+M})^{2}$$

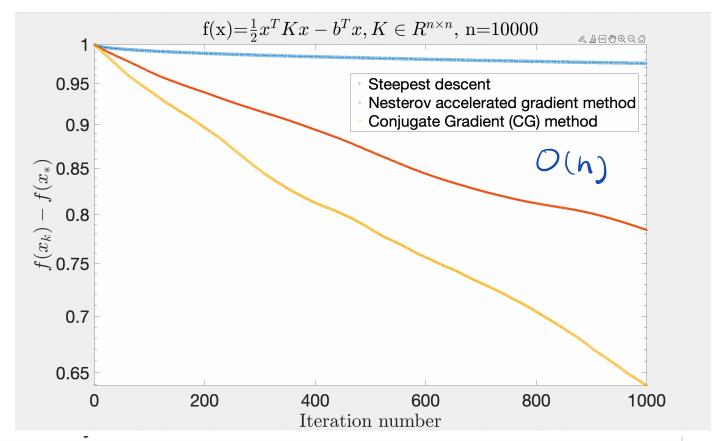












Nesterov accelerated gradient method

$$\begin{cases} \mathbf{x}_{k+1} &= \mathbf{y}_k - \eta_k \nabla f(\mathbf{y}_k) \\ t_{k+1} &= \frac{1}{2} \left(1 + \sqrt{4t_k^2 + 1} \right) \\ \mathbf{y}_{k+1} &= \mathbf{x}_{k+1} + \frac{t_k - 1}{t_{k+1}} (\mathbf{x}_{k+1} - \mathbf{x}_k) \end{cases} \quad \mathbf{x}_0 = \mathbf{y}_0, t_0 = 1.$$

2.3 Line search method

Now we consider a more general method for minimizing $f(\mathbf{x})$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{p}_k,$$

where $\eta_k > 0$ is a step size and $\mathbf{p}_k \in \mathbb{R}^n$ is a search direction. Examples of the search direction include:

- 1. Gradient method $\mathbf{p}_k = -\nabla f(\mathbf{x}_k)$.
- 2. Newton's method $\mathbf{p}_k = -[\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$.
- 3. Quasi Newton's method $\mathbf{p}_k = -B_k \nabla f(\mathbf{x}_k)$, where $B_k \approx [\nabla^2 f(\mathbf{x}_k)]^{-1}$.
- 4. Conjugate Gradient Method $\mathbf{p}_k = -(\mathbf{x}_k \mathbf{x}_{k-1} + \beta_k \nabla f(\mathbf{x}_k))$, where β_k is designed such that \mathbf{p}_k and $\mathbf{x}_k \mathbf{x}_{k-1}$ are conjugate (orthogonal in some sense).

The search direction \mathbf{p}_k is a descent direction if $\langle \mathbf{p}_k, -\nabla f(\mathbf{x}_k) \rangle > 0$, i.e., \mathbf{p}_k pointing to the negative gradient direction.

2.3.1 The step size

To find a proper step size η_k , it is natural to ask for a sufficient decrease in the cost function:

$$f(\mathbf{x}_k + \eta_k \mathbf{p}_k) \le f(\mathbf{x}_k) + c_1 \eta_k \langle \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle, \quad c_1 \in (0, 1).$$
 (2.12a)

The constant c_1 is usually taken as a small number such as 10^{-4} , and (2.12a) is called *Amijo condition*. To avoid unacceptably small step sizes, the *curvature condition* requires

$$\langle \nabla f(\mathbf{x}_k + \eta_k \mathbf{p}_k), \mathbf{p}_k \rangle \ge c_2 \langle \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle, \quad c_2 \in (c_1, 1).$$
 (2.12b)

Define $\phi(\eta) = f(\mathbf{x}_k + \eta \mathbf{p}_k)$, then $\phi'(\eta) = \langle \nabla f(\mathbf{x}_k + \eta \mathbf{p}_k), \mathbf{p}_k \rangle$, thus (2.12b) simply requires $\phi'(\eta_k) \geq c_2 \phi'(0)$, where $\phi'(0) = \langle \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle < 0$ for a descent direction \mathbf{p}_k . Usually, c_2 is taken as 0.9 for Newton and quasi-Newton methods, and 0.1 in conjugate gradient methods.

The two conditions in (2.12) with $0 < c_1 < c_2 < 1$ are called the Wolfe conditions.

The following are called the strong Wolfe conditions.

$$f(\mathbf{x}_k + \eta \mathbf{p}_k) \le f(\mathbf{x}_k) + c_1 \eta \langle \nabla f(\mathbf{x}_k), p_k \rangle, \quad c_1 \in (0, 1).$$
 (2.13a)

$$|\langle \nabla f(\mathbf{x}_k + \eta_k \mathbf{p}_k), \mathbf{p}_k \rangle| \le c_2 |\langle \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle|, \quad c_2 \in (c_1, 1).$$
 (2.13b)

Lemma 2.4. Assume $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is continuously differentiable and has a lower bound, and \mathbf{p}_k is a descent direction. Then for any $0 < c_1 < c_2 < 1$, there are intervals of η satisfying the Wolfe conditions (2.12) and the strong Wolfe conditions (2.13).

