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Preface

These notes are supposed to be self-content. The main focus is currently the
classical analysis of popular gradient based algorithms. Typos are inevitable.
Use with caution.
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Notation

Unless specified otherwise:

1. x denotes a single variable, and x denotes a column vector.

2. xT is the transpose of x, thus a row vector.

3. f(x) is a scalar-valued multi-variable function.

4. ∇f(x) is a column vector.

5. For a matrix A ∈ Rn×n, ∥A∥ is the spectral norm; σi(A) and λi(A)
denote its singular values and eigenvalues respectively.

6. ∀ means for any, and ∃ means there exists.

7. Ck functions: the partial derivatives up to k-th order exist and are
continuous.

8. ⟨a,b⟩ denotes the dot product of two vectors.
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Part I

Smooth problems
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1

Prerequisites

In this chapter, we first introduce some tools that will be needed for ana-
lyzing the simplest gradient descent method.

1.1 Multi-variable Taylor’s Theorems
We first start with the well-known mean value theorem in calculus without
proof:

Theorem 1.1. If a function f(x) is continuous on an interval [a, b] and
f ′(x) exists, then there exists c ∈ (a, b) s.t.

f(b)− f(a) = f ′(c)(b− a).

Remark 1.1. The geometrical meaning of this theorem is simply saying
that there is a point c where the tangent line (with slope f ′(c)) is parallel to
the secant line passing two end points at a and b (with slope f(b)−f(a)

b−a ).

Theorem 1.2 (Single variable Taylor’s Theorem). Suppose that I ⊂ R is
an open interval and that f(x) is a function of class C2 (f ′′(x) exists and
is continuous) on I. For any a ∈ I and h such that a + h ∈ I, there exists
some θ ∈ (0, 1) such that

f(a+ h) = f(a) + hf ′(a) + h2

2 f
′′(a+ θh).

Proof. Consider

g1(x) = f(x)− f(a)− (x− a)f ′(a)

then g1(a) = g′
1(a) = 0. Define

g(x) = g1(x)−
(
x− a
h

)2
g1(a+ h),

7



8 1. PREREQUISITES

then g(a) = g′(a) = g(a + h) = 0. By Mean Value Theorem on g(x), we
have

g(a) = g(a+ h) = 0 =⇒ g′(a+ αh) = 0, α ∈ (0, 1).
Use Mean Value Theorem again on g′(x):

g′(a) = g′(a+ αh) = 0 =⇒ g′′(a+ θh) = 0, θ ∈ (0, α).
Since g′′(x) = f ′′(x) − 2

h2 g1(a + h), g′′(a + θh) = 0 implies that we get
the explicit remainder for the second order Taylor expansion as g1(a+ h) =
h2

2 f
′′(a+ θh).

Theorem 1.3 (Multivariate First Order Taylor’s Theorem). Suppose that
S ⊂ Rn is an open set and that f : S −→ R is a function of class C1 on
S (first order partial derivatives exist and are continuous). Then for any
a ∈ S and h ∈ Rn such that the line segment connecting a and a + h is
contained in S, there exists θ ∈ (0, 1) such that

f(a + h) = f(a) +∇f(a + θh) · h.
Proof. Define g(t) = f(a + th). By Mean Value Theorem on g(t), there is
θ ∈ (0, 1) s.t.

g(1) = g(0) + g′(θ).
By chain rule, we have g′(θ) = ∇f(a+θh)·h, which completes the proof.

Theorem 1.4 (Multivariate Quadratic Taylor’s Theorem). Suppose that
S ⊂ Rn is an open set and that f : S −→ R is a function of class C2 on
S (second order partial derivatives exist and are continuous). Then for any
a ∈ S and h ∈ Rn such that the line segment connecting a and a + h is
contained in S, there exists θ ∈ (0, 1) such that

f(a + h) = f(a) +∇f(a) · h + 1
2hT∇2f(a + θh)h.

Proof. Define g(t) = f(a + th). By Theorem 1.2 on g(t), there is θ ∈ (0, 1)
s.t.

g(1) = g(0) + g′(0) + 1
2g

′′(θ).

By chain rule, we have g′(0) = ∇f(a) · h and g′′(θ) = hT∇2f(a + θh)h,
which completes the proof.

We need to be careful that these Taylor’s Theorems may not hold for a
vector-valued function. For instance, consider a smooth scalar-valued func-
tion

f : Rn −→ R,

its gradient is a vector-valued function
∇f : Rn −→ R

n.

One might presume a formula like ∇f(a + h) = ∇f(a) + ∇2f(a + θh)h,
which could be wrong!
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1.2 Convex functions

1.2.1 Definition

Definition 1.1. Consider a function f : Rn → R and any x,y ∈ Rn and
any λ ∈ (0, 1).

1. f(x) is called convex if f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

2. f(x) is called strictly convex if f(λx+(1−λ)y) < λf(x)+(1−λ)f(y).

3. f(x) is called strongly convex with a constant parameter µ > 0 if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2λ(1− λ)∥x− y∥2.

4. f(x) is (strictly or strongly) concave if −f(x) is (strictly or strongly)
convex.

5. East to verify that f(x) is strongly convex with µ > 0 if and only if
f(x)− µ

2∥x∥
2 is convex. Strong convexity with µ = 0 is convexity.

6. It is easy to see that

strong convexity⇒ strict convexity⇒ convexity.

A convex function does not need to be differentiable, e.g., the single
variable absolute value function f(x) = |x| is convex.

Example 1.1. Any norm of a matrix X ∈ Rn×n is convex due to the
triangle inequality of norms:

∥λX + (1− λ)Y ∥ ≤ ∥λX∥+ ∥(1− λ)Y ∥ = λ∥X∥+ (1− λ)∥Y ∥.

See Appendix A.6 for examples of matrix norms.

It is straightforward to verify the following from the definition:

Theorem 1.5. Let f(x) and g(x) be two convex functions. Then

1. f(x) + g(x) is convex;

2. If g(x) is strictly convex, so is f(x) + g(x);

3. If g(x) is strongly convex, so is f(x) + g(x).

If a single variable function is continuously differentiable, then being
convex simply means that the derivative f ′(x) is increasing, i.e., [f ′(y) −
f ′(x)](y−x) ≥ 0. If twice continuously differentiable, then convexity simply
means f ′′(x) ≥ 0, and strong convexity means f ′′(x) ≥ µ > 0. The following
subsections provide justifications.
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1.2.2 Equivalent conditions

Geometrically convexity also means that function graph is always above any
tangent line: f(x) ≥ f(y) + f ′(y)(x− y).

Lemma 1.1. Assume f : Rn → R is continuously differentiable. Then the
following are equivalent definitions of f(x) being convex:

1. f(x) ≥ f(y) + ⟨∇f(y),x− y⟩, ∀x,y.

2. ⟨∇f(y)−∇f(x),y− x⟩ ≥ 0, ∀x,y.

If replacing ≥ with > above, then we get equivalent definitions for strict
convexity. For strong convexity with parameter µ > 0, the following are
equivalent definitions:

1. f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ
2∥x− y∥2, ∀x,y.

2. ⟨∇f(y)−∇f(x),y− x⟩ ≥ µ∥x− y∥2, ∀x,y.

Proof. We only prove the equivalency for strong convexity, since convexity
is simply strong convexity with µ = 0 and discussion for strict convexity is
similar to convexity.

First, assume f(x) is strongly convex, then

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2λ(1− λ)∥x− y∥2

⇒ f(λx + (1− λ)y)− f(y)
λ

≤ f(x)− f(y)− µ

2 (1− λ)∥x− y∥2.

Let g(t) = f(tx + (1− t)y) then g(0) = f(y) and

g′(t) = ∇f(tx + (1− t)y)T (x− y) = ⟨∇f(tx + (1− t)y),x− y⟩.

By the Mean Value Theorem on g(t), there exists s ∈ (0, t) such that g′(s) =
g(t)−g(0)

t , thus

f(tx + (1− t)y)− f(y)
t

= g(t)− g(0)
t

= g′(s) = ⟨∇f(sx +(1−s)y),x−y⟩,

and

⟨∇f(sx + (1− s)y),x− y⟩ ≤ f(x)− f(y)− µ

2 (1− t)∥x− y∥2.

Let t→ 0 then s→ 0, we get f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ
2∥x− y∥2.

Second, assume

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2.
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Then combining with

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥x− y∥2,

we get ⟨∇f(y)−∇f(x),y− x⟩ ≥ µ∥x− y∥2.

Third, assume ⟨∇f(y)−∇f(x),y−x⟩ ≥ µ∥x−y∥2. Let xt = tx+(1−t)y,
then

⟨∇f(xt)−∇f(y),xt − y⟩ ≥ µ∥xt − y∥2,

thus
⟨∇f(tx + (1− t)y)−∇f(y), t(x− y)⟩ ≥ µt2∥x− y∥2,

and

⟨∇f(tx + (1− t)y),x− y⟩ ≥ ⟨∇f(y),x− y⟩+ µt∥x− y∥2.

Consider g(t) = f(tx + (1− t)y), then∫ 1

0
g′(t)dt =

∫ 1

0
⟨∇f(tx+(1−t)y),x−y⟩dt ≥

∫ 1

0
(⟨∇f(y),x−y⟩+µt∥x−y∥2)dt

= ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2.

So
f(x)− f(y) = g(1)− g(0) ≥ ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2.

Finally, assume

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2, ∀x,y.

Let xt = tx + (1− t)y, then we have

f(x) ≥ f(xt) + ⟨∇f(xt),x− xt⟩+ µ

2 ∥x− xt∥2,

f(y) ≥ f(xt) + ⟨∇f(xt),y− xt⟩+ µ

2 ∥y− xt∥2,

Combining the two inequalities with coefficients t and 1 − t, notice that
x− xt = (1− t)(x− y) and y− xt = (−t)(x− y),

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)− µ

2 t(1− t)∥x− y∥2.

Lemma 1.2. Assume f : Rn → R is twice continuously differentiable (sec-
ond order partial derivatives exist and are continuous).
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1. f(x) is convex if and only if ∇2f(x) ≥ 0 (Hessian matrix is positive
semi-definite) for all x.

2. f(x) is strongly convex if and only if ∇2f(x) ≥ µI for all x.

3. f(x) is strictly convex if ∇2f(x) > 0 for all x. This is not necessary
even for single variable functions: f(x) = x4 is strictly convex but
f ′′(x) > 0 is not true at x = 0.

Proof. First, we shown assumptions on the Hessian are sufficient for con-
vexity, strict convexity and strong convexity. Apply Multivariate Quadratic
Taylor’s Theorem (Theorem 1.4), we get

f(x) = f(y)+∇f(y)T (x−y)+ 1
2(x−y)T∇2f [y+θ(x−y)](x−y), θ ∈ (0, 1).

Strong convexity is proven by Lemma 1.1 and the fact that

∇2f ≥ µI ⇒ 1
2(x− y)T∇2f [y + θ(x− y)](x− y) ≥ µ

2 ∥x− y∥2.

Convexity and strict convexity are similarly proven.
Second, assume f(x) is strongly convex. By Lemma 1.1, we have

∀t > 0, ∀p,x ∈ Rn, f(x + tp) ≥ f(x) + ⟨∇f(x), tp⟩+ µ

2 ∥tp∥
2.

With the Quadratic Taylor’s Theorem we get

∃θ ∈ (0, t), f(x + tp) = f(x) + t∇f(x)T p + 1
2 t

2pT∇2f [x + θp]p

thus
1
2 t

2pT∇2f [x + θp]p ≥ µ

2 ∥tp∥
2 ⇒ pT∇2f [x + θp]

∥p∥2 ≥ µ.

Let t→ 0, then θ → 0, we get

pT∇2f [x]p
∥p∥2 ≥ µ, ∀p ∈ Rn,p ̸= 0.

By the Courant-Fischer-Weyl min- max principle in Appendix A.1, we get
∇2f [x] ≥ µI. Repeat the same argument for µ = 0, we prove the Hessian
condition is sufficient for the convexity.

Problem 1.1. In gas dynamics, governing hydrodynamics equations are
defined by conservation of mass ρ, momentum m = (mx,my,mz) and total
energy E. The pressure is defined as p = (γ − 1)(E − 1

2
∥m∥2

ρ ) in equation of
state for for ideal gas where γ > 1 is a constant parameter, e.g., γ = 1.4 for
air. Regard p as a function of conservative variables ρ,mx,my,mz, E, verify
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that p(ρ,m, E) is a concave function for ρ > 0 thus satisfies the Jensen’s
inequity:

p

a1

 ρm
E

+ a2

 ρm
E


 ≤ a1p


 ρm
E


+a2p


 ρm
E


 , a1, a2 > 0, a1+a2 = 1.

Hint: show the Hessian matrix is negative definite. Start with an easier
problem by considering 1D case: p = (γ − 1)(E − 1

2
m2

ρ ) where m is scalar.

1.2.3 Jensen’s inequality

A convex function by definition satisfies the Jensen’s inequality:

∀x,y, f(a1x + a2y) ≤ a1f(x) + a2f(y), ∀a1, a2 ≥ 0, a1 + a2 = 1.

It is straightforward to extend it to n terms by induction, i.e., Jensen’s
inequality also implies

∀xi, f

(
n∑

i=1
aixi

)
≤

n∑
i=1

aif(xi), ∀ai ≥ 0,
n∑

i=1
ai = 1.

Theorem 1.6 (Jensen’s inequality in integral form). If a single variable
function ϕ : R −→ R is convex, and

∫ b
a g(x)dx exists, then

ϕ

(
1

b− a

∫ b

a
g(x)dx

)
≤ 1
b− a

∫ b

a
ϕ[g(x)]dx.

Proof. First of all, this result can be proven without assuming the differen-
tiability of the convex function. But for convenience, assume ϕ′(x) exists,
then Lemma 1.1 implies

ϕ(t) ≥ ϕ(t0) + ϕ′(t0)(t− t0). (1.1)

Plug in t0 = 1
b−a

∫ b
a g(x)dx and t = g(x) we get

ϕ[g(x)] ≥ ϕ
(

1
b− a

∫ b

a
g(x)dx

)
+ ϕ′(t0)

(
g(x)− 1

b− a

∫ b

a
g(x)dx

)
.

Integrate both sides for variable x, we get

1
b− a

∫ b

a
ϕ[g(x)]dx ≥ ϕ

(
1

b− a

∫ b

a
g(x)dx

)
.
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Remark 1.2. The proof above can be easily extended to a nondifferentiable
convex function which is bounded from below by a linear function, e.g., the
proof still holds if assuming there is a slope St0 for any t0 ∈ R such that

ϕ(t) ≥ ϕ(t0) + St0(t− t0).

For instance, ϕ(t) = |t| is not differentiable at t0 = 0, but we have

|t| ≥ |t0|+ St0(t− t0)

with St0 =
{

1, t0 ≥ 0
−1, t0 < 0

.

Recall that the spectral norm of a matrix X is a convex function due
to the triangle inequality. Next, we prove a Jensen’s inequality about the
spectral norm.

Lemma 1.3. Let g : R → Rn be a single variable vector-valued function,
which is integrable on [a, b]. Then∥∥∥∥∥

∫ b

a
g(x)dx

∥∥∥∥∥ ≤
∫ b

a
∥g(x)∥ dx.

Proof. Let v =
∫ b

a g(x)dx, then

∥v∥2 =
n∑

i=1
vi

∫ b

a
gi(x)dx =

∫ b

a

[
n∑

i=1
vigi(x)

]
dx =

∫ b

a
⟨v,g(x)⟩dx.

With Cauchy-Schwartz inequality ⟨v,g(x)⟩ ≤ ∥v∥∥g(x)∥, we get

∥v∥2 ≤
∫ b

a
∥v∥∥g(x)∥dx = ∥v∥

∫ b

a
∥g(x)∥dx⇒ ∥v∥

∫ b

a
∥g(x)∥dx.

Theorem 1.7 (Jensen’s inequality of the spectral norm). Let A(t) : R −→
Rn×n be a real symmetric matrix valued function. Assume it is integrable
on [0, 1]. Then ∥∥∥∥∫ 1

0
A(t)dt

∥∥∥∥ ≤ ∫ 1

0
∥A(t)∥dt.

Remark 1.3. The integral of a matrix-valued function A(t) is called the
Bochner integral (for functions mapping to any Banach space). And the
inequality above can be regarded as Jensen’s inequality applying to the spectral
norm, at least for Hermitian matrices, see [17, 6]
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Proof. For real symmetric matrices, the singular values are the absolute
value of eigenvalues. Let v be the unit eigenvector of the matrix

∫ 1
0 A(t)dt

for the extreme eigenvalue λ such that∫ 1

0
A(t)dtv = λv, |λ| =

∥∥∥∥∫ 1

0
A(t)dt

∥∥∥∥ .
Lemma 1.3 and ∥v∥ = 1 imply

∥λv∥ =
∥∥∥∥∫ 1

0
A(t)dtv

∥∥∥∥ ≤ ∫ 1

0
∥A(t)v∥dt ≤

∫ 1

0
∥A(t)∥∥v∥dt =

∫ 1

0
∥A(t)∥dt.

The left hand side is

∥λv∥ = |λ|∥v∥ = |λ| =
∥∥∥∥∫ 1

0
A(t)dt

∥∥∥∥ .

1.3 Lipschitz continuous functions

Definition 1.2. A function f : Rn → R is called Lipschitz continuous with
Lipschitz constant L if

∀x,y ∈ Rn, |f(x)− f(y)| ≤ L∥x− y∥.

We can easily verify that f(x) = |x| is Lipschitz continuous with L = 1.

Remark 1.4. For a continuously differentiable function f(x), by the Mean
Value Theomem, we have |f(x)−f(y)|

|x−y| = |f ′(x+ θ(y−x))| for some θ ∈ (0, 1).
Assume |f ′(x)| is bounded by L for any x, we obtain Lipschitz continuity.
Assume Lipschitz continuity, and take the limit y → x, we get |f ′(x)| ≤
L. Thus for a continuously differentible function, Lipschitz continuity is
equivalent to boundedness of first order derivative.

Example 1.2. Assume ∥∇f(x)∥ ≤ L,∀x, then f(x) is Lipschitz continuous
with Lipschitz constant L. Apply the Mean Value Theorem to g(t) = f(y +
t(x− y)), we get

|g(1)−g(0)| = |g′(θ)|, θ ∈ (0, 1)⇒ |f(x)−f(y)| = |⟨∇f(y+θ(x−y)),x−y⟩|.

With the Cauchy-Schwartz inequality for two vectors ⟨a,b⟩ ≤ ∥a∥∥b∥, we
get

|f(x)−f(y)| = |⟨∇f(y+θ(x−y)),x−y⟩| ≤ ∥∇f(y+θ(x−y))∥∥x−y∥ ≤ L∥x−y∥.



16 1. PREREQUISITES

Theorem 1.8. For a twice continuously differentiable function (second-
order derivatives exist and are continuous) f : Rn → R, if

∥∇2f(x)∥ ≤ L, ∀x,

where ∥∇2f(x)∥ denotes the spectral norm, then ∇f(x) is Lipschitz contin-
uous with Lipschitz constant L.

Example 1.3. Let f(x) = 1
2xTKx − xT b where b is a given vector and

−K is the discrete Laplacian matrix as in Appendix B. Then ∇2f = K and
we have ∥∇2f∥ < (n+ 1)2. See Appendix B.

Proof. By Fundamental Theorem of Calculus on a vector-valued single vari-
able function g(t) = ∇f(x + th), g(1)− g(0) =

∫ 1
0 g

′(t)dt gives

∇f(x + h)−∇f(x) =
∫ 1

0
∇2f(x + th)hdt.

The definition of spectral norm (See Appendix A.6) gives ∥Ax∥ ≤ ∥A∥∥x∥.
With Lemma 1.3, we have

∥∇f(x + h)−∇f(x)∥ =
∥∥∥∥∫ 1

0
∇2f(x + th)hdt

∥∥∥∥
≤
∫ 1

0

∥∥∥∇2f(x + th)h
∥∥∥ dt

≤
∫ 1

0

∥∥∥∇2f(x + th)
∥∥∥ ∥h∥dt

=
∫ 1

0

∥∥∥∇2f(x + th)
∥∥∥ dt∥h∥ = L∥h∥.

Finally, let h = y− x, we get the Lipschitz continuity.

Remark 1.5. The proof above can be also be done as the following by The-
orem 1.7:

∇f(x + h)−∇f(x) =
∫ 1

0
∇2f(x + th)hdt

=
(∫ 1

0
∇2f(x + th)dt

)
h.

thus

∥∇f(x + h)−∇f(x)∥ ≤
∥∥∥∥∫ 1

0
∇2f(x + th)dt

∥∥∥∥ ∥h∥
≤
∫ 1

0

∥∥∥∇2f(x + th)
∥∥∥ dt∥h∥

≤
∫ 1

0
Ldt∥h∥ = L∥h∥.
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1.4 Optimality conditions

Definition 1.3. For f : Rn −→ R, x∗ is a global minimizer if f(x∗) ≤
f(x),∀x ∈ S. x∗ is a local minimizer of f(x) if there is a ball B ⊆ Rn

centered at x∗ on which x∗ is the global minimizer of f(x) restricted on B.

We review the well-known optimality conditions.

Theorem 1.9 (First Order Necessary Conditions). For a C1 function (first
order derivatives exist and are continuous) f(x) : Rn −→ R, if x∗ is a local
minimizer, then ∇f(x∗) = 0.

Proof. Assume ∇f(x∗) ̸= 0. Let p = −∇f(x∗), then g(t) = pT∇f(x∗ + tp)
is a continuous function, thus

g(0) = −∥∇f(x∗)∥2 < 0⇒ ∃T > 0,∀t ∈ [0, T ], g(t) < 0.

For any fixed t ∈ (0, T ], by Theorem 1.3, there is θ ∈ (0, t) s.t.

f(x∗ + tp) = f(x∗) + tpT∇f(x∗ + θp) < f(x∗).

So along the line segment connecting x∗ and x∗ + tp for arbitrarily small t,
f(x∗) is not the smallest function value, which is a contradiction to the fact
that f(x∗) is a local minimizer.

Definition 1.4. x∗ is called a stationary point or a critical point of the
function f(x) if ∇f(x∗) = 0.

Theorem 1.10 (Second Order Necessary Conditions). For a C2 function
(second order derivatives exist and are continuous) f(x) : Rn −→ R, if x∗

is a local minimizer, then ∇f(x∗) = 0 and ∇2f(x∗) ≥ 0 (Hessian matrix is
positive semi-definite).

Proof. Assume ∇2f(x∗) is not positive semi-definite, then there exists p ∈
Rn s.t. pT∇2f(x∗)p < 0. The continuity of the function g(t) = pT∇2f(x∗+
tp)p implies that

∃T > 0, ∀t ∈ [0, T ],pT∇2f(x∗ + tp)p < 0.

For any fixed t ∈ (0, T ], by Theorem 1.4, there is θ ∈ (0, t) s.t.

f(x∗ + tp) = f(x∗) + tpT∇f(x∗) + 1
2 t

2pT∇2f(x∗ + θp)p < f(x∗),

where we have used Theorem 1.9. So along the line segment connecting x∗

and x∗ + tp for arbitrarily small t, f(x∗) is not the smallest function value,
which is a contradiction to the fact that f(x∗) is a local minimizer.
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Theorem 1.11 (Second Order Sufficient Conditions). For a C2 function
(second order derivatives exist and are continuous) f(x) : Rn −→ R, if
∇f(x∗) = 0 and ∇2f(x∗) > 0 (Hessian matrix is positive definite), then x∗

is a strict local minimizer.

Proof. First of all, for the real symmetric Hessian matrix ∇2f(x), positive
definiteness means that all eigenvalues are positive.

Second, eigenvalues are continuous functions of matrix entries because
polynomial roots are continuous functions of coefficients, thus the smallest
eigenvalue of ∇2f(x) is a continuous function of x. Thus, ∇2f(x∗) > 0
implies that there is an open ball centered at x∗ with radius r > 0:

B = {x ∈ Rn : ∥x− x∗∥ < r}

such that ∇2f(x) > 0, ∀x ∈ B.
For any y ∈ B, we have y = x∗ + p where p ∈ Rn with ∥p∥ < r. By

Theorem 1.4, there is θ ∈ (0, t) s.t.

f(x∗ + p) = f(x∗) + pT∇f(x∗) + 1
2pT∇2f(x∗ + θp)p > f(x∗),

which is due to the positive definiteness of ∇2f(x∗ +θp) (because x∗ +θp ∈
B). It implies x∗ is a strict local minimizer on the ball B.

Theorem 1.12. Assume f(x) : Rn −→ R is convex.

1. Any local minimizer is also a global minimizer.

2. If f(x) is also continuously differentiable (the same as C1 functions),
then x∗ is a global minimizer if and only if ∇f(x∗) = 0.

Remark 1.6. A convex function may not have any minimizer at all, e.g.,
f(x) = x.

Proof. Let x∗ be a local minimizer. For any y, there exists T > 0 s.t.

∀t ∈ (0, T ], f(x∗ + t(y− x∗)) ≥ f(x∗),

because x∗ is a local minimizer. The convexity implies

f(x∗ + t(y− x∗)) = f((1− t)fx∗ + ty) ≤ (1− t)f(x∗) + tf(y)

thus we get f(x∗) ≤ f(y).
Next, assume x∗ is a global minimizer thus also a local one, then Theorem

1.9 implies ∇f(x∗) = 0. If assuming ∇f(x∗) = 0, then Lemma 1.1 implies

f(x) ≥ f(x∗) + ⟨∇f(x∗),x− x∗⟩ ≥ f(x∗).
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Theorem 1.13. Assume f(x) : Rn −→ R is strongly convex and also
continuously differentiable (the same as C1 functions). Then f(x) has a
unique global minimizer x∗, which is the only critical point of the function.

Proof. By Theorem 1.12, we only need to show f(x) has a global minimum
and the minimizer is unique.

By Theorem 1.1, we have

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ µ

2 ∥x− y∥2, ∀x,y.

Plug in y = 0, we get

f(x) ≥ f(0) + ⟨∇f(0),x⟩+ µ

2 ∥x∥
2,

which implies f(x) → +∞ as ∥x∥ → ∞. Thus for any fixed number M ,
there is R > 0 s.t.,

f(x) > M, ∀x satisfying ∥x∥ > R.

In particular, consider the R > 0 for M = f(0), and the close ball

B = {x ∈ Rn : ∥x∥ ≤ R}.

The closed ball B is a compact set thus f(x) attains its minimum on B, see
Appendix C. Let x∗ be one minimizer of f(x) on B, then x∗ is the global
minimizer because f(x∗) ≤ f(0) = M.

Let x∗,y∗ be two global minimizers, then

f(x∗) ≥ f(y∗)+⟨∇f(y∗),x∗−y∗⟩+µ

2 ∥x
∗−y∗∥2 ⇒ µ

2 ∥x
∗−y∗∥2 ≤ 0⇒ x∗ = y∗,

where we have used ∇f(y∗) = 0 and f(x∗) = f(y∗).

Similar proof also gives

Theorem 1.14. Assume f(x) : Rn −→ R is strictly convex and also con-
tinuously differentiable. If f(x) has a global minimizer x∗, then it is unique
and also the only critical point.

Remark 1.7. Strict convexity is not enough to ensure the existence of a
minimizer. For instance, f(x) = ex is strictly convex.
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The gradient descent method

In this chapter, we consider the unconstrained smooth optimization, i.e.,
minimizing f(x) for x ∈ Rn.

The gradient descent method with a constant step size η > 0 is the most
popular and also the simplest algorithm for minimizing f(x):

xk+1 = xk − η∇f(xk), η > 0. (2.1)

In this section, we need to assume the gradient∇f(x) is Lipschitz contin-
uous, which however does not necessarily imply f(x) is Lipschitz continuous.
For example, f(x) = x2 is not Lipschitz continuous because f ′(x) = 2x is
not a bounded function (see Remark 1.4), but f ′(2x) = 2x is Lipschitz
continuous because its derivative is a constant.

2.1 Stable step sizes
Lemma 2.1 (Descent Lemma). Assume ∇f(x) is Lipschitz-continuous with
Lipschitz constant L, then

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ L

2 ∥x− y∥2,

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩ − L

2 ∥x− y∥2.

Remark 2.1. Notice that there is no assumption on the existence of Hes-
sian. But if assuming ∥∇2f∥ ≤ L, then by Theorem 1.4,

f(y) = f(x) + ⟨∇f(x),y− x⟩+ 1
2(x− y)T∇2f(z)(x− y)

which implies

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ L

2 ∥x− y∥2,

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩ − L

2 ∥x− y∥2,

21
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where the spectral ∥∇2f∥ is the largest singular value thus also the largest
magnitude of eigenvalue for a real symmetric matrix, and we have used the
Courant-Fischer-Weyl min-max inequality, see Appendix A.1.

Remark 2.2. Notice that there is no assumption on convexity. But if as-
suming strong convexity of f(x), by Theorem 1.1,

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥x− y∥2.

Proof. Let g(t) = f(x + t(y − x)). The fundamental theorem of calculus
gives

g(1)− g(0) =
∫ 1

0
g′(t)dt,

thus
f(y)− f(x) =

∫ 1

0
⟨∇f(x + t(y− x)),y− x⟩dt.

Let z(t) = x + t(y − x). Then by subtracting ⟨∇f(x),y − x⟩ from both
sides, we get

|f(y)− f(x)− ⟨∇f(x),y− x⟩| =
∣∣∣∣∫ 1

0
⟨∇f(z(t))− f(x),y− x⟩dt

∣∣∣∣
≤
∫ 1

0
|⟨∇f(z(t))− f(x),y− x⟩| dt

(Cauchy-Schwart inequality) ≤
∫ 1

0
∥∇f(z(t))− f(x)∥∥y− x∥dt

=
∫ 1

0
∥∇f(x + t(y− x))− f(x)∥dt∥y− x∥

≤
(∫ 1

0
Lt∥y− x∥dt

)
∥y− x∥ = L

2 ∥y− x∥2.

The proof also implies

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩ − L

2 ∥x− y∥2.

Lemma 2.2 (Sufficient Decrease Lemma). Assume ∇f(x) is Lipschitz-
continuous with Lipschitz constant L, then the gradient descent method (2.1)
satisfies

f(x)− f(x− η∇f(x)) ≥ η(1− L

2 η)∥∇f(x)∥2, ∀x, ∀η > 0.

Proof. Lemma 2.1 gives

f(x− η∇f(x)) ≤ f(x) + ⟨∇f(x),−η∇f(x)⟩+ L

2 ∥η∇f(x)∥2.
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Lemma 2.2 implies that the gradient descent method (2.1) decreases the
cost function, i.e., f(xk+1) < f(xk) for any η ∈ (0, L

2 ).
In practice, it is difficult to obtain the exact value of L. But any small

enough positive step size η can make the iteration (2.1) stable in the sense
of not blowing up, e.g., f(xk+1) < f(xk).

Consider an ordinary differential equation (ODE) system:

d

dt
u(t) = F (u(t)), u(0) = u0,

where u =
[
u1(t) u2(t) · · · un(t)

]T
. The simplest forward Euler scheme

for this ODE system is

uk+1 = uk + ∆tF (uk). (2.2)

If setting F = −∇f and ∆t = η, then the gradient descent method (2.1) can
be regarded as the forward Euler scheme above. However, usually (2.2) is
used for approximating the time-dependent solution u(t), whereas the (2.1)
is used for finding the minimizer ( the steady state ODE solution F (u) = 0).

Nonetheless, since (2.2) is exactly the same as (2.1), the stability re-
quirement from numerically solving ODE should give the same result as
η ≤ L

2 .

Example 2.1. Consider solving the initial boundary value problem for the
one-dimensional heat equation

ut(x, t) = uxx(x, t), x ∈ (0, 1)
u(x, 0) = u0(x), x ∈ (0, 1)
u(x, 0) = u(x, 1) = 0

.

With the second order discrete Laplacian in Appendix B, a semi-discrete
scheme defined on a uniform grid xi = i∆x with ∆x = 1

n+1 can be written
as an ordinary differential equation (ODE) system:

d

dt
u(t) = Ku(t), u(0) = u0,

where u =
[
u1(t) u2(t) · · · un(t)

]T
and ui(t) approximates u(xi, t). The

simplest forward Euler scheme for this ODE system is

uk+1 = uk + ∆tKuk (2.3)

The linear ODE solver stability requirement ∥uk+1∥ ≤ ∥uk∥ gives ∆t ≤
1
2∆x2 by using eigenvalues of K given in Appendix B.

If regarding (2.3) as the gradient descent method, then f(u) = 1
2uTKu,

and ∥∇2f∥ = ∥K∥ < 1
∆x2 as in Appendix B. This implies the gradient ∇f

is Lipschitz-continuous with L = 1
∆x2 , thus η < 2

L gives η < 1
2∆x2.
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2.2 Convergence for Lipschitz continuous gradient
Theorem 2.1. Assume ∇f(x) is Lipschitz-continuous with Lipschitz con-
stant L, and assume f(x) has a global minimizer: f(x) ≥ f(x∗),∀x. Then
for the gradient descent method (2.1) with a constant step size η ∈ (0, 2

L),
the following holds:

f(xk+1)− f(xk) ≤ −η(1− L

2 η)∥∇f(xk)∥2 ≤ 0. (2.4)

and lim
k→∞

∥∇f(xk)∥ = 0 with

max
0≤k≤n

∥∇f(xk)∥ ≤ 1√
n+ 1

√
1

η(1− L
2 η)

[f(x0)− f(x∗)].

Remark 2.3. Notice that none of the conclusions can imply the sequence
{xk} converges to a critical point. As a matter of fact, {xk} may not have
a limit. See an example below.
Proof. First of all, by plugging y = xk − η∇f(xk) into Lemma 2.2, we get

f(xk+1)− f(xk) ≤ −η(1− L

2 η)∥∇f(xk)∥2.

Second, since η ∈ (0, 2
L), we have f(xk+1) < f(xk) thus {f(xk)} is a

decreasing sequence. Moreover, f(xk) has a lower bound f(xk) ≥ f(x∗).
Thus, the sequence {f(xk)} is bounded from below and decreasing, thus it
has a limit (a bounded monotone sequence has a limit, see Appendix C).

Let ω = η(1− L
2 η), then ω > 0. By summing up (2.4), we get

N∑
k=0
∥∇f(k)∥2 ≤ 1

ω
[f(x0)− f(xN+1)] ≤ 1

ω

[
f(x0)− lim

k→∞
f(xk)

]
,

because {−f(xk)} is an increasing sequence.

So
N∑

k=0
∥∇f(k)∥2 is an increasing and bounded above sequence, thus it

converges, which implies the convergence of the infinite series
∞∑

k=0
∥∇f(k)∥2 = lim

N→∞

N∑
k=0
∥∇f(k)∥2.

The convergence of the series further implies (see Appendix C.4)

lim
k→∞

∥∇f(k)∥2 = 0⇒ lim
k→∞

∥∇f(k)∥ = 0.

Let gn = max
0≤k≤n

∥∇f(xk)∥, then

(n+ 1)g2
n ≤

n∑
k=0
∥∇f(k)∥2 ≤ 1

ω
[f(x0)− f(xn+1)] ≤ 1

ω
[f(x0)− f(x∗)] ,
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Next, in order to understand the convergence of {xk}, we discuss suf-
ficient conditions for its convergence. For example, assume

∞∑
k=0
∥∇f(xk)∥

converges, then we can prove the convergence of {xk} as the following.
Define yn =

n∑
k=0

(xk+1 − xk) = η
n∑

k=0
∇f(xk), then for any m ≥ n

∥yn − ym∥ = η

∥∥∥∥∥∥
m∑

k=n+1
∇f(xk)

∥∥∥∥∥∥
≤ η

m∑
k=n+1

∥∇f(xk)∥

We need to use the notion of Cauchy sequence (see Appendix C.3). The con-
vergence of

∞∑
k=0
∥∇f(xk)∥ implies an =

n∑
k=0
∥∇f(xk)∥ is a Cauchy sequence,

thus
∀ε > 0,∃N, ∀m,n ≥ N, |am − an| < ε.

So yn is also a Cauchy sequence, because

∀ε > 0, ∃N, ∀m,n ≥ N, ∥yn − ym∥ ≤ η|am − an| < ηε.

Therefore, yn has a limit, which further implies the convergence of xk. How-
ever, the assumption of convergence of

∞∑
k=0
∥∇f(xk)∥ is in general

not true. By the proof of the theorem above, we only have the convergence
∞∑

k=0
∥∇f(xk)∥2, which does not implies the convergence of

∞∑
k=0
∥∇f(xk)∥. A

quick counter-example would be ∥∇f(xk)∥ = 1
k (see Appendix C on why

∞∑
k=0

1
k2 converges but

∞∑
k=0

1
k diverges).

Example 2.2. We construct an example for which the gradient descent
method produces almost ∥∇f(xk)∥ = 1

k . Consider the following function

f(x) =
{
ex, x ≤ 0
g(x), x > 0

,

where we pick a function g(x) such that

1. f(x) is very smooth;

2. |f ′′(x)| ≤ 1 for any x, which implies f ′(x) is L-continuous with L = 1;

3. f(x) has a global minimizer x∗.
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For instance, see the plotted function f(x), which can satisfy all the
assumptions of Theorem 2.1, with Lipschitz constant L = 1 for the derivative
function f ′(x).

So a stable step size can be chosen as any positive η < 2. We consider
the following gradient descent iteration with η = 1:{

xk+1 = xk − f ′(xk)
x0 = 0

.

Notice that all iterates xk stays non-positive, it can also be written as

xk+1 = xk − exk , x0 = 0.

One can easily implement this on MATLAB to verify that numerically we
have |f ′(xk)| ≈ 1

k for this iteration.

1 % A MATLAB code of an example for Gradient Descent
2 % producing non−convergent x_k, which goes to infinity.
3 % The cost fuction f(x)=e^x if x≤0.
4 % Must use zero initial guess and step size eta=1.
5 x=0;
6 eta=1;
7 figure;
8 for k=0:10000000
9 x=x−eta*exp(x); % simple Gradient Descent

10 if (mod(k,10000)==0 | k≤100)
11 % plot the iterates (x_k, f(x_k)) the first 100
12 % then every 10,000 iterations
13

14 semilogy(x,exp(x),'o');
15 xlabel('x_k')
16 ylabel('log[f(x_k)]')
17 hold all
18 drawnow
19

20 end
21 % print values of [|f'(x_k)|−1/k](1/k): an indicator
22 % of how close |f'(x_k)| is to 1/k
23 fprintf('%d %d \n', k, abs(exp(x)−1/k)*k)
24 end
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More importantly, Theorem 2.1 implies that exk = |f ′(xk)| → 0 thus
xk → −∞. Even though we can informally write it as xk → −∞, the
sequence {xk} diverges because it is not Cauchy (see Appendix C.3), e.g., it
does not have any cluster point.

So in the example above, we can see that Lipschitz-continuity of ∇f may
not ensure the convergence of the gradient descent to even a critical point!

2.3 Convergence for convex functions
Theorem 2.2. Assume ∇f(x) is Lipschitz-continuous with Lipschitz con-
stant L and f(x) : Rn −→ R is convex. Then for any x,y:

1. f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(x)−∇f(y)∥2

2. ∥∇f(x)−∇f(y)∥2 ≤ L⟨∇f(x)−∇f(y),x− y⟩.

Remark 2.4. Without convexity, by the proof of Lemma 2.1, we only have

f(y) ≤ f(x) + ⟨∇f(x),y− x⟩+ L

2 ∥x− y∥2,

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩ − L

2 ∥x− y∥2.

With strong convexity, we can have

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥x− y∥2.

Proof. Define ϕ(x) = f(x) − ⟨∇f(x0),x⟩. Then ϕ(x) also has Lipschitz
continuous gradient:

∥∇ϕ(x)−∇ϕ(y)∥ = ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.
Apply Lemma 2.1 to ϕ(x):

ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y),x− y⟩+ L

2 ∥x− y∥2

(|⟨a,b⟩| ≤ ∥a∥∥b∥) ≤ ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2

By Theorem 1.5, ϕ(x) is also convex because −⟨∇f(x0),x⟩ is convex. More-
over, ∇ϕ(x0) = 0, thus by Theorem 1.12, x0 is a global minimizer of ∇ϕ(x).
So we get

ϕ(x0) = min
x
ϕ(x) ≤ min

x

[
ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2
]

≤ min
r≥0

[
ϕ(y) + ∥∇ϕ(y)∥r + L

2 r
2
]

= ϕ(y)− 1
2L∥∇ϕ(y)∥2.
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Thus ϕ(x0) ≤ ϕ(y)− 1
2L∥∇ϕ(y)∥2 implies

f(x0)− ⟨∇f(x0),x0⟩ ≤ f(y)− ⟨∇f(x0),y⟩ − 1
2L∥∇f(y)−∇f(x0)∥2.

Since x0,y are arbitrary, we can also write is as

f(x)− ⟨∇f(x),x⟩ ≤ f(y)− ⟨∇f(x),y⟩ − 1
2L∥∇f(y)−∇f(x)∥2,

f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(y).

Switching x and y, we get

f(y) + ⟨∇f(y),x− y⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(x),

and adding two we get
∥∇f(x)−∇f(y)∥2 ≤ L⟨∇f(x)−∇f(y),x− y⟩.

Theorem 2.3. Assume f(x) : Rn −→ R is convex and ∇f(x) is Lipschitz-
continuous with Lipschitz constant L, and assume f(x) has a global mini-
mizer: f(x) ≥ f(x∗), ∀x. Then for the gradient descent method (2.1) with
a constant step size η ∈ (0, 2

L), in addition to conclusions in Theorem 2.1,
the following holds:

f(xk)− f(x∗) < 1
kω
∥x0 − x∗∥2, ω = η( 2

L
− η).

Remark 2.5. From the proof, we will see
1. ∥xk+1−x∗∥2 ≤ ∥xk−x∗∥2−ω∥∇f(xk)∥2 so rk = ∥xk−x∗∥ is decreasing

but ∥xk − x∗∥ → 0 is wrong because x∗ may not be unique.

2. The theorem implies Rk+1 = f(xk+1)−f(x∗) < 1
ω r

2
k, thus f(xk)−f(x∗)

goes to zero much faster than ∥xk − x∗∥ if xk → x∗.
We obtain convergence rate O( 1

k ), assuming only convexity of the cost func-
tion and Lipschitz-continuity of its gradient. We cannot expect convergence
of xk to x∗ because a convex function may have multiple global minimizers,
e.g., f(x) ≡ 0.
Proof. Define rk = ∥xk − x∗∥. With ∇f(x∗) = 0, we get

r2
k+1 = ∥xk+1 − x∗∥2

= ∥xk − η∥∇f(xk)− x∗∥2

= ∥xk − x∗∥2 + ∥η∇f(xk)∥2 + 2⟨xk − x∗,−η∇f(xk)⟩
= ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η⟨xk − x∗,∇f(xk)−∇f(x∗)⟩

≤ ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2
L
η∥∇f(xk)−∇f(x∗)∥2

= r2
k + (η2 − 2

L
η)∥∇f(xk)∥2,
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where we have used Theorem 2.2 in the last inequality.
Define Rk = f(xk)− f(x∗). By Lemma 1.1, we have

f(x) ≥ f(xk) + ⟨∇f(xk),x− xk⟩, ∀x,

thus
f(x∗) ≥ f(xk) + ⟨∇f(xk),x∗ − xk⟩.

With Cauchy-Schwartz inequality,

f(xk)− f(x∗) ≤ −⟨∇f(xk),x∗ − xk⟩ ≤ ∥∇f(xk)∥∥x∗ − xk∥,

which can be written as
Rk ≤ rk∥∇f(xk)∥

thus
−∥∇f(xk)∥ ≤ Rk

rk
.

Recall Theorem 2.1 gives

f(xk+1) ≤ f(xk)− ω∥∇f(xk)∥2,

thus
f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− ω∥∇f(xk)∥2,

0 ≤ Rk+1 ≤ Rk − ω∥∇f(xk)∥2 ≤ Rk − ω
R2

k

r2
k

.

Multiplying both sides by 1
RkRk+1

, we get

1
Rk
≤ 1
Rk+1

− ω 1
r2

k

Rk

Rk+1

1
Rk+1

≥ 1
Rk

+ ω
1
r2

k

Rk

Rk+1
≥ 1
Rk

+ ω
1
r2

k

.

Summing it up for all k = 0, 1, · · · , N , we get

1
RN+1

≥ 1
R0

+ ω
N∑

k=0

1
r2

k

≥ 1
R0

+ ω(N + 1) 1
r2

0
.

Example 2.3. Consider minimizing f(x) = 1
4x

4. Its derivative f ′(x) = x3

is NOT Lipschitz continuous because f ′′(x) = 3x2 is not bounded. Theorem
2.3 in this section can still apply, because f ′(x) = x3 is Lipschitz continuous
with L = 3a2 on the interval x ∈ [−a, a], and the gradient descent with
x0 = a and sufficiently small step size satisfies xk ∈ [−a, a].
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2.4 Convergence for strongly convex functions

Now we consider a strongly convex function f(x) : Rn −→ R with parameter
µ > 0, and assume ∇f(x) is Lipschitz continuous with Lipschitz constant
L. Then Lemma 1.1 gives

⟨∇f(x)−∇f(y),x− y⟩ ≥ µ∥x− y∥2,

and Lipschitz continuity with Cauchy Schwartz inequality gives

⟨∇f(x)−∇f(y),x− y⟩ ≤ ∥∇f(x)−∇f(y)∥∥x− y∥ ≤ L∥x− y∥2.

Thus µ ≤ L and the Qf = L
µ can be called the condition number of the

function f(x).

Example 2.4. Consider a quadratic function f(x) = 1
2xTKx − xT b with

the negative discrete Laplacian matrix K, then ∇2f(x) = K > 0. Let σ1
and σn be the largest and the smallest singular values of K, respectively.
Then by Appendix B, we have

σnI ≤ K ≤ σ1I,

which implies that the Lipschitz constant L for ∇f (see Theorem 1.8) is σ1.
By Lemma 1.2, the strong convexity parameter µ = σn. The number σ1

σn
is

also called the condition number of the matrix K. So the condition number
of a strongly convex function with Lipschitz continuous gradient, is also the
condition number of the Hessian matrix, if the Hessian matrix is a constant
matrix.

Theorem 2.4. For a function f(x) : Rn −→ R with continuous gradi-
ent ∇f(x), the assumptions that f(x) is convex and ∇f(x) is Lipschitz-
continuous with Lipschitz constant L are equivalent to the following for any
x,y:

0 ≤ f(y)− f(x)− ⟨∇f(x),y− x⟩ ≤ L

2 ∥x− y∥2. (2.5)

f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(x)−∇f(y)∥2 ≤ f(y). (2.6)

1
L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y),x− y⟩. (2.7)

0 ≤ ⟨∇f(x)−∇f(y),x− y⟩ ≤ L∥x− y∥2. (2.8)

Proof. The proof is done by the following steps:

1. convexity of f(x) and Lipschitz continuity of ∇f(x) imply (2.5);
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2. (2.5) implies (2.6);

3. (2.6) implies (2.7);

4. (2.7) implies convexity of f(x) and Lipschitz continuity of ∇f(x);

5. (2.8) is equivalent to (2.5).

First of all, assume f(x) is convex and ∇f(x) is Lipschitz-continuous
with Lipschitz constant L, then (2.5) holds because of the first order condi-
tion of convexity (Lemma 1.1) and descent lemma (Lemma 2.1).

Second, assume (2.5) holds, then (2.5) implies ϕ(x) = f(x)−⟨∇f(x0),x⟩
satisfies

0 ≤ ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩

and

ϕ(x) ≤ ϕ(y) + ⟨∇ϕ(y),x− y⟩+ L

2 ∥x− y∥2

(|⟨a,b⟩| ≤ ∥a∥∥b∥) ≤ ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2.

By Lemma 1.1, ϕ(x) is also convex. Moreover,∇ϕ(x0) = 0, thus by Theorem
1.12, x0 is a global minimizer of ∇ϕ(x). So we get

ϕ(x0) = min
x
ϕ(x) ≤ ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2

thus

ϕ(x0) ≤ min
x

[
ϕ(y) + ∥∇ϕ(y)∥∥x− y∥+ L

2 ∥x− y∥2
]

≤ min
r≥0

[
ϕ(y) + ∥∇ϕ(y)∥r + L

2 r
2
]

= ϕ(y)− 1
2L∥∇ϕ(y)∥2.

Thus ϕ(x0) ≤ ϕ(y)− 1
2L∥∇ϕ(y)∥2 implies

f(x0)− ⟨∇f(x0),x0⟩ ≤ f(y)− ⟨∇f(x0),y⟩ − 1
2L∥∇f(y)−∇f(x0)∥2.

Since x0,y are arbitrary, we can also write is as

f(x)− ⟨∇f(x),x⟩ ≤ f(y)− ⟨∇f(x),y⟩ − 1
2L∥∇f(y)−∇f(x)∥2,

which implies

f(x) + ⟨∇f(x),y− x⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(y).
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Switching x and y, we get

f(y) + ⟨∇f(y),x− y⟩+ 1
2L∥∇f(y)−∇f(x)∥2 ≤ f(x),

and adding two we get (2.7).
Third, assume (2.7) holds, then ⟨∇f(x)−∇f(y),x− y⟩ ≥ 0 implies the

convexity by Lemma 1.1, and Cauchy-Schwartz inequality gives Lipschitz
continuity by

1
L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y),x−y⟩ ≤ ∥∇f(x)−∇f(y)∥∥x−y∥.

Finally, we want to show (2.8) is equivalent to (2.5). Assume (2.5) holds,
we get (2.8) by adding the following two:

0 ≤ f(y)− f(x)− ⟨∇f(x),y− x⟩ ≤ L

2 ∥x− y∥2,

0 ≤ f(x)− f(y)− ⟨∇f(y),x− y⟩ ≤ L

2 ∥y− x∥2.

Assume (2.8) holds, we get (2.5) by Fundamental Theorem of Calculus on
g(t) = f(x + t(y− x)):

f(y)− f(x) =
∫ 1

0
⟨∇f(x + t(y− x)),y− x⟩dt

⇒ f(y)− f(x)− ⟨∇f(x),y− x⟩ =
∫ 1

0
⟨∇f(x + t(y− x))−∇f(x),y− x⟩dt

=
∫ 1

0

1
t
⟨∇f(x + t(y− x))−∇f(x), t(y− x)⟩dt

(2.8) ≤
∫ 1

0
Lt∥y− x∥2dt = L

2 ∥y− x∥2.

Theorem 2.5. Assume ∇f(x) is Lipschitz-continuous with Lipschitz con-
stant L and f(x) : Rn −→ R is strongly convex with µ > 0. Then for any
x,y:

⟨∇f(x)−∇f(y),x− y⟩ ≥ µL

µ+ L
∥x− y∥2 + 1

µ+ L
∥∇f(x)−∇f(y)∥2.

Remark 2.6. Plug in µ = 0 and compare it with Theorem 2.2.

Proof. We prove it by discussing two cases.
First, if µ = L, then we need to show

⟨∇f(x)−∇f(y),x− y⟩ ≥ L

2 ∥x− y∥2 + 1
2L∥∇f(x)−∇f(y)∥2.
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Theorem 2.2 gives
1

2L∥∇f(x)−∇f(y)∥2 ≤ 1
2⟨∇f(x)−∇f(y),x− y⟩

and Lemma 1.1 gives

⟨∇f(x)−∇f(y),x−y⟩ ≥ µ∥x−y∥2 ⇒ 1
2⟨∇f(x)−∇f(y),x−y⟩ ≥ L

2 ∥x−y∥2.

Thus adding two gives the desired inequality.
Second, if µ ̸= L, define ϕ(x) = f(x)− µ

2∥x∥
2, then∇ϕ(x) = ∇f(x)−µx.

So ϕ(x) is a convex function, thus

0 ≤ ⟨∇ϕ(y)−∇ϕ(x),y−x⟩ = ⟨∇f(y)−∇f(x),y−x⟩−µ∥y−x∥2 ≤ (L−µ)∥y−x∥2.

By (2.8), ∇ϕ is Lipschitz continuous with the Lipschitz constant L− µ.
Thus by using (2.7) on ϕ(x), we get

⟨∇ϕ(y)−∇ϕ(x),y− x⟩ ≥ 1
L− µ

∥∇ϕ(y)−∇ϕ(x)∥2

⟨∇f(y)−∇f(x),y− x⟩ − µ∥x− y∥2 ≥ 1
L− µ

∥∇f(y)−∇f(x)− µ(y− x)∥2

⟨∇f(y)−∇f(x),y− x⟩ − µ∥x− y∥2 ≥ 1
L− µ

∥∇f(y)−∇f(x)∥2

+ µ2

L− µ
∥y− x∥2+ −2µ

L− µ
⟨∇f(y)−∇f(x),y− x⟩

L+ µ

L− µ
⟨∇f(y)−∇f(x),y− x⟩ ≥ 1

L− µ
∥∇f(y)−∇f(x)∥2 + Lµ

L− µ
∥y− x∥2.

Theorem 2.6 (Global linear rate of gradient descent). Assume f(x) :
Rn −→ R is strongly convex with µ > 0 and ∇f(x) is Lipschitz-continuous
with Lipschitz constant L. Then f(x) has a unique global minimizer: f(x) ≥
f(x∗),∀x. The gradient descent method (2.1) with a constant step size
η ∈ (0, 2

L+µ ] satisfies

∥xk − x∗∥2 ≤
(

1− 2ηµL
L+ µ

)k

∥x0 − x∗∥2.

In particular, if η = 2
L+µ , then we have

∥xk − x∗∥ ≤
( L

µ − 1
L
µ + 1

)k

∥x0 − x∗∥,

f(xk)− f(x∗) ≤ L

2

( L
µ − 1
L
µ + 1

)2k

∥x0 − x∗∥.
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Remark 2.7. For any η ∈ (0, 2
L+µ ], the convergence rate for the error

∥xk − x∗∥ has a linear convergence rate O(ck) with c =
√

1− 2ηµL
L+µ which

is a decreasing function of η. The best rate is achieved at η = 2
L+µ with

c =
L
µ

−1
L
µ

+1 which is an increasing function of the condition number L
µ . This

implies that the best convergence rate will be worse for a larger condition
number.

Proof. Define rk = ∥xk − x∗∥. With ∇f(x∗) = 0 and Theorem 2.5, we get

r2
k+1 = ∥xk+1 − x∗∥2

= ∥xk − η∥∇f(xk)− x∗∥2

= ∥xk − x∗∥2 + ∥η∇f(xk)∥2 + 2⟨xk − x∗,−η∇f(xk)⟩
= ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η⟨xk − x∗,∇f(xk)−∇f(x∗)⟩

≤ ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η µ

µ+ L
∥xk+1 − x∗∥2

− 2η 1
L+ µ

∥∇f(xk)−∇f(x∗)∥2

=
(

1− 2η µ

µ+ L

)
r2

k + (η2 − 2
L+ µ

η)∥∇f(xk)∥2.

Thus for any η ∈ (0, 2
L+µ),

r2
k+1 ≤

(
1− 2η µ

µ+ L

)
r2

k.

With descent lemma (Lemma 2.1), we get

f(xk)−f(x∗) = ⟨∇f(x∗),x−x∗⟩+
L

2 ∥xk−x∗∥2 = L

2 r
2
k ≤

L

2

(
1− 2η µ

µ+ L

)2k

r2
0.

2.5 Convergence under the Polyak-Lojasiewicz in-
equality

The Polyak-Lojasiewicz (PL) inequality or condition is given as

1
2∥∇f(x)∥2 ≥ µ(f(x)− f(x∗)), µ > 0, (2.9)

where x∗ is one of the global minimizers to f(x). Note that this inequality
implies that every critical point is a global minimizer.

Lemma 2.3. A strongly convex function satisfies the Polyak-Lojasiewicz
inequality (2.9).
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Proof. A strongly convex function satisfies

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥x− y∥2.

By a minimization w.r.t. y, we get f(x∗) ≥ f(x)− 1
2µ∥∇f(x)∥2.

There are interesting problems such as certain machine learning mod-
els, which satisfy the Polyak-Lojasiewicz inequality but are not necessarily
strongly convex.

Example 2.5. Consider f(x) = 1
2∥Ax−b∥2 with x, b ∈ Rn and A ∈ Rm×n.

Then ∇2f = ATA, and f(x) is strongly convex if and only if ∇2f ≥ µI.
In general, ATA ≥ µI is not true for µ > 0. For example, the smallest

eigenvalue of ATA is zero if A ∈ Rm×n,m < n. By Theorem 2.7 below,
(2.9) still holds even if A ∈ Rm×n,m < n. For simplicity, assume b is in
the column space of A, then f(x∗) = 0.

Example 2.6. The logistic regression cost function

f(x) =
n∑

i=1
log[1 + exp(biaT

i x)]

can be written as f(x) = g(Ax), with g(y) being only strictly convex but not
strongly convex. For example g(x) = log(1 + expx) has g′′(x) = ex

(ex+1)2 → 0
as x → ∞. So Theorem 2.7 below does not apply but f(x) satisfies the
Polyak-Lojasiewicz inequality on a compact set.

Theorem 2.7. f(x) = g(Ax) with A ∈ Rm×n satisfies the Polyak-Lojasiewicz
inequality if g(x) is strongly convex.

Proof. Strong convexity of g(x) gives

g(v) ≥ g(u) + ⟨∇g(u),v− u⟩+ µ

2 ∥v− u∥2

thus

g(Ay) ≥ g(Ax) + ⟨∇g(Ax), Ay−Ax⟩+ µ

2 ∥Ay−Ax∥2

= g(Ax) + ⟨AT∇g(Ax),y− x⟩+ µ

2 ∥Ay−Ax∥2

= g(Ax) + ⟨∇f(x),y− x⟩+ µ

2 ∥Ay−Ax∥2,

and
f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2 ∥Ay−Ax∥2.



36 2. THE GRADIENT DESCENT METHOD

There might be multiple global minimizers to f(x). Let xp be the pro-
jection of x to the set of global minimizers to f(x), then

f(xp) ≥ f(x) + ⟨∇f(x),xp − x⟩+ µ

2 ∥Axp −Ax∥2

f(xp) ≥ f(x) + ⟨∇f(x),xp − x⟩+ µσ2

2 ∥xp − x∥2,

where σ is the smallest nonzero eigenvalue of A and we used the linear
algebra fact that ∥Axp − Ax∥2 ≥ σ2∥xp − x∥2, which will be proven at the
end. So we get

f(xp) ≥ f(x) + ⟨∇f(x),xp − x⟩+ µσ2

2 ∥xp − x∥2

≥ f(x) + min
y

(
⟨∇f(x),y− x⟩+ µσ2

2 ∥y− x∥2
)

≥ f(x) + min
y

(
⟨∇f(x),y− x⟩+ µσ2

2 ∥y− x∥2
)

= f(x)− 1
µσ2 ∥∇f(x)∥2,

thus (2.9) is satisfied with a parameter µσ > 0.
Finally, we discuss why ∥Axp − Ax∥2 ≥ σ2∥xp − x∥2. Let the compact

SVD (see Appendix A.3) of A be

A = U Σ V T , Σ =

σ1
. . .

σk

 , σ1 ≥ · · · ≥ σk = σ > 0.

In general, we can only have ∥Ay∥
∥y∥ ≥ 0,∀y ̸= 0, e.g., simply take x as the

right singular vector for zero singular value of A. However, xp − x cannot
be the zero singular vector to A if x is not a minimizer, because otherwise
A(xp−x) = 0⇒ g(Axp) = g(Ax), which means x is also a global minimizer.

Now let v1, · · · ,vk be the right singular vectors of A with nonzero singu-
lar values σi, i = 1, · · · , k. Let vk+1, · · · ,vn be the the right singular vectors
of A with zero singular values. Then v1, · · · ,vn form an orthonormal basis
of Rn, and we have xp − x =

n∑
i=1

xivi. Since xp is the projection of x to the
set of global minimizers, i.e., there is no other minimizer that is closer to x,
we must have xi = 0 for i = k + 1, · · · , n. Assume xj ̸= 0 for some j > k,
let y = xp − xjvj , then Ay = Axp ⇒ g(Ay) = g(Axp) implies y is another
minimizer and ∥y− x∥ < ∥xp − x∥ since

y− x =
n∑

i=1,j ̸=i

xivi.
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Therefore, we must have xp − x =
k∑

i=1
xivi thus ∥xp − x∥2 = x2

1 + · · ·+ x2
k.

Moreover,

A(xp−x) = U Σ V T V

x1
...
xk

 = U Σ

x1
...
xk

⇒ ∥A(xp−x)∥ ≥ σ∥xp−x∥.

Theorem 2.8. Let f(x) satisfy the Polyak-Lojasiewicz inequality (2.9) with
µ > 0 and ∇f(x) is Lipschitz-continuous with Lipschitz constant L. The
gradient method with a step-size of 1/L, xk+1 = xk − 1

L∇f(xk) has a global
linear convergence rate

f(xk)− f(x∗) ≤
(

1− µ

L

)k

(f(x0)− f(x∗)).

Remark 2.8. Once again, xk → x∗ cannot be true in general since x∗ may
not be unique.

Proof. The Descent Lemma (Lemma 2.1) gives

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+ L

2 ∥xk+1 − xk∥2,

which becomes the following after using xk+1 = xk − 1
L∇f(xk) and (2.9) ,

f(xk+1) ≤ f(xk)− 1
2L∥∇f(xk)∥2 ≤ f(xk)− µ

L
(f(xk)− f(x∗)),

⇒ f(xk+1)− f(x∗) ≤ (1− µ

L
)(f(xk)− f(x∗)).

2.6 Steepest descent
We can consider a variable step size ηk > 0 in the gradient descent method

xk+1 = xk − ηk∇f(xk) (2.10a)

where ηk can be taken as the best step size in the following sense

ηk = arg min
α>0

f(xk − α∇f(xk)). (2.10b)

Such an optimal step size is also called full relaxation. The method (2.10)
is often called the steepest descent, which is rarely used in practice unless
(2.10b) can be easily computed. Nonetheless, analyzing its convergence rate
is a starting point for understanding practical algorithms.
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Theorem 2.9. For a twice continuously differentiable function f : Rn → R,
assume µI ≤ ∇2f(x) ≤ LI where L > µ > 0 are constants (eigenvalues of
Hessian have uniform positive bounds), thus f is strongly convex has a unique
minimizer x∗. Then the steepest descent method (2.10) satisfies

f(xk+1)− f(x∗) ≤
(

1− µ

L

)k

[f(x0)− f(x∗)].

Remark 2.9. The rate (1− µ
L) is not sharp and in general we have

(
L−µ
L+µ

)2
<

1− µ
L , e.g., the provable fastest rate in Theorem 2.6 for a constant step size

η is better than the provable rate of steepest descent.
Proof. For convenience, let hk = ∇f(xk). By Multivariate Quadratic Tay-
lor’s Theorem (Theorem 1.4), for any α > 0, there exists θ ∈ (0, 1) and
zk = xk + θ(xk − αhk) such that

f(xk − αhk) = f(xk)− αhT
k∇f(xk) + 1

2α
2hT

k∇2f(zk)hk.

The assumption ∇2f(x) ≤ LI, ∀x and the Courant-Fischer-Weyl min-max
principle (Appendix A.1) implies

f(xk − αhk) ≤ f(xk)− αhT
k∇f(xk) + 1

2Lα
2∥hk∥2.

The minimum of the left hand side with respect to α is f(xk+1). The
right hand side is a quadratic function of α. The inequality above still holds
if minimizing both sides with respect to α:

f(xk+1) = min
α
f(xk − αhk) ≤ f(xk)− αhT

k∇f(xk) + 1
2Lα

2∥hk∥2,

f(xk+1) ≤ min
α

[f(xk)−αhT
k∇f(xk)+ 1

2Lα
2∥hk∥2] = f(xk)− 1

2L∥∇f(xk)∥2,

thus
f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)− 1

2L∥∇f(xk)∥2. (2.11)

Similarly, by Multivariate Quadratic Taylor’s Theorem, and lower bound
assumption µI ≤ ∇2f(x) with the Courant-Fischer-Weyl min-max principle
(Appendix A.1), we get

f(x) ≥ f(xk) +∇f(xk)T (x− xk) + µ

2 ∥x− xk∥2.

Minimizing first the right hand side then the left hand side w.r.t. x, we get

f(x) ≥ f(xk)− 1
2µ∥∇f(xk)∥2,

f(x∗) ≥ f(xk)− 1
2µ∥∇f(xk)∥2,

thus −∥∇f(xk)∥2 ≤ 2µ[f(x∗) − f(xk)]. Plugging it into (2.11), we get the
convergence rate.
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2.7 Quadratic functions

The better convergence rate
(

L−µ
L+µ

)2
can be proven for the steep descent

method (2.10) for a quadratic function

f(x) = 1
2xTAx− xT b,

where A is a positive definite matrix with eigenvalues

0 < λ1 ≤ λ2 · · · ≤ λn.

Since ∇2f(x) ≡ A ≥ µI, f(x) is strongly convex thus has a unique
minimizer x∗ satisfying ∇f(x∗) = 0⇔ Ax∗ = b. Define

E(x) = 1
2(x− x∗)TA(x− x∗).

Notice that

Ax∗ = b⇒ 1
2xT

∗ Ax∗ = 1
2xT

∗ b⇒ f(x∗) = −1
2xT

∗ Ax∗,

thus
E(x) = f(x) + 1

2xT
∗ Ax∗ = f(x)− f(x∗).

For convenience, let hk = ∇f(xk) = Axk − b, then

f(xk − ηhk) = 1
2(xk − ηhk)TA(xk − ηhk)− (xk − ηhk)T b.

The quadratic function of η above is minimized at ηk = hT
k hk

hT
k

Ahk
. Thus (2.10)

becomes
xk+1 = xk −

hT
k hk

hT
kAhk

hk.

So
E(xk+1) = 1

2(xk − x∗ − ηkhk)TA(xk − x∗ − ηkhk)

= E(xk)− ηkhT
kA(xk − x∗) + 1

2η
2
khT

kAhk,

⇒ E(xk)− E(xk+1)
E(xk) =

ηkhT
kA(xk − x∗)− 1

2η
2
khT

kAhk
1
2(xk − x∗)TA(xk − x∗)

.

Notice that A(xk − x∗) = Axk − b = hk and ηk = hT
k hk

hT
k

Ahk
, we get

E(xk)− E(xk+1)
E(xk) = 2ηkhT

k h− η2
khT

kAhk

hTA−1h = ∥h∥4

(hTAh)(hTA−1h) .
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We have proved that

E(xk+1) =
(

1− ∥h∥4

(hTAh)(hTA−1h)

)
E(xk),

or equivalently

f(xk+1)− f(x∗) =
(

1− ∥h∥4

(hTAh)(hTA−1h)

)
[f(xk)− f(x∗)].

By the min-max principle (Theorem A.1), we can only get

hTAh
∥h∥2 ≤ λn,

hTA−1h
∥h∥2 ≤ 1

λ1
⇒ 1− ∥h∥4

(hTAh)(hTA−1h) ≤ 1− λ1
λn
,

which is the same rate as in Theorem 2.9. In order to get a better rate, we
can use the Kantorovich inequality in Theorem A.2:

1− ∥h∥4

(hTAh)(hTA−1h) ≤ 1− 4λ1λn

(λ1 + λn)2 = (λn/λ1 − 1)2

(λn/λ1 + 1)2 .

2.8 Accelerated gradient method
The accelerated gradient descent method is a very popular class of first order
methods for large scale minimization problems. The original accelerated
gradient method [8] proposed by Nesterov in 1983 takes the following form:


xk+1 = yk − ηk∇f(yk)
tk+1 = 1

2

(
1 +

√
4t2k + 1

)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

x0 = y0, t0 = 1.

For convenience, we can take ηk = 1
L where L is Lipschitz constant of the

gradient ∇f(x), and use a slightly different tk+1 = k+2
2 , then we have a

slightly different version of Nesterov’s accelerated gradient method:

{
xk+1 = yk − 1

L∇f(yk)
yk+1 = xk+1 + k−1

k+2(xk+1 − xk)
x0 = y0.

This method requires only one evaluation of the gradient per iteration,
yet a global O( 1

k2 ) convergence rate can be proven for a convex function
f(x) with a Lipschtitz continuous gradient. Recall that the gradient descent
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method has a global O( 1
k ) convergence rate for the same function as proven

in Theorem 2.3.
However, the provable rate O( 1

k ) or O( 1
k2 ) usually represents the worst

case scenario of all iterates in an iterative algorithm. The worst case may
or may not happen in practice. Thus the accelerated gradient method is
not necessarily faster than the gradient descent method for a given convex
functions f(x) with Lipschtitz continuous gradient, even though it is indeed
better in many applications.

Recall that we get the stable step size η ∈ (0, 2
L ] for the gradient descent

method by requiring cost function to decrease in each iteration f(xk+1) <
f(xk). But in the accelerated gradient method, there is no monotonicity
guarantee on the sequences {f(xk)} and {f(yk)}.

2.9 Convergence rate of the accelerated gradient
method

To prove the convergence rate O( 1
k2 ) and also to see how the sequence tk

and step sizes ηk should be chosen, we consider the following method for
a convex function f(x) with Lipschitz continuous gradient (with Lipschitz
constant L):

xk+1 = yk − ηk∇f(yk)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

x0 = y0.

Apply the descent lemme (Lemma 2.1) to y = xk+1 and x = yk:

f(xk+1) ≤ f(yk) + ⟨∇f(yk),xk+1 − yk⟩+ L

2 ∥yk − xk+1∥2. (2.12)

The convexity implies

f(x) ≥ f(y) + ⟨x− y,∇f(y)⟩,

thus
f(xk) ≥ f(yk) + ⟨xk − yk,∇f(yk)⟩.

Subtracting two inequalities, we get

f(xk)− f(xk+1) ≥ −L2 ∥yk − xk+1∥2 + ⟨xk − xk+1,∇f(yk)⟩

= −L2 ∥yk − xk+1∥2 + ⟨xk − xk+1,
1
ηk

(yk − xk+1)⟩

= −L2 ∥yk − xk+1∥2 + ⟨xk − yk + yk − xk+1,
1
ηk

(yk − xk+1)⟩

= ( 1
ηk
− L

2 )∥yk − xk+1∥2 + 1
ηk
⟨yk − xk+1,xk − yk⟩.
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Thus

ηk[f(xk)− f(xk+1)] ≥ (1− ηk
L

2 )∥yk − xk+1∥2 + ⟨yk − xk+1,xk − yk⟩.

Similarly, convexity implies

f(x∗) ≥ f(yk) + ⟨x∗ − yk,∇f(yk)⟩.

Subtract it with (2.12), we get

f(x∗)− f(xk+1) ≥ −L2 ∥yk − xk+1∥2 + ⟨x∗ − xk+1,∇f(yk)⟩

= −L2 ∥yk − xk+1∥2 + ⟨x∗ − xk+1,
1
ηk

(yk − xk+1)⟩

= −L2 ∥yk − xk+1∥2 + ⟨x∗ − yk + yk − xk+1,
1
ηk

(yk − xk+1)⟩

= ( 1
ηk
− L

2 )∥yk − xk+1∥2 + 1
ηk
⟨yk − xk+1,x∗ − yk⟩.

Now assume ηk = 1
L , then we have

f(xk)− f(xk+1) ≥ L

2 ∥yk − xk+1∥2 + L⟨yk − xk+1,xk − yk⟩,

f(x∗)− f(xk+1) ≥ L

2 ∥yk − xk+1∥2 + L⟨yk − xk+1,x∗ − yk⟩.

Next, let Rk = f(xk) − f(x∗) where x∗ is a global minimizer. Then
multiplying the first inequality by tk − 1 and add it the second one, we get

(tk−1)Rk−tkRk+1 ≥
L

2 tk∥yk−xk+1∥2+L⟨yk−xk+1, (tk−1)xk−tkyk−x∗⟩.

Multiply it by tk:

tk(tk−1)Rk−t2kRk+1 ≥
L

2 ∥tk(yk−xk+1)∥2+L⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.13)

Assume we have
t2k+1 − tk+1 ≤ t2k,

then

t2k−1Rk−t2kRk+1 ≥
L

2 ∥tk(yk−xk+1)∥2+L⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.14)

For the right hand side dot product, let

a = tkyk, b = tkxk+1, c = (tk − 1)xk + x∗,
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then the right hand side can be written as
L

2
(
∥a − b∥2 + 2⟨c− a,a − b⟩

)
= L

2
(
∥b− c∥2 − ∥a − c∥2.

)
It can be written as

t2k−1Rk−t2kRk+1 ≥
L

2
(
∥tkxk+1 − [(tk − 1)xk + x∗]∥2 − ∥tkyk − [(tk − 1)xk + x∗]∥2

)
.

Let uk+1 = tkxk+1 − [(tk − 1)xk + x∗], then with

yk+1 = xk+1 + tk − 1
tk+1

(xk+1 − xk)⇒ tk+1xk+1 + (tk − 1)xk = tk+1yk+1,

we get

tkyk − [(tk − 1)xk + x∗] = tk−1xk − [(tk−1 − 1)xk−1 + x∗] = uk.

So
t2k−1Rk − t2kRk+1 ≥

L

2 (∥uk+1∥2 − ∥uk∥2)

thus
t2kRk+1 + L

2 ∥uk+1∥2 ≤ t2k−1Rk + L

2 ∥uk∥2,

which implies

t2kRk+1 ≤ t2kRk+1 + L

2 ∥uk+1∥2 ≤ t20R1 + L

2 ∥u1∥2,

and
Rk+1 ≤

1
t2k

[t20R1 + L

2 ∥u1∥2].

So in order to obtain O( 1
k2 ), we should use tk satisfying tk = O(k).

For instance, assume t2k − tk = t2k−1 with t0 = 1, then we can easily show
tk ≥ k+2

2 by induction.
All the discussions can be summarized as:

Theorem 2.10. Assume the function f(x) : Rn −→ R is convex with a
global minimizer x∗. Assume ∇f(x) is Lipschitz continuous with constant
L. Assume t2k − tk = t2k−1 with t0 = 1. Then the following accelerated
gradient method

xk+1 = yk − 1
L∇f(yk)

yk+1 = xk+1 + tk−1
tk+1

(xk+1 − xk)
x0 = y0,

satisfies

f(xk)− f(x∗) ≤ 4
k2

(
f(x1)− f(x∗) + L

2 ∥x1 − x∗∥2
)
.



44 2. THE GRADIENT DESCENT METHOD

Remark 2.10. Obviously the theorem still holds if we plug in tk = k+2
2 ,

then the algorithm is simplied to

{
xk+1 = yk − 1

L∇f(yk)
yk+1 = xk+1 + k−1

k+2(xk+1 − xk)
x0 = y0.

To consider a variable step size, now assume ηk = 1
bk

1
L ≤

1
(a+ 1

2 )
1
L with

a > 0, then
ηk −

L

2 ≥ aL,
1
ηk

= bkL, bk ≥ a+ 1
2

we have

f(xk)− f(xk+1) ≥ aL∥yk − xk+1∥2 + bkL⟨yk − xk+1,xk − yk⟩,
f(x∗)− f(xk+1) ≥ aL∥yk − xk+1∥2 + bkL⟨yk − xk+1,x∗ − yk⟩.

Multiplying the first one by (tk−1) and add it to the second one, we get

(tk−1)Rk−tkRk+1 ≥ aLtk∥yk−xk+1∥2+bkL⟨yk−xk+1, (tk−1)xk−tkyk−x∗⟩.

Multiply it by tk:

tk(tk−1)Rk−t2kRk+1 ≥ aL∥tk(yk−xk+1)∥2+bkL⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.15)

Assume we have
t2k+1 − tk+1 ≤ t2k,

then

t2k−1Rk−t2kRk+1 ≥ aL∥tk(yk−xk+1)∥2+bkL⟨tk(yk−xk+1), (tk−1)xk−tkyk−x∗⟩.
(2.16)

For the right hand side dot product, let

a = tkyk, b = tkxk+1, c = (tk − 1)xk + x∗.

Assume bk ≤ 2a, which implies a ≥ 1
2 , then the right hand side can be

written as

t2k−1Rk − t2kRk+1 ≥
bkL

2

(2a
bk
∥a − b∥2 + 2⟨c− a,a − b⟩

)
≥ bkL

2
(
∥a − b∥2 + 2⟨c− a,a − b⟩

)
= bkL

2
(
∥b− c∥2 − ∥a − c∥2

)
≥

(a+ 1
2)L

2
(
∥b− c∥2 − ∥a − c∥2

)
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It can be written as

t2k−1Rk − t2kRk+1 ≥
2a+ 1

4 L(∥uk+1∥2 − ∥uk∥2)

thus
t2kRk+1 + 2a+ 1

4 L∥uk+1∥2 ≤ t2k−1Rk + 2a+ 1
4 L∥uk∥2,

which implies

t2kRk+1 ≤ t2kRk+1 + 2a+ 1
4 L∥uk+1∥2 ≤ t20R1 + 2a+ 1

4 L∥u1∥2,

and
Rk+1 ≤

1
t2k

[t20R1 + 2a+ 1
4 L∥u1∥2].

Theorem 2.11. Assume the function f(x) : Rn −→ R is convex with a
global minimizer x∗. Assume ∇f(x) is Lipschitz continuous with constant
L. Assume t2k − tk = t2k−1 with t0 = 1. Consider the following accelerated
gradient method

xk+1 = yk − ηk∇f(yk)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

x0 = y0.

If
1
2a

1
L
≤ ηk ≤

1
a+ 1

2

1
L
, a ≥ 1

2 , ∀k,

then

f(xk)− f(x∗) ≤ 4
k2

(
f(x1)− f(x∗) + 2a+ 1

4 L∥x1 − x∗∥2
)
.

Remark 2.11. Notice that we only have ηk ≤ 1
L . Even though it may

converge with a slightly larger ηk in practice, the accelerated gradient method
might blow up for a step size like η = 2

L , which is however a stable one for
the gradient descent method.
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3

The line search method

Now we consider a more general method for minimizing f(x):

xk+1 = xk + ηkpk,

where ηk > 0 is a step size and pk ∈ Rn is a search direction. Examples of
the search direction include:

1. Gradient method pk = −∇f(xk).

2. Newton’s method pk = −[∇2f(xk)]−1∇f(xk).

3. Quasi Newton’s method pk = −Bk∇f(xk), whereBk ≈ [∇2f(xk)]−1.

4. Conjugate Gradient Method pk = −(xk − xk−1 + βk∇f(xk)), where
βk is designed such that pk and xk − xk−1 are conjugate (orthogonal
in some sense).

The search direction pk is a descent direction if ⟨pk,−∇f(xk)⟩ > 0, i.e.,
pk pointing to the negative gradient direction.

3.1 The step size

To find a proper step size ηk, it is natural to ask for a sufficient decrease in
the cost function:

f(xk + ηkpk) ≤ f(xk) + c1ηk⟨∇f(xk),pk⟩, c1 ∈ (0, 1). (3.1a)

The constant c1 is usually taken as a small number such as 10−4, and (3.1a)
is called Amijo condition. To avoid unacceptably small step sizes, the cur-
vature condition requires

⟨∇f(xk + ηkpk),pk⟩ ≥ c2⟨∇f(xk),pk⟩, c2 ∈ (c1, 1). (3.1b)

47
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Define ϕ(η) = f(xk + ηpk), then ϕ′(η) = ⟨∇f(xk + ηpk),pk⟩, thus (3.1b)
simply requires ϕ′(ηk) ≥ c2ϕ

′(0), where ϕ′(0) = ⟨∇f(xk),pk⟩ < 0 for a
descent direction pk. Usually, c2 is taken as 0.9 for Newton and quasi-
Newton methods, and 0.1 in conjugate gradient methods.

The two conditions in (3.1) with 0 < c1 < c2 < 1 are called the Wolfe
conditions.

The following are called the strong Wolfe conditions.

f(xk + ηpk) ≤ f(xk) + c1η⟨∇f(xk),pk⟩, c1 ∈ (0, 1). (3.2a)

|⟨∇f(xk + ηkpk),pk⟩| ≤ c2|⟨∇f(xk),pk⟩|, c2 ∈ (c1, 1). (3.2b)

Lemma 3.1. Assume f : Rn −→ R is continuously differentiable and has
a lower bound, and pk is a descent direction. Then for any 0 < c1 < c2 < 1,
there are intervals of η satisfying the Wolfe conditions (3.1) and the strong
Wolfe conditions (3.2).

Proof. The line ℓ(η) = f(xk) + ηc1⟨∇f(xk),pk⟩ has a negative slope with
0 < c1 < 1. So the line must intersect with the graph of ϕ(η) = f(xk + ηpk)
at least once for η > 0, because 0 > ℓ′(0) > ϕ′(0), ℓ(0) = ϕ(0) and ϕ(η) is
bounded below for all η.

Let η1 > 0 be the smallest such intersection point. Then

f(xk + η1pk) = f(xk) + η1c1⟨∇f(xk),pk⟩,

and (3.1a) holds for any η ∈ (0, η1) because η1 > 0 is the smallest intersection
point.

By the Mean Value Theorem on ϕ(η) = f(xk +ηpk), there is η2 ∈ (0, η1)
such that

f(xk + η1pk)− f(xk) = ⟨∇f(xk + η2pk), η1pk⟩.

By the two equations above, we have

⟨∇f(xk + η2pk),pk⟩ = c1⟨∇f(xk),pk⟩ > c2⟨∇f(xk),pk⟩.

So η2 satisfies (3.1b). Since ∇f is continuous, there is a small interval
containing η2, in which η satisfies (3.1b). Notice that the left hand side of
the inequality above is negative, thus the strong Wolfe conditions also hold
at η2 and in a small interval containing η2.

In practice, the search of a proper step size satisfying the Wolfe condi-
tions can be achieved by backtracking, e.g., use η ← cη with c ∈ (0, 1) until
the step size satisfies (3.1).
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Example 3.1. For the gradient descent method pk = −∇f(xk) with a fixed
step size η < 2

L , where L is the Lipschitz constant for the gradient ∇f(x),
the descent lemma (Lemma 2.1) and sufficient descrease lemma (Lemma
2.2) gives

f(xk)− f(xk+1) ≥ η(1− L

2 η)∥∇f(x)∥2,

i.e.,

f(xk + ηpk) ≤ f(xk) + η(1− L

2 η)⟨∇f(xk),pk⟩.

So η < 2
L satisfies (3.1a) with c1 = 1− L

2 η.
If we further assume f(x) is strongly convex with µ > 0. Then Lemma

1.1 gives

⟨∇f(xk+1)−∇f(xk),xk+1 − xk⟩ ≥ µ∥xk+1 − xk∥2,

thus
⟨∇f(xk + ηpk)−∇f(xk),−η∇f(xk)⟩ ≥ µ∥η∇f(xk)∥2.

So we get

⟨∇f(xk + ηpk),−∇f(xk)⟩ ≥ (µη − 1)∥∇f(xk)∥2,

which can be written as

⟨∇f(xk + ηkpk),pk⟩ ≥ c2⟨∇f(xk),pk⟩

with c2 = 1 − µη. By requiring c1 < c2 < 1. So if assuming L > 2µ, which
is usually satisfied in practice, then any stable step size η < 2

L satisfies the
Wolfe condition (3.1).

3.2 The convergence

We consider the angle θk between the negative gradient and the search
direction:

cos θk = ⟨−∇f(xk),pk⟩
∥∇f(xk)∥∥pk∥

.

Theorem 3.1 (Zoutendijk’s Theorem). Assume f : Rn −→ R is continu-
ously differentiable with Lipschitz continuous gradient ∇f(x), and f(x) is
bounded from below. Consider a line search method xk+1 = xk +ηkpk, where
pk is a descent direction and ηk satisfies the Wolfe conditions (3.1). Then

∞∑
k=1

cos2 θk∥∇f(xk)∥2 < +∞.
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Proof. By (3.1b), we have

⟨∇f(xk+1)−∇f(xk),pk⟩ ≥ (c2 − 1)⟨∇f(xk),pk⟩.

The Lipschitz continuity and Cauchy Schwartz inequality give

⟨∇f(xk+1)−∇f(xk),pk⟩ ≤ ∥∇f(xk+1)−∇f(xk)∥∥pk∥ ≤ L∥ηkpk∥∥pk∥.

Combining the two inequalities, we get

ηk ≥
c2 − 1
L

⟨∇f(xk),pk⟩
∥pk∥2

.

Plugging it into (3.1a), we get

f(xk + ηkpk) ≤ f(xk)− c1
1− c2
L

|⟨∇f(xk),pk⟩|2

∥pk∥2
,

which can be written as

f(xk+1) ≤ f(xk)− ω cos2 θk∥∇f(xk)∥2, ω = c1
1− c2
L

.

Summing it up, since f(x) ≥ C, we get
N∑

k=0
cos2 θk∥∇f(xk)∥2 ≤ 1

ω
[f(x0)− f(xN+1)] ≤ 1

ω
[f(x0)− C].

So aN =
N∑

k=0
cos2 θk∥∇f(xk)∥2 is a bounded and increasing sequence, thus

the infinite series converges.

The convergence of the series in Zoutendijk’s Theorem gives cos2 θk∥∇f(xk)∥ →
0. Thus if cos2 θk ≥ δ > 0,∀k, then ∥∇f(xk)∥ → 0.

Example 3.2. Consider Newton’s method with pk = −[∇2f(xk)]−1∇f(xk).
Assume the Hessian has some uniform positive bounds for eigenvalues (i.e.,
the Hessian is positive definite with a uniformly bounded condition num-
ber:):

µI ≤ ∇2f(x) ≤ LI, L ≥ µ > 0,∀x,
then we have (eigenvalues of A are reciprocals of eigenvalues of A−1)

1
L
I ≤ [∇2f(x)]−1 ≤ 1

µ
I, L ≥ µ > 0,∀x.

For convenience, let Bk = [∇2f(x)]−1 and hk = ∇f(xk). Since Bk is
positive definite, its eigenvalues are also singular values. By the definition
of spectral norm, we get

∥pk∥ = ∥Bk∇f(xk)∥ ≤ ∥Bk∥∥∇f(xk)∥ ≤ 1
µ
∥∇f(xk)∥ = 1

µ
∥hk∥.
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By the Courant-Fischer-Weyl min-max principle (Appendix A.1), we have

cos θk = ⟨−∇f(xk),pk⟩
∥∇f(xk)∥∥pk∥

= hT
kBkhk

∥hk∥∥pk∥
≥ µ hT

kBkhk

∥hk∥∥hk∥
≥ µ

L
= 1
L/µ

,

where L/µ = ∥Bk∥∥B−1
k ∥ is the condition number of the Hessian. With

Theorem 3.1, we get ∥∇f(xk)∥ → 0. Recall that a strongly convex function
has a unique critical point which is the global minimizer. So the Newton’s
method with a step size satisfying the Wolfe conditions (3.1) converges to the
unique minimizer x∗ for a strongly convex function f(x) if ∥∇2f(x)∥ has a
uniform upper bound, see the problem below.

Problem 3.1. Recall that ∥∇f(xk)∥ → 0 may not even imply xk converges
to a critical point, see Example 2.2. Prove that ∥∇f(xk)∥ → 0 implies xk

converges to the global minimizer under the assumption

µI ≤ ∇2f(x) ≤ LI, L ≥ µ > 0, ∀x.

3.3 Local convergence rate
So far we have only discussed the global convergence, e.g., the convergence
for arbitrary initial guess x0 in an iterative method. If the initial guess is
very close to a minimizer, we can discuss the local convergence.

We will make the following assumptions:

1. The Hessian exists and is Lipschitiz continuous with parameter M > 0:

∥∇2f(x)−∇2f(y)∥ ≤M∥x− y∥, ∀x,y,

where the left hand side is the matrix spectral norm.

2. There exists a local minimum x∗, and the Hessian ∇2f(x∗) is posi-
tive definite:

µI ≤ ∇2f(x∗) ≤ LI, L ≥ µ > 0.

Notice that this does not imply the function is strongly convex.

3.3.1 Gradient descent

Consider the gradient descent method

xk+1 = xk − η∇f(xk).

By Fundamental Theorem of Calculus on the single variable vector-
valued function g(t) = ∇f(x∗ + t(xk − x∗)), we get

∇f(xk) = ∇f(xk)−∇f(x∗) =
∫ 1

0
∇2f(x∗+t(xk−x∗))(xk−x∗)dt = G(xk−x∗),
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where
Gk =

∫ 1

0
∇2f(x∗ + t(xk − x∗))dt.

Then

xk+1 − x∗ = xk − x∗ − ηGk(xk − x∗) = (I − ηGk)(xk − x∗)

⇒ ∥xk+1 − x∗∥ ≤ ∥I − ηGk∥∥xk − x∗∥.

Lemma 3.2. If ∇2f(x) is Lipschitiz continuous with parameter M > 0 and
∥x− y∥ = r, then

∇2f(x)−MrI ≤ ∇2f(y) ≤ ∇2f(x) +MrI.

Proof. Let H = ∇2f(y) − ∇2f(x). Since H is real symmetric, its singu-
lar values are absolute values of its eigenvalues, Lipschitiz continuity gives
∥H∥ ≤ M∥x − y∥ = Mr ⇒ |λi(H)| ≤ Mr, where λi(H) denotes the eigen-
value. So λi(H)−Mr ≤ 0 and Mr − λi(H) ≥ 0.

Theorem 3.2 (Local linear rate of gradient descent). Let f(x) satisfy the
assumptions in this section. Let x0 be close enough to a strict local minimizer
x∗:

r0 = ∥x0 − x∗∥ < r̄ = 2µ
M
.

Then the gradient descent method with a fixed step size 0 < η < 2
L+µ satisfies

∥xk+1 − x∗∥ ≤ ck∥xk − x∗∥,

where

ck = max{|1− η(µ− 1
2M∥xk − x∗∥)|, |1− η(L+ 1

2M∥xk − x∗∥)|} < 1.

In particular, if η = 2
L+µ ,

∥xk+1 − x∗∥ ≤
r̄r0
r̄ − r0

(
1− 2µ

L+ 3µ

)k

∥x0 − x∗∥.

Remark 3.1. The numbers µ and L in this local convergence rate theorem
are eigenvalues bounds of the Hessian at only x∗, rather than uniform bounds
for the Hessian at all x.

Proof. Let rk = ∥xk − x∗∥, by the lemma above, we have

∇2f(x∗)− tMrkI ≤ ∇2f(x∗ + t(xk − x∗)) ≤ ∇2f(x∗) + tMrkI

thus
(µ− tMrk)I ≤ ∇2f(x∗ + t(xk − x∗)) ≤ (L+ tMrk)I.
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Notice that the inequalities still hold after integration. For instance,

(µ−tMrk)I ≤ ∇2f(x∗+t(xk−x∗))⇔ ∇2f(x∗+t(xk−x∗))−(µ−tMrk)I ≥ 0,

and ∫ 1

0
[∇2f(x∗ + t(xk − x∗))− (µ− tMrk)I]dt ≥ 0

because

∀z, zT [∇2f(x∗ + t(xk − x∗))− (µ− tMrk)I]z ≥ 0

⇒ zT
∫ 1

0
[∇2f(x∗ + t(xk − x∗))− (µ− tMrk)I]dtz ≥ 0.

So after integration we get

(µ− 1
2Mrk)I ≤ Gk ≤ (L+ 1

2Mrk)I,

[1− η(L+ 1
2Mrk)]I ≤ I − ηGk ≤ [1− η(µ− 1

2Mrk)]I.

So
∥I − ηGk∥ ≤ max{|ak(η)|, |bk(η)|}

where

ak(η) = 1− η(µ− 1
2Mrk), bk(η) = 1− η(L+ 1

2Mrk).

Notice that ak(0) = 1 and a′
k(η) = −(µ − 1

2Mrk) < 0, if assuming
rk < 2µ

M . And bk(0) = 1 and b′
k(η) = −(L + 1

2Mrk) < 0. For small
enough η, ∥I − ηGk∥ < 1, which can ensure rk+1 < rk since ∥xk+1 − x∗∥ ≤
∥I − ηGk∥∥xk − x∗∥.

In particular, under the assumption rk < r̄, it is straightforward to check
that

η <
2
µ
⇒ |ak(η)| < 1,

η ≤ 2
L+ µ

⇒ |bk(η)| < 1.

Now set η = 2
L+µ , then bk(η) < 0 and ak(η) > 0. In this case, with

η = 2
L+µ it is straightforward to check that

|ak(η)| = |bk(η)| = L− µ
L+ µ

+ η
1
2Mrk.

Therefore, rk+1 ≤ ∥I − ηGk∥rk gives

rk+1 ≤
L− µ
L+ µ

rk + M

L+ µ
r2

k.
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Let ak = M
L+µrk and q = 2µ

L+µ < 1, then it is equivalent to

ak+1 ≤ (1−q)ak+a2
k = ak[1+(ak−q)] = ak

1− (ak − q)2

1− (ak − q)
≤ ak

1
1− (ak − q)

= ak

1 + q − ak
.

⇒ 1
ak+1

≥ 1 + q

a+ k
− 1⇒ q

ak+1
− 1 ≥ q(1 + q)

ak
− q − 1 = (1 + q)( q

ak
− 1).

So we get

q

ak+1
− 1 ≥ (1 + q)k( q

a0
− 1) = (1 + q)k( r̄

r0
− 1),

thus
ak ≤

qr0
r0 + (1 + q)k(r̄ − r0) ≤

qr0
r̄ − r0

1
(1 + q)k

.

3.3.2 Newton’s method

Newton’s method is the most well-known method to approximately solve a
nonlinear equation F (x) = 0 where F : Rn −→ Rn is a smooth function:

xk+1 = xk −∇F (xk)−1F (xk),

where ∇F is the Jacobian matrix.
The Babylonian method for finding square roots, especially the root of 2,

has been known since the ancient Babylon period around the 17th century
BC. It is preciously Newton’s method applying to the function F (x) = x2−2:

xk+1 = xk − F (xk)/F ′(xk) = xk − (x2
k − 2)/(2xk) = xk/2 + 1/xk.

If x0 = 1, then x3 = 1.41421568627 and |x3 −
√

2| = 2.12E − 6.
When applying the Newton’s method to ∇f(x) = 0 for finding minimiz-

ers of f(x), we obtain the Newton’s method for finding critical points:

xk+1 = xk − [∇2f(xk)]−1∇f(xk).

Another way to derive the simplest Newton’s method is to consider a
quadratic function:

ϕ(x) = f(xk) + (x− xk)T∇f(xk) + 1
2(x− xk)T∇2f(xk)(x− xk).

Assume the Hessian is positive definite, define xk+1 as the minimizer of ϕ(x).
Then

0 = ∇ϕ(xk+1) = ∇f(xk) +∇2f(xk)(xk+1 − xk)

gives the Newton’s method.
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Theorem 3.3 (Local quadratic rate of Newton’s method). Let f(x) satisfy
the assumptions in this section. Let x0 be close enough to a strict local
minimizer x∗:

r0 = ∥x0 − x∗∥ < r̄ = 2µ
3M .

Then rk = ∥xk − x∗∥ < r̄, and Newton’s method converges quadratically,

∥xk+1 − x∗∥ ≤
M∥xk − x∗∥2

2(µ−M∥xk − x∗∥)
≤ 3M

2µ ∥xk − x∗∥2.

Proof.

xk+1 − x∗ = xk − x∗ − [∇2f(xk)]−1[∇f(xk)−∇f(x∗)]

= xk − x∗ − [∇2f(xk)]−1
∫ 1

0
∇f2(x∗ + t(xk − x∗))(xk − x∗)dt

= [∇2f(xk)]−1Gk(xk − x∗)

where
Gk =

∫ 1

0
[∇2f(xk)−∇f2(x∗ + t(xk − x∗)]dt.

By Theorem 1.7 and Lipschitz continuity of the Hessian,

∥Gk∥ ≤
∫ 1

0
∥∇2f(xk)−∇f2(x∗ + t(xk − x∗)∥dt

≤
∫ 1

0
M(1− t)∥xk − x∗∥dt

= 1
2rkM.

With Lemma 3.2, We also have

∇f2(xk) ≥ ∇f2(x∗)−MrkI ≥ (µ−Mrk)I.

So if rk <
µ
M , ∇f2(xk) > 0 and

∥[∇f2(xk)]−1∥ ≤ (µ−Mrk)−1.

Thus if rk <
2µ
3M , we get

rk+1 ≤ ∥[∇f2(xk)]−1∥∥Gk(xk−x∗)∥ ≤ ∥[∇f2(xk)]−1∥∥Gk∥rk ≤
Mr2

k

2(µ−Mrk) ≤ rk.
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4

Introduction and extended
convex functions

4.1 Motivation and examples
Let A ∈ Rm×n, b ∈ Rm and x ∈ Rm. If m < n, then Ax = b can have
multiple solutions. In many applications such as compressing data, a sparse
solution is often needed.

(a) MRI Image (b) Finger Print

Figure 4.1: Many images (or data) have sparsity, e.g., it seems unnecessary
to store all pixels in an image to store all the information it contains.

Consider the images in Figure 4.1 as an example. The most intuitive
Euclidean basis for representing the images is highly redundant, i.e., it is
unnecessary to store all pixels in an image to store all the information the
image contains. If there is a sparse representation of the data under cer-
tain transform, then advantages are gained in compression (e.g., JPEG),
interpolation, computation and etc.

For compressing an image b ∈ Rm, we consider a frame of Rm, which is
defined as any spanning set of Rm. For instance, a basis is always a frame,
but a frame may not be a basis. In particular, we consider the following
setup:

59
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• A redundant frame {ϕi ∈ Rm : i = 1, · · · , n} with n > m, consists of
many sets of different bases (e.g., from computational harmonic anal-
ysis) such as Discrete Fourier Transform, Wavelets, Wavelet Packets,
Gabor Transforms, etc. The elements in the frame are also called
atoms.

• Any vector y ∈ Rm can be spanned by the atoms ϕi:

y =
m∑

i=1
ϕixi = Φx,

where x = (x1, · · · , xn)T is a coefficient and Φ = (ϕ1, · · · , ϕn).

• The coefficient x is not unique because the linear system is underde-
termined. Ideally, we want to find the coefficient with the smallest
∥x∥0 (the number of nonzero entries) for compression.

So it motivates the following ℓ0-minimization

min
x
||x||0, x satisfies Ax = b, (4.1)

which is unfortunately an NP-hard problem due to the nonconvexity of ||x||0.

4.1.1 ℓ1-norm minimization

The basis pursuit [4] solves the following convex minimization problem:

(Basis Pursuit) min
x
||x||1, x satisfies Ax = b. (4.2)

The ℓ1-minimization (4.2) is the convex relaxation of (4.1) and it can be
proven to have the same minimizer as the NP-hard ℓ0-minimization (4.1)
for very special problems, e.g., A is a Gaussian random matrix with suitable
scaling for n w.r.t. m, see [1]. In applications, the ℓ1-minimization (4.2)
produces sparse minimizers, which are quite useful, even if they are different
from the true minimizer of ℓ0-minimization (4.1), e.g., a good compression
does not have to be the best possible compression.

In this chapter, we will use the hard-constrained ℓ1-minimization (4.2)
as an example for discussing optimization algorithms, we will also consider
two easier problems:

(LASSO) min
x
µ||x||1 + 1

2 ||Ax− b||22, (4.3)
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and
min

x
||x||1 + 1

2α ||x||
2
2, x satisfies Ax = b. (4.4)

The LASSO problem (4.3) was introduced in [16]. It is proven in [18]
that the minimizer (4.4) for large enough α minimizes (4.2).

4.1.2 Total variation minimization

The total variation (TV) norm minimization represents a similar yet more
chanllenging nonsmooth convex minimization problem. As an example, we
will consider the TV norm minimization for image denoising [13, 15].

For simplicity, here we first describe it for a continuum setup. Consider
a rectangular domain Ω = [0, 1] × [0, 1], and a function u(x, y) ∈ H1(Ω)
(differentiable functions), which represents an image with infinite resolution.
Then its total variation norm can be defined as

• isotropic TV-norm: ∥u∥T V =
∫∫

Ω

√
|ux|2 + |uy|2dxdy.

• anisotroric TV-norm: ∥u∥T V =
∫∫

Ω |ux|+ |uy|dxdy

With L2-norm as ∥u∥L2 =
√∫∫

Ω |u|2dxdy, for a given a(x, y), the ROF
(Rudin, Osher, and Fatemi, 1992) model [13] is to minimize (over u in a
proper function space)

∥u∥T V + 1
2λ∥u− a∥

2
L2 ,

where λ is a fixed parameter.
Notice that the TV-norm contains the absolute value function thus it

is similar to the ℓ1-minimization. For certain noisy images, e.g., Gaussian
noise, with suitable λ, the ROF model using isotropic TV-norm can work
well, see Figure 8.2 and Figure 8.3.

4.1.3 Constrained minimization

Consider a constrained minimization

min
x∈S

f(x),

where C is a convex, e.g., a plane S = {x ∈ Rn : Ax = b}, or a simplex S =
{x ∈ Rn : xi ≥ 0,∑i xi ≤ 1}, or a cone S = {x = (x, y, z) : z ≥

√
x2 + y2},

etc.
The indicator function for a set S is defined as

ιS(x) =
{

0, x ∈ S
+∞, x /∈ S

. (4.5)
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Then the constrained minimization is equivalent to an unconstrained prob-
lem

min
x
f(x) + ιS(x).

Such an unconstrained problem is not easier to solve due to the discontinuity
of the indicator function, but it is another example of nonsmooth convex
minimization.

4.2 More on convex functions

We include some useful properties about convex functions, with some proof.
The other omiited proof can be found in classical references such as [12].

4.2.1 Epigraph and continuity

Recall that a function is convex if and only if f((1 − a)x + ay) ≤ (1 −
a)f(x) + af(y) for any a ∈ [0, 1].

Definition 4.1. The epigraph of a function f : Rn −→ R is defined as the
set {(x, y) ∈ Rn ×R : y ≥ f(x)}.

Definition 4.2. A set S ∈ Rn is convex if (1−a)x+y ∈ S for any a ∈ [0, 1]
and any x,y ∈ S.

Theorem 4.1. For a function f : Rn −→ R, it is convex if and only if its
epigraph is a convex set.

Theorem 4.2. If f : Rn −→ R and fi : Rn −→ R for i = 1, · · · , N are
convex, then

1. g = f(Ax + b) is convex where A is a matrix.

2. g =
N∑

i=1
fi(x) is convex.

3. g = maxi fi(x) is convex.

Proof. The first two can be checked by the definition of a convex function.
The last one can be verified via the epigraph.

Theorem 4.3. If f : Rn −→ R is convex, then f is continuous. Moreover,
it is also locally Lipschitz continuous, which means that for any x0, there
is ball centered at x0 with radius δ > 0, such that for any x in this ball,
|f(x)− f(x0)| ≤ L|x− x0| for some constant L.
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Proof. We only consider the proof of continuity for the single variable case.
See Corollary 10.1.1 in [12] for the general case.

So for a convex function f(x), we want to show |f(x) − f(a)| → 0 as
x→ a. We discuss it for two cases: x > a and x < a.

First, assume x > a, then consider b, c such that c < a < x < b. The
convexity implies that the point (x, f(x)) is below the segment connecting
(a, f(a)) and (b, f(b)) thus the slopes of two segments give

f(x)− f(a)
x− a

≤ f(b)− f(a)
b− a

.

Similarly, we get
f(x)− f(a)

x− a
≥ f(c)− f(a)

c− a
,

thus
(x− a)f(c)− f(a)

c− a
≤ f(x)− f(a) ≤ (x− a)f(b)− f(a)

b− a
.

By fixing b, c, letting x→ a, we get f(x)→ f(a).
The second case of x < a can be similarly shown, thus f is continuous

at a.

4.2.2 Subgradient and subdifferential

Definition 4.3. For a function f : Rn −→ R, a vector v ∈ Rn is a
subgradient (or subderivative) of f(x) at x if

f(y) ≥ f(x) + ⟨v,y− x⟩, ∀y ∈ Rn.

The derivative of a smooth f(x) is the slope of the tangent line The
definition simply means that the subderivative is the slope of a line which
lies below the function graph. For example, for f(x) = |x|, at x = 0, any
line passing (0, 0) with a slope between −1 and 1 lies below the function
graph, thus any number in [−1, 1] is a subderivative.
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Definition 4.4. The set of all subderivatives of a function f at x is called
the subdifferential of f at x, denoted as ∂f(x):

∂f(x) = {v ∈ Rn : f(y) ≥ f(x) + ⟨v,y− x⟩, ∀y ∈ Rn}.

Theorem 4.4. A function f : Rn −→ R is convex if and only if it has a
subderivative at any x ∈ Rn.

Proof. We only prove the only if direction. Let z = (1 − a)x + ay with
a ∈ [0, 1]. Let v be a subderivative at x, then

f(x) ≥ f(z) + ⟨v,x− z⟩ = f(z)− a⟨v,y− x⟩,

f(y) ≥ f(z) + ⟨v,y− z⟩ = f(z) + (1− a)⟨v,y− x⟩.

Adding them, we get

(1− a)f(x) + af(y) ≥ f(z) = f((1− a)x + ay).

If a function has subderivatives at x, it is called subdifferentiable at x.

Theorem 4.5. For convex functions f : Rn −→ R and g : Rn −→ R,

1. f is differentiable implies f is subdifferentiable and ∂f(x) = {∇f(x)}.

2. If the ∂f(x) contains only one element, then f is differentiable at x.

3. ∂[af ] = a[∂f ], a ∈ R.

4. ∂[f + g] = ∂f + ∂g.

So the subderivative is natural generalization of the derivative. Be aware
that the subderivative is NOT the weak derivative defined in Sobolev spaces.

Example 4.1. For f(x) = |x|,

∂f(x) =


{1}, x > 0
{−1}, x < 0
[−1, 1], x = 0

.

For f(x) = ∥x∥1 =
n∑

i=1
xi,

∀v ∈ ∂f(x), vi =


{1}, xi > 0
{−1}, xi < 0
[−1, 1], xi = 0

.
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4.3 Extended real-valued functions
Notice that the indicator function (4.5) is NOT a function f : Rn −→ R thus
the results in the previous subsection may not apply to (4.5). To this end, we
define an extended real-valued function as a mapping f : Rn −→ R∪{±∞}.

4.3.1 Proper, convex, and closed functions

Definition 4.5. An extended real-valued function f : Rn −→ R ∪ {±∞} is
called convex if its epigraph is a convex set.

Definition 4.6. Define the domain of an extended function f : Rn −→
R ∪ {±∞} as

dom(f) = {x ∈ Rn : f(x) ∈ R}.
Definition 4.7. An extended function f : Rn −→ R∪{±∞} is called proper
if it does not attain the value −∞ and there exists at least one x such that
f(x) is a real number, i.e., its domain dom(f) is nonempty.

Definition 4.8. An extended function f : Rn −→ R∪{±∞} is called closed
if its epigraph is a closed set.

A closed function is also lower semicontinuous:
Theorem 4.6. For an extended real-valued function f : Rn −→ R∪{±∞},
the following are equivalent:

1. f is a closed function.

2. The level set {x : f(x) ≤ a} is a closed set for any a ∈ .

3. f is lower semicontinuous: for any x, for any sequence xn → x,

f(x) ≤ lim inf
n→∞

f(xn).

Theorem 4.7. A proper (extended) function f : Rn −→ R ∪ {+∞} is
convex if and only if dom(f) is convex and

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x,y ∈ dom(f), λ ∈ (0, 1).

A proper convex function can also be equivalently defined as:
Definition 4.9. A proper convex function f : Rn −→ ( − ∞,+∞] is a
function defined for any x ∈ Rn, not identically +∞, satisfying dom(f) is
convex and

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x,y ∈ dom(f), λ ∈ (0, 1).

For example, an indicator function ιS(x) =
{

0, x ∈ S
+∞, x /∈ S

is convex

if S is a convex set. And ιS is a closed function if and only if S is a closed
set. So ιS is lower semicontinuous if and only if S is a convex set.
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4.3.2 Existence and boundness of subderivatives

All results in this subsection can be found in [3, Chapter 3].

Theorem 4.8. For a proper extended function f : Rn −→ (−∞,+∞], for
any x, ∂f(x) is either a closed and convex set or an empty set.

Theorem 4.9. Consider a proper extended function f : Rn −→ (−∞,+∞].
Assume its domain dom(f) is a convex set, then

1. Existence of subderivatives at any x ∈ dom(f) implies convexity of
f(x).

2. Convexity of f implies that subderivative exists at any x in the interior
of dom(f), denoted as int(dom(f)) and ∂f(x) is bounded:

∀v ∈ ∂f(x), ∥v∥ ≤ C for some C.

3. If U ⊂ int(dom(f)) is a nonempty compact set (bounded and closed
set in Rn), then convexity of f implies

⋃
x∈U ∂f(x) is bounded (all

subderivatives in U have a uniform bound).

4. For boundary points of dom(f) of a convex function, subderivatives
exist at the relative interior of dom(f) but they can be unbounded.

Remark 4.1. The subdifferential can be extended to functions defined on
infinite-dimensional Banach space [11]. See also [2, Chapter 16] for subdif-
ferentials of a lower semicontinuous proper convex function.

4.3.3 Strong convexity

Definition 4.10. An extended function f : Rn −→ R∪{+∞} is µ-strongly
convex if dom(f) is convex and the following holds for any λ ∈ (0, 1):

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)−µ2λ(1−λ)∥x−y∥2, ∀x,y ∈ dom(f).

Theorem 4.10. An extended function f : Rn −→ R ∪ {+∞} is µ-strongly
convex if and only if f(x)− µ

2∥x∥
2 is convex.

Even though ∂f(x) denotes a set, for simplicity, we often abuse
the notation by using it to denote any element in this set. Lemma
1.1 can be extended as (see [3, Theorem 5.24] for the proof):

Lemma 4.1. For a proper function f(x) : Rn → (−∞,+∞], assume
dom(f) is convex, then the following are equivalent:

1. f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x,y ∈ dom(f), λ ∈ (0, 1).

2. f(x) ≥ f(y) + ⟨∂f(y),x− y⟩, ∀x,y ∈ dom(f).
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3. ⟨∂f(y)− ∂f(x),y− x⟩ ≥ 0, ∀x,y ∈ dom(f).

For a proper closed and convex function, the following are equivalent:

1. f is µ-strongly convexity

2. f(x) ≥ f(y) + ⟨∂f(y),x− y⟩+ µ
2∥x− y∥2, ∀x,y ∈ dom(f).

3. ⟨∂f(y)− ∂f(x),y− x⟩ ≥ µ∥x− y∥2, ∀x,y ∈ dom(f).

An example is that ιS + µ
2∥x∥

2 is µ-strongly convex for a convex set S.

4.4 Optimality conditions
For a function f : Rn −→ R, we have:

Theorem 4.11. For a convex function f : Rn −→ R, x∗ minimizes f(x) if
and only if 0 ∈ ∂f(x∗).

Proof. f(x) ≥ f(x∗) = f(x∗) + ⟨0,x− x∗⟩ ⇔ 0 ∈ ∂f(x∗).

For a proper extended function such as ιS(x) + µ
2∥x∥

2 (4.5), we have

Theorem 4.12. For a proper convex function f : Rn −→ R ∪ {+∞}, x∗
minimizes f(x) if and only if 0 ∈ ∂f(x∗).

Proof. f(x) ≥ f(x∗) = f(x∗) + ⟨0,x − x∗⟩ ⇔ 0 ∈ ∂f(x∗), ∀x ∈ dom(f).

Theorem 4.13. For a proper closed function f : Rn −→ R ∪ {+∞}, if
it is µ-strongly convex, then it has a unique minimizer x∗.

For the indicator function ιS , its subdifferential is given as

∂ι(x) = NS(x), x ∈ S,

where NS is the normal cone of S:

Definition 4.11. For a set S ⊂ Rn and x ∈ S, the normal cone of S at x
is

NS(x) = {y : ⟨y, z− x⟩ ≤ 0,∀z ∈ S},

and NS(x) is an empty set for x /∈ S.

For example, for the basis pursuit problem (4.4), it can be written as

min
x
||x||1 + 1

2α∥x∥
2 + ι{x:Ax=b}. (4.6)

The subdifferentials of the first two terms have been given in previous
sections. For the affine set S = {x : Ax = b} with A = Rm×n, the normal
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cone is simply NS(x) = {AT y : ∀y ∈ Rm}, which is the row space of the
matrix A.

The function in (4.6) is a proper convex function since the affine set
S = {x : Ax = b} is convex. Notice that S = {x : Ax = b} is also a closed
set, thus the function is also a proper closed (also lower semicontinuous)
convex function, and by Theorem 4.10, it is also 1

α -strongly convex. Thus it
has a unique minimizer.

Problem 4.1. Derive the subdifferential for the indicator function of a
closed unit ball S = {x ∈ Rn : ⟨x,x⟩ = 1}.



5

Subgradient and proximal
gradient methods

In this chapter, we introduce some basic algorithms. A suitable application
would be the ℓ1-minimization problem (4.3):

min
x
µ||x||1 + 1

2 ||Ax− b||22.

5.1 Subgradient method
Now consider minimizing a convex function which is only subdifferentiable
but not differentiable. By Theorem 4.11, to find a minimizer of a convex
functin f(x), we only need to find a critical point by solving an inclusion
equation:

0 ∈ ∂f(x∗),
which can be approximated by various iterative schemes.

The simplest method is to use the subgradient method:

xk+1 = xk − ηkvk, vk ∈ ∂f(xk), (5.1)

where ηk > 0 is some step size and vk can be chosen as any subderivative
in the set ∂f(xk).

5.1.1 Convergence of subgradient method

Theorem 5.1. For the subgradient method

xk+1 = xk − ηk
vk

∥vk∥
, some vk ∈ ∂f(xk, )

assume the boundedness of subderivatives ∥vk∥ ≤M, ∀k. Define

x̄k = argmin
1≤i≤k

f(xk).

69
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For a proper convex function f(x) with at least one global minimizer x∗, the
following holds:

1. If
∞∑

k=0
ηk = +∞ and

∞∑
k=0

η2
k < +∞, then f(x̄k)− f(x∗)→ 0 as k →∞.

2. With a step size ηk ≡ C√
n+1 for k = 0, 1, · · · , n, then

f(x̄k)− f(x∗) = O( 1√
k

).

3. With the Polyak’s step size ηk = f(xk)−f(x∗)
∥vk∥ :

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥, f(x̄k)− f(x∗) = O( 1√
k

)

.

If further assuming f(x) is µ-strongly convex and closed (or equivalently
lower semicontinuous), then with the step size rule ηk = 2

µ(k+1)∥vk∥,

4. f(x̄k)− f(x∗) = O( 1
k ) and ∥xk − x∗∥ = O( 1√

k
).

Proof. Step I: By the definition of the subderivative vk, we have

f(xk) ≤ f(x∗) + ⟨xk − x∗,vk⟩,

thus for k = 0, 1, · · · , n,

∥xk+1 − x∗∥2 =
∥∥∥∥xk − ηk

vk

∥vk∥
− x∗

∥∥∥∥2

= ∥xk − x∗∥2 − ηk
2
∥vk∥

⟨xk − x∗,vk⟩+ η2
k

≤ ∥xk − x∗∥2 − ηk
2
∥vk∥

(f(xk)− f(x∗)) + η2
k

≤ ∥xk − x∗∥2 − ηk
2
M

(f(x̄k)− f(x∗)) + η2
k.

Summing for k = 0, 1, · · · , n, we get

∥xn+1 − x∗∥2 ≤ ∥x0 − x∗∥2 −
2
M

(f(x̄k)− f(x∗))
n∑

k=0
ηk +

n∑
k=0

η2
k

⇒ f(x̄k)− f(x∗) ≤M
∥x0 − x∗∥2 +

n∑
k=0

η2
k

2
n∑

k=0
ηk

.
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Step II: To obtain f(x̄k)− f(x∗) as k →∞, we need
∞∑

k=0
ηk = +∞ and

∞∑
k=0

η2
k = +∞, e.g., ηk = 1

k gives
∞∑

k=0

1
k2 < +∞ and

∞∑
k=0

1
k = +∞.

Step III: Plugging in ηk ≡ C√
n+1 for k = 0, 1, · · · , n, we have

f(x̄k)− f(x∗) ≤M
∥x0 − x∗∥2 +

n∑
k=0

η2
k

2
n∑

k=0
ηk

= M

∥x0 − x∗∥2 +
n∑

k=0

C2

n+1

2
n∑

k=0

C√
n+1

= M
∥x0 − x∗∥2 + C2

2C
√
n+ 1

.

Step IV: For the Polyak’s step size ηk = f(xk)−f(x∗)
∥vk∥ ,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ηk
2
∥vk∥

(f(xk)− f(x∗)) + η2
k

= ∥xk − x∗∥2 −
|f(xk)− f(x∗)|2

∥vk∥2

≤ ∥xk − x∗∥2 −
|f(xk)− f(x∗)|2

M2 .

Summing for k = 0, 1, · · · , n, we get

1
M2

n∑
k=0
|f(xk)− f(x∗)|2 ≤ ∥x0 − x∗∥2 − ∥xn+1 − x∗∥2 ≤ ∥x0 − x∗∥2,

⇒ f(x̄k)− f(x∗) ≤ M√
n+ 1

∥x0 − x∗∥.

Step V: Now assume f(x) is strongly convex, by Lemma 4.1, the strong
convexity gives

f(x∗) ≥ f(xk) + ⟨∂f(xk),x∗ − xk⟩+ µ

2 ∥x∗ − xk∥2,

thus
−⟨∂f(xk),xk − x∗⟩ ≤ f(x∗)− f(xk)− µ

2 ∥x∗ − xk∥2

and

∥xk+1 − x∗∥2 =
∥∥∥∥xk − ηk

vk

∥vk∥
− x∗

∥∥∥∥2

= ∥xk − x∗∥2 − ηk
2
∥vk∥

⟨xk − x∗,vk⟩+ η2
k

= ∥xk − x∗∥2 − ηk
2
∥vk∥

⟨vk,xk − x∗⟩+ η2
k

≤
(

1− 2ηk
1
∥vk∥

µ

2

)
∥xk − x∗∥2 − 2ηk

1
∥vk∥

][f(xk)− f(x∗)] + η2
k.
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We get

f(xk)− f(x∗) ≤ ∥vk∥
2ηk
∥xk − x∗∥2 +

(∥vk∥
2ηk

− 2
µ

)
∥xk+1 − x∗∥2 + ∥vk∥

2 ηk

= µ(k − 1)
4 ∥xk − x∗∥2 −

µ(k + 1)
4 ∥xk+1 − x∗∥2 + 1

µ(k + 1)∥vk∥2,

and

k[f(xk)−f(x∗)] ≤ µk(k − 1)
4 ∥xk−x∗∥2−

µk(k + 1)
4 ∥xk+1−x∗∥2+ k

µ(k + 1)∥vk∥2.

Summing it for k = 0, 1, · · · , n, we get
n∑

k=0
k[f(xk)−f(x∗)] ≤ −µn(n+ 1)

4 ∥xn+1−x∗∥2+M2

µ

n∑
k=0

k

k + 1 ≤
M2

µ

n∑
k=0

k

k + 1

⇒ n(n+ 1)
2 [f(x̄k)−f(x∗)] =

n∑
k=0

k[f(x̄k)−f(x∗)] ≤ M2

µ

n∑
k=0

k

k + 1 ≤
M2

µ
n,

which gives f(x̄k)− f(x∗) ≤ 2M2

µ
1

n+1 .
Finally we also have µ

2∥x̄k − x∗∥2 ≤ f(x̄k) − f(x∗), thus ∥x̄k − x∗∥ ≤
2M
µ

1√
n+1 .

5.1.2 Polyak’s step size and Fejér monotonicity

In Theorem 5.1, without the strong convexity, the Polyay’s step size ensures
∥xk+1 − x∗∥ ≤ ∥xk − x∗∥ for one global minimizer x∗, which is called Fejér
monotonicity:

Definition 5.1. A sequence {xk}∞k=0 is called Fejér monotone w.r.t. a set
S if there is one y ∈ S such that ∥xk+1 − y∥ ≤ ∥xk − y∥ for any y.

Let X∗ be the set of all global minimizers of the convex function in
Theorem 5.1, then {xk}∞k=0 is Fejér monotone w.r.t. X∗, which does not
imply xk → x∗ since x∗ ∈ X∗ may not be unique. On the other hand, we
have (see [3, Theorem 8.17]):

Theorem 5.2. For subgradient method with the Polyay’s step size for a
proper convex function in Theorem 5.1, xk converges to one global minimizer
of f(x).

5.2 Proximal point method
For solving 0 ∈ ∂f(x∗), instead of using ∂f(xk), if using the subderivative
at xk+1, then the method is called proximal point method:

xk+1 = xk − ηkvk+1, vk+1 ∈ ∂f(xk+1). (5.2)
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For readers who are familiar with ordinary differential equations (ODEs),
consider approximating u′(t) = F (u), then the explicit forward Euler method
is

uk+1 = uk + ∆tF (uk),
and implicit backward Euler method is

uk+1 = uk + ∆tF (uk+1).

Notice that subgradient method (5.1) is similar to the forward Euler method
and the proximal point method (5.2) is similar to the backward Euler method,
if we set F = −∇f .

For simplicity, consider a constant step size η in (5.2). For implementa-
tion, we rewrite it as

xk+1 + η∂f(xk+1) = xk ⇔ xk+1 = (I + η∂f)−1(xk).

By Theorem 4.12, (I + η∂f)−1 is equivalent to the following proximal oper-
ator:

Definition 5.2. The proximal operator of a convex function f(x) with a
parameter γ > 0 is defined as the following function:

Proxγ
f (x) = argmin

u
f(u) + 1

2γ ∥u− x∥2.

The proximal operator Proxγ
f (x) is a well defined for the following:

1. For a convex function f : Rn −→ R, f(u) + 1
2γ ∥u − x∥2 is a strongly

convex function, so it has a unique minimizer.

2. For a proper closed convex function f : Rn −→ R ∪ {+∞}, f(u) +
1

2γ ∥u − x∥2 is a proper closed strongly convex function, so it has a
unique minimizer (Theorem 4.13).

In general the function Proxγ
f (x) does not have an explicit formula. But

for special functions, explicit formulae are available:

1. For f(x) = |x|, Proxγ
f (x) =


x− γ, x > 1,
x+ γ, x < −1,
0, x ∈ [−1, 1].

2. For f(x) = ∥x∥1, Proxγ
f (x) = v, vi =


xi − γ, xi > 1,
xi + γ, xi < −1,
0, xi ∈ [−1, 1].

3. For an indicator function (4.5) of a convex closed set S, Proxγ
f (x) is

the Euclidean projection of x to S.

Problem 5.1. Derive the explicit proximal formulae in the examples above.
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5.2.1 The Moreau-Yosida regularization

By Theorem 4.13, we have

Definition 5.3. The Moreau-Yosida regularization (a.k.a. Moreau enve-
lope) of a function f(x) is

fη(x) = min
u

[f(u) + 1
2η∥u− x∥2],

which is well defined if f : Rn −→ R ∪ {+∞} is a closed (or equivalently
lower semicontinuous) proper convex function.

Recall that the proximal operator is given as

Proxη
f (x) = argmin

u
[f(u) + 1

2η∥u− x∥2],

which is an operator thus different from the function fη(x).

Theorem 5.3. For a closed (or equivalently lower semicontinuous) proper
convex function f(x), its Moreau-Yosida regularization (a.k.a. Moreau en-
velope) satisfies

1. fη(x) is convex and differentiable.

2. ∇fη(x) = 1
η [x− Proxη

f (x)], Proxη
f (x) = x− η∇fη(x).

3. ∇fη(x) is Lipschitz-continuous with L = 1
η .

Remark 5.1. It can be proven that f is strongly convex if and only fη is
strongly convex, see [10].

Problem 5.2. Prove that fη(x) is convex.

Proof. See [3, Theorem 6.60] for the differentiability. We give a brief proof
of 2 and 3. Let u = Proxη

f (x) and v = Proxη
f (y). Since u is the minimizer

to g(z) = f(z) + 1
2η∥z− x∥2, we have

g(v) ≥ g(u) + ⟨0,v− u⟩+ 1
2η∥v− u∥2

⇒ f(v) + 1
2η∥v− x∥2 ≥ f(u) + 1

2η∥u− x∥2 + 1
2η∥v− u∥2
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thus

fη(y) =f(v) + 1
2η∥v− y∥2

=f(v) + 1
2η∥v− x∥2 + ⟨v− x,x− y⟩

η
+ 1

2η∥x− y∥2

≥f(u) + 1
2η∥u− x∥2 + 1

2η∥v− u∥2 + ⟨v− x,x− y⟩
η

+ 1
2η∥x− y∥2

=f(u) + 1
2η∥u− x∥2 + ⟨x− u

η
,y− x⟩+ 1

2η∥x− y∥2

+ ⟨u− v
η

,y− x⟩+ 1
2η∥u− v∥2

=f(u) + 1
2η∥u− x∥2 + ⟨x− u

η
,y− x⟩+ η

2

∥∥∥∥x− y
η
− u− v

η

∥∥∥∥2

Step I: by throwing away the last quadratic term, we obtain

fη(y) ≥ fη(x) + ⟨x− u
η

,y− x⟩

thus x−u
η = ∇fη(x) due to the differentiability of fη.

Step II: the inequality above gives

fη(y) ≥ fη(x) + ⟨x− u
η

,y− x⟩+ η

2

∥∥∥∥x− y
η
− u− v

η

∥∥∥∥2
.

By switching x and y, we also have

fη(x) ≥ fη(y) + ⟨y− v
η

,x− y⟩+ η

2

∥∥∥∥x− y
η
− u− v

η

∥∥∥∥2
.

Adding them, we get

⟨x− u
η
− y− v

η
,x− y⟩ ≥ η

∥∥∥∥x− u
η
− y− v

η

∥∥∥∥2
,

⟨∇fη(x)−∇fη(y),x− y⟩ ≥ η∥∇fη(x)−∇fη(y)∥2.

With Cauchy-Schwartz inequality ⟨∇fη(x) − ∇fη(y),x − y⟩ ≤ ∥∇fη(x) −
∇fη(y)∥∥x− y∥, we get the Lipschitz continuity.

5.2.2 The first convergence proof of the proximal point method

Assume x∗ minimized a closed convex function f(x), the Moreau-Yosida
regularized function fη(x) has the same minimizer x∗:

min
x
fη(x) = min

x,u
[f(u) + 1

2η∥x− u∥2] ≥ min
x,u

f(u) = f(x∗),
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where the equal sign attains if u = x = x∗.
Due to the Proxη

f (x) = x − η∇fη(x), the proximal point method for
minimizing f(x) is simply the gradient descent method minimizing fη(x):

xk+1 = Proxη
f (xk) = xk − η∇fη(xk).

Recall that ∇fη is Lipschitz continuous with Lipschitz constant L = 1
η ,

thus the O( 1
k ) convergence rate theorem for gradient descent (Theorem 2.3)

immediately applies to the proximal point method, which is however in the
form of fη(xk)− fη(x∗) = O( 1

k ).
If assuming strong convexity of f(x), the linear convergence rate theorem

(Theorem 2.6) for gradient descent gives a convergence rate for small enough
step size.

In Section 5.4, we will prove a better result

∥xk − x∗∥2 ≤
( 1

1 + 2ηµ

)k

∥xk − x∗∥2, ∀η > 0.

5.3 The proximal gradient method
Now we consider the composite optimization problem

min
x
f(x) + g(x),

where f is a closed (or equivalently lower semicontinous) proper convex
function, and g is a differentiable convex function with Lipschitz continuous
gradient.

Now we consider the following proximal gradient method by using the
proximal operator of f and the gradient of g:

xk+1 = (I + η∂f)−1[xk − η∇g(xk)] = Proxη
f [xk − η∇g(xk)].

Notice that the discussion in this section applies to both gra-
dient descent method (if f(x) = 0) and the proximal point method
(if g(x) = 0).

5.3.1 Forward-backward splitting

The proximal operator is the simple forward-backward splitting. For in-
stance, consider solving the (or inclusion) equation for two vector valued (or
set-valued) operators A and B:

0 = A(x) +B(x) ( or 0 ∈ A(x) +B(x)),

The forward-backward splitting is given as

xk+1 = ( or ∈) xk + τ [A(xk) +B(xk+1)].

Examples:
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1. Plug in τ = −η, A(x) = ∂g(x) = {∇g(x)} and B(x) = ∂f(x), then
we obtain the proximal gradient method.

2. In particular, if f(x) is an indicator function of a closed convex set S,
then its proximal operator (I+η∂f)−1(x) = Proxη

f (x) is the Euclidean
projection to S, denoted as PS(x). In this case, the forward-backward
splitting or the proximal gradient method is also called the projected
gradient method:

xk+1 = PS [xk − η∇g(xk)],

which is an intuitive method for min
x∈S

g(x).

3. Consider solving the ODE x′(t) = A(x) + B(x), then the implicit-
explicit (IMEX) scheme is precisely the forward-backward splitting:

xk+1 = xk + ∆t[A(xk) +B(xk+1)].

For example, for the convection diffusion equation ut = ux + uxx, the
IMEX method is a popular choice for the time discretization:

un+1 = un + ∆t[un
x + un

xx].

Notice that the gradient descent method for minimizing a function g(x)
is the same as the forward Euler method xk+1 = xk−∆t∇g(xk) for approx-
imating ODE x′(t) = −∇g(x). Similarly, the proximal gradient method for
composite optimization is the same as the IMEX method for ODE. Though
such a connection between optimization and ODE solvers is often used to
construct new methods for either optimizaiton or ODE solvers, there is a
significant difference between the gradient descent method and the forward
Euler method: a ODE solver is used to approximate and capture time dy-
namics, yet the gradient descent is to find only the minimizer, which is the
equilibrium solution to the ODE x′(t) = −∇g(x).

5.3.2 Properties of the proximal operator

Theorem 5.4. For a proper closed (or equivalently lower semicontinuous)
convex function f : Rn −→ R, then following are equivalent:

1. u = Proxγ
f (x) = (I + γ∂f)−1(x).

2. x− u ∈ γ∂f(u).

3. 1
γ ⟨x− u,y− u⟩ ≤ f(y)− f(u), ∀y or equivalently

f(y) ≥ f(u) + ⟨1
γ

(x− u),y− u⟩, ∀y.

Proof. The equivalence between 1 and 2 is implied by Theorem 4.12. For 3,
it simply means that 1

γ (x− u) is the slope of a subtangent line.
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5.3.3 Convergence under convexity

Theorem 5.5 (Sufficient Decrease Lemma). Assume f : Rn −→ R∪{+∞}
is a closed (or equivalently lower semicontinous) proper convex function,
and g : Rn −→ R is a differentiable convex function with ∇g being Lipschitz
continuous with Lipschitz constant L. Let F = f + g, and x̄ = Proxη

f [x −
η∇g(x)], then

F (x)− F (x̄) ≥
(1
η
− L

2

)
∥x̄− x∥2.

Remark 5.2. By setting g(x) ≡ 0, we get the unconditional stability of the
proximal point method xk+1 = (I + η∂f)−1(xk) for minimizing f(x):

f(xk)− f(xk+1) ≥ 1
η
∥x̄k − xk+1∥2, ∀η > 0.

Proof. By Theorem 5.4, we have

x̄ = Proxη
f [x− η∇g(x)]⇒ 1

η
⟨x− η∇g(x)− x̄,x− x̄⟩ ≤ f(x)− f(x̄),

⇒ ⟨∇g(x),x− x̄⟩ ≤ −1
η
∥x− x̄∥2 + f(x)− f(x̄)

⇒ f(x̄) ≤ f(x)− ⟨∇g(x),x− x̄⟩ − 1
η
∥x− x̄∥2.

We get the desired result after combining it with the Descent Lemma (Lemma
2.1) on g:

g(x̄) ≤ g(x) + ⟨∇g(x), x̄− x⟩+ L

2 ∥x− x̄∥2.

Theorem 5.6 (Prox-Grad Inequality). Assume f : Rn −→ R ∪ {+∞} is
a closed (or equivalently lower semicontinous) proper convex function, and
g : Rn −→ R is a differentiable convex function with ∇g being Lipschitz
continuous with Lipschitz constant L. Let F = f + g, and ȳ = Proxη

f [y −
η∇g(y)], with step size η ≤ 1

L , then

F (x)− F (ȳ) ≥ g(x)− g(y)− ⟨∇g(y),x− y⟩+ 1
2η∥x− ȳ∥2 − 1

2η∥x− y∥2.

In particular, with η = 1
L , we have

F (x)− F (ȳ) ≥ g(x)− g(y)− ⟨∇g(y),x− y⟩+ L

2 ∥x− ȳ∥2 − L

2 ∥x− y∥2.

Remark 5.3. Let g(x) ≡ 0, then we get the following inequality for the
proximal operator:

f(x)− f(Proxη
f (y)) ≥ 1

2η∥x− Proxη
f (y)∥2 − 1

2η∥x− y∥2,∀η > 0.
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Remark 5.4. By setting y = x = xk, we get the following property of the
proximal gradient method:

F (xk)− F (xk+1) ≥ 1
2η∥xk − xk+1∥2, ∀η ≤ 1

L
.

Proof. Define ϕ(u) = g(y) + ⟨∇g(y),u− y⟩+ f(u) + 1
2η∥u− y∥2, then it is

a proper closed 1
η -strongly convex function. By Theorem 4.12 and Theorem

4.13, ϕ has a unique minimizer u∗ and it satisfies

0 ∈ ∇g(y) + ∂f(u∗) + 1
η

(u∗ − y)

⇔ u∗ = (I + η∂f)−1(y− η∇g(y)),
which means ȳ = u∗ is the mimizer to ϕ(u).

By Lemma 4.1, we have

ϕ(x) ≥ ϕ(y) + ⟨∂ϕ(y),x− y⟩+ 1
2η∥x− y∥2, ∀x,y ∈ dom(ϕ).

Plugging in y = ȳ (recall ȳ is the minimizer of ϕ) and ∂ϕ(ȳ) ∋ 0, we
have

ϕ(x)− ϕ(ȳ) ≥ 1
2η∥x− ȳ∥2.

By the Descent Lemma (Lemma 2.1), we have

g(ȳ) ≤ g(y)+⟨∇g(y), ȳ−y⟩+L

2 ∥y−ȳ∥2 ≤ g(y)+⟨∇g(y), ȳ−y⟩+ 1
2η∥y−ȳ∥2.

ϕ(ȳ) = g(y) + ⟨∇g(y), ȳ− y⟩+ 1
2η∥ȳ− y∥2 + f(ȳ) ≥ g(ȳ) + f(ȳ) = F (ȳ).

Combine the two inequalities above, we have

ϕ(x)− F (ȳ) ≥ 1
2η∥x− ȳ∥2,

which is the desired result.

Theorem 5.7. (Fejér monotonicity and O( 1
k ) convergence rate.) Assume

f : Rn −→ R ∪ {+∞} is a closed (or equivalently lower semicontinous)
proper convex function, and g : Rn −→ R is a differentiable convex function
with ∇g being Lipschitz continuous with Lipschitz constant L. Assume the
existence of global minimizers of F (x) = f(x) + g(x). With step size η ≤ 1

L ,
the iterates of the proximal gradient method satisfies

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥, ∀k,

where x∗ is any global minimizer to f(x) + g(x). With step size η = 1
L , the

iterates of the proximal gradient method satisfies

F (xk+1)− F (x∗) ≤ L

2 ∥x0 − x∗∥
1
k
, ∀k.
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Proof. Step I: By the Prox-Grad inequality above, we have

F (x)− F (ȳ) ≥ g(x)− g(y)− ⟨∇g(y),x− y⟩+ 1
2η∥x− ȳ∥2 − 1

2η∥x− y∥2.

Convexity gives g(x)− g(y)− ⟨∇g(y),x− y⟩ ≥ 0, thus

F (x)− F (ȳ) ≥ 1
2η∥x− ȳ∥2 − 1

2η∥x− y∥2.

Plug in x = x∗, y = xk ⇒ ȳ = xk+1, then

0 ≥ 2η[F (x∗)− F (xk+1)] ≥ ∥xk+1 − x∗∥ − ∥xk − x∗∥.

Step II: Sum up the inequality above, we have

2
L

n−1∑
k=0

[F (x∗)− F (xk+1)] ≥ ∥xn − x∗∥ − ∥x0 − x∗∥ ≥ −∥x0 − x∗∥.

By Theorem 5.5 (Sufficient Decrease Lemma), we have

F (x)− F (x̄) ≥ L

2 ∥x− x̄∥ ⇒ F (xk)− F (xk+1) ≥ L

2 ∥xk − xk+1∥,

thus

F (xk) ≥ F (xk+1)⇒ 2
L
n[F (xn)−F (x∗)] ≥ 2

L

n−1∑
k=0

[F (xk+1)−F (x∗)] ≥ ∥x0−x∗∥.

The Fejér monotonicity and F (xk) → F (x∗) does imply convergence
to some global minimizer, which is not necessarily x∗. See [3] for general
statements. For simplicity, we give a proof for a well defined function F =
f + g on the whole space Rn:

Theorem 5.8. Assume f : Rn −→ R is a convex function, and g : Rn −→
R is a differentiable convex function with ∇g being Lipschitz continuous
with Lipschitz constant L. Assume the existence of global minimizers of
F (x) = f(x) + g(x). With step size η ≤ 1

L , the iterates xk of the proximal
gradient method converges to one of the global minimizers as k →∞.

Remark 5.5. By setting g(x) ≡ 0, we get the convergence of the proximal
point method for minimizing f(x).

Proof. The Fejér monotonicity in the previous theorem implies the bounded-
ness of the sequence {xk}∞k=0 ⊂ Rn, thus there is a convergent subsequence
xkj
→ y∗ as j →∞.
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By Theorem 4.3, the convexity implies the continuity of F , thus F (xkj
)→

F (y∗).
The convergence rate theorem above also gives F (xkj

) → F (x∗) for
any global minimizer x∗, thus F (y∗) = F (x∗). So y∗ is one of the global
minimizers.

So the Fejér monotonicity also applies to y∗:

∥xk+1 − y∗∥ ≤ ∥xk − y∗∥,

which forces xk → y∗.

5.3.4 Convergence under strong convexity

Theorem 5.9. (Linear convergence rate.) Assume f : Rn −→ R ∪ {+∞}
is a closed (or equivalently lower semicontinous) proper convex function,
and g : Rn −→ R is a µ-strongly convex function with ∇g being Lipschitz
continuous with Lipschitz constant L. Then F (x) = f(x) + g(x) is a proper
lower semicontinous µ-strongly convex function, thus it has a unique global
minimizer x∗. With step size η = 1

L , the iterates of the proximal gradient
method satisfies

1. ∥xk − x∗∥ ≤
(√

1− µ
L

)k
∥x0 − x∗∥.

2. F (xk)− F (x∗) ≤ L
2
(
1− µ

L

)k ∥x0 − x∗∥2.

Proof. The Prox-Grad inequality gives

F (x∗)−F (xk+1) ≥ g(x∗)−g(xk)−⟨∇g(xk),x∗−xk⟩+
L

2 ∥x∗−xk+1∥2−
L

2 ∥x∗−xk∥2.

Strong convexity gives

g(x∗)− g(xk)− ⟨∇g(xk),x∗ − xk⟩+ µ

2 ∥x∗ − xk∥2

thus

0 ≥ F (x∗)− F (xk+1) ≥ L

2 ∥x∗ − xk+1∥2 − (L2 −
µ

2 )∥x∗ − xk∥2.

So
∥xk+1 − x∗∥2 ≤ (1− µ

L
)∥xk − x∗∥2

and

F (xk+1)−F (x∗) ≤ (L2 −
µ

2 )∥x∗−xk∥2−
L

2 ∥x∗−xk+1∥2 < (L2 −
µ

2 )∥x∗−xk∥2.
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5.4 The second convergence proof of proximal point
method

We now reconsider the proximal point method for minimizing f(x):

xk+1 = (I + η∂f)−1(xk) = Proxη
f (xk).

By letting g(x) ≡ 0 in theorems for the proximal gradient method, we
can get the following theorem:
Theorem 5.10. (Fejér monotonicity and O( 1

k ) convergence rate.) Assume
f : Rn −→ R ∪ {+∞} is a closed (or equivalently lower semicontinous)
proper convex function. Assume the existence of global minimizers of f(x).
For any positive step size η > 0, the iterates