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Theorem 2.13. For a twice continuously differentiable function f : R" —

R, assume wzfm@ ) < LI where L > p > 0 are constants (eigenvalues

of Hessian have uniform positive bounds), thus f is strongly convexr has a
unique minimizer X,. Then the steepest descent method (2.9) satisfies

f(xk+1)—f(x*)_(1——> [F(x0) — f(x.)]
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Nesterov accelerated gradient method

Xe+r1 =Yk — MV I(yk)

tht+1 :%(1+\/4t%+1) Xg = Yo, to = 1.

t—1
Yk+1 = Xg41 + t’;ﬁ (Xp41 — Xk)

2.3 Line search method

Now we consider a more general method for minimizing f(x):

Xk+1 = Xk + NPk,

where n, > 0 is a step size and pr € R"” is a search direction. Examples of
the search direction include:

1. Gradient method pp = —V f(xx).

2. Newton’s method pr = —[V2f(xx)] 'V f(xx)- L BFE S

3. Quasi Newton’s method py, = —ByV f(x), where By, ~ [V2 f(xx)] L.

4. Conjugate Gradient Method pp = —(Xp —Xkx_1 + BxVf(Xk)), where
Bk is designed such that pi and x; — x;_1 are conjugate (orthogonal

in some sense).

The search direction py is a descent direction if (pg, —V f(xx)) > 0, i.e.,
Pi pointing to the negative gradient direction.



2.3.1 The step size

To find a proper step size 7, it is natural to ask for a sufficient decrease in
the cost function:

[k +mepr) < f(xk) + am(V f(xk),Pr), c1€(0,1). (2.12a)

The constant ¢; is usually taken as a small number such as 10~4, and 1)
is called Amijo condition. To avoid unacceptably small step sizes, the cur-
vature condition requires

(Vf(xk +mPr), Pr) > c2(V f(xk),Pr), c2 € (c1,1). (2.12b)

Define ¢(n) = f(xx + npx), then ¢'(n) = (Vf(xx + 1pk), Px), thus
simply requires ¢'(ng) > c2¢’(0), where ¢'(0) = (Vf(x),pr) < 0 for a
descent direction pg. Usually, co is taken as 0.9 for Newton and quasi-
Newton methods, and 0.1 in conjugate gradient methods.

The two conditions in 1} with 0 < ¢; < co < 1 are called the Wolfe
conditions.
The following are called the strong Wolfe conditions.

f(&k +npr) < f(xk) +an(VIxr)pe), e € (0,1). (2.13a)

(Vf(xx +mPr), Pr)| < c2(Vf(Xk), Px)|, c2 € (c1,1). (2.13b)

Lemma 2.4. Assume f : R" — R s continuously differentiable and has
a lower bound, and(py is a descent directiom) Then for any 0 < ¢ < ¢ < 1,
there are intervals of n satisfying the Wolfe conditions (2.12) and the strong

Wolfe conditions (2.13). <? V‘Q? >0
) —

2.3.2 The convergence

We consider the angle 6, between the negative gradient and the search

direction:
(—=V f(xx), Pr)
IV f(xe)lPwll

cos b =
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Theorem 2.16 (Zoutendijk’s Theorem). Assume f : R"™ — R is contin-
uously differentiable with Lipschitz continuous gradient V f(x), and f(x) is
bounded from below. Consider a line search method Xj.+1 = X+ 1Pk, where
Pk is a descent direction and ny. satisfies the Wolfe conditions (2.12). Then

o0
Z cos? 0 ||V f(xr)||? < +oc.
k=1

Proof. By (2.12b)), we have

(VI (%kt1) = VI (xk), pr) = (c2 = (V[ (xk), Pk)-

The Lipschitz continuity and Cauchy Schwartz inequality give

(Vf(xk41) = VI(xk), Pr) < IVf(xkt1) = V&) [Pl < Llneprll][prl]-

Combining the two inequalities, we get <V( ) F) ‘<V(\ ,P7 ’ “Vﬂl
o-1(Vie)pe  WBU el ey WE
TETL e Cos®

Plugging it into , we get -G(Xk+V\ Plﬂ-BS (-\Xk)-’cc‘y\ <7'F(X#)) Pl\>

1 — o (Vf(xk), Pr)?
L lpkl? ’

f(xk +mepr) < f(xk) — 1

which can be written as

1—(32

Fxki1) < f(xi) = weos™ Okl VF(xi)[*, w=er—

Summing it up, since f(x) > C, we get

N
3 o BV ()| < [ (x0) — fxs1)] < ~[F(x0) — O
k=0

N
So ay = . cos? 0|V f(xx)||? is a bounded and increasing sequence, thus
k=0

the infinite series converges. [

The convergence of the series in Zoutendijk’s Theorem gives cos? O ||V f (xx)|| —
0. Thus if cos? 6, > 6 > 0,Vk, then |V f(x)| — 0.
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Example 2.8. Consider Newton’s method with p, = —[V2f(xx)] "V f(xz).
Assume the Hessian has some uniform positive bounds for eigenvalues (i.e.,
the Hessian is positive definite with a uniformly bounded condition num-

ber:):
pl <V°f(x) < LI, L>p>0,Vx,

then we have (eigenvalues of A are reciprocals of eigenvalues of A~1)

1 1
SIS V()TN < =1 L2 p>0,vx

=

For convenience, let By = [V?f(x)]™! and h, = Vf(xx). Since By is
positive definite, its eigenvalues are also singular values. By the definition

of spectral norm, we get “,L\,Q“ < \(Au u}(“ [/A\“ — W)‘(GX ‘\'Lid“ :m{’“(TC(A

1 1
P&l = 1BV f (i)l < IBrllIVF(xx)l < ;HVf(Xk)H = ;Hth-

By the Courant-Fischer-Weyl min-maz principle (Appendiz A.1), we have

cos ), — (=V/[(xk),Pr) _ hj B.hy > hj B;hy, 1
IVfxe)llpell  [hellllpell = " [hellllbel] = L L/p

where L/p = ||By|||| Bt condition number of the Hessian. With
Theorem 2.16, we get |V f(xx)|| = O} Recall that a strongly convex function
has a unique critical poi ch—iS the global minimizer. So the Newton’s
method with a step size satisfying the Wolfe conditions (2.12) converges to

the unique minimizer X, for a strongly convex function f(x) if |[V2f(x)||
has a uniform upper bound, see the problem below.

Problem 2.1. Recall that |V f(xx)|| — 0 may not even imply x; converges

to a critical point, see Example 2.2. Prove that |V f(xg)|| — 0 implies xx
converges to the global minimizer under the assumption

pl < V2f(x)<LI, L>p>0,Vx.