2.3.2 The convergence

We consider the angle θ_k between the negative gradient and the search direction:

$$\cos \theta_k = \frac{\langle -\nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle}{\|\nabla f(\mathbf{x}_k)\| \|\mathbf{p}_k\|}.$$

Theorem 2.16 (Zoutendijk's Theorem). Assume $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is continuously differentiable with Lipschitz continuous gradient $\nabla f(\mathbf{x})$, and $f(\mathbf{x})$ is bounded from below. Consider a line search method $\mathbf{x}_{k+1} = \mathbf{x}_k + \eta_k \mathbf{p}_k$, where \mathbf{p}_k is a descent direction and η_k satisfies the Wolfe conditions (2.12). Then

$$\sum_{k=1}^{\infty} \cos^2 \theta_k \|\nabla f(\mathbf{x}_k)\|^2 < +\infty.$$

Proof. By (2.12b), we have

$$\langle \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle \ge (c_2 - 1) \langle \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle.$$

The Lipschitz continuity and Cauchy Schwartz inequality give

$$\langle \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle \le \|\nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)\| \|\mathbf{p}_k\| \le L \|\eta_k \mathbf{p}_k\| \|\mathbf{p}_k\|.$$

Combining the two inequalities, we get

ualities, we get
$$\eta_k \geq \frac{c_2 - 1}{L} \frac{\langle \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle}{\|\mathbf{p}_k\|^2}.$$

Plugging it into (2.12a), we get $f(X_k+\eta P_k) \leq f(X_k) + G(\eta \leq f(X_k)) = 0$

$$f(\mathbf{x}_k + \eta_k \mathbf{p}_k) \le f(\mathbf{x}_k) - c_1 \frac{1 - c_2}{L} \frac{|\langle \nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle|^2}{\|\mathbf{p}_k\|^2},$$

which can be written as

$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \omega \cos^2 \theta_k ||\nabla f(\mathbf{x}_k)||^2, \quad \omega = c_1 \frac{1 - c_2}{L}.$$

Summing it up, since $f(\mathbf{x}) \geq C$, we get

$$\sum_{k=0}^{N} \cos^2 \theta_k \|\nabla f(\mathbf{x}_k)\|^2 \le \frac{1}{\omega} [f(\mathbf{x}_0) - f(\mathbf{x}_{N+1})] \le \frac{1}{\omega} [f(\mathbf{x}_0) - C].$$

So $a_N = \sum_{k=0}^N \cos^2 \theta_k ||\nabla f(\mathbf{x}_k)||^2$ is a bounded and increasing sequence, thus the infinite series converges.

The convergence of the series in Zoutendijk's Theorem gives $\cos^2 \theta_k \|\nabla f(\mathbf{x}_k)\| \to 0$. Thus if $\cos^2 \theta_k \geq \delta > 0, \forall k$, then $\|\nabla f(\mathbf{x}_k)\| \to 0$.

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Example 2.8. Consider Newton's method with $\mathbf{p}_k = -[\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$. Assume the Hessian has some uniform positive bounds for eigenvalues (i.e., the Hessian is **positive definite** with a uniformly bounded condition number:):

$$\mu I \le \nabla^2 f(\mathbf{x}) \le LI, \quad L \ge \mu > 0, \forall \mathbf{x},$$

then we have (eigenvalues of A are reciprocals of eigenvalues of A^{-1})

$$\frac{1}{L}I \le [\nabla^2 f(\mathbf{x})]^{-1} \le \frac{1}{\mu}I, \quad L \ge \mu > 0, \forall \mathbf{x}.$$

For convenience, let $B_k = [\nabla^2 f(\mathbf{x})]^{-1}$ and $\mathbf{h}_k = \nabla f(\mathbf{x}_k)$. Since B_k is positive definite, its eigenvalues are also singular values. By the definition of spectral norm, we get $\|\mathbf{A} \mathbf{x}\| \leq \|\mathbf{A}\| \cdot \|\mathbf{x}\|$ $\|\mathbf{A}\| = \max_{\mathbf{x} \in \mathbb{R}} \|\mathbf{A}\| = \max_{\mathbf{x}$

$$\|\mathbf{p}_k\| = \|B_k \nabla f(\mathbf{x}_k)\| \le \|B_k\| \|\nabla f(\mathbf{x}_k)\| \le \frac{1}{\mu} \|\nabla f(\mathbf{x}_k)\| = \frac{1}{\mu} \|\mathbf{h}_k\|.$$

By the Courant-Fischer-Weyl min-max principle (Appendix A.1), we have

$$\cos \theta_k = \frac{\langle -\nabla f(\mathbf{x}_k), \mathbf{p}_k \rangle}{\|\nabla f(\mathbf{x}_k)\| \|\mathbf{p}_k\|} = \frac{\mathbf{h}_k^T B_k \mathbf{h}_k}{\|\mathbf{h}_k\| \|\mathbf{p}_k\|} \ge \mu \frac{\mathbf{h}_k^T B_k \mathbf{h}_k}{\|\mathbf{h}_k\| \|\mathbf{h}_k\|} \ge \frac{\mu}{L} = \frac{1}{L/\mu},$$

where $L/\mu = \|B_k\| \|B_k^{-1}\|$ is the condition number of the Hessian. With Theorem 2.16, we get $\|\nabla f(\mathbf{x}_k)\| \to 0$ Recall that a strongly convex function has a unique critical point which is the global minimizer. So the Newton's method with a step size satisfying the Wolfe conditions (2.12) converges to the unique minimizer \mathbf{x}_* for a strongly convex function $f(\mathbf{x})$ if $\|\nabla^2 f(\mathbf{x})\|$ has a uniform upper bound, see the problem below.

Problem 2.1. Recall that $\|\nabla f(\mathbf{x}_k)\| \to 0$ may not even imply \mathbf{x}_k converges to a critical point, see Example 2.2. Prove that $\|\nabla f(\mathbf{x}_k)\| \to 0$ implies \mathbf{x}_k converges to the global minimizer under the assumption

$$\mu I \le \nabla^2 f(\mathbf{x}) \le LI, \quad L \ge \mu > 0, \forall \mathbf{x}.$$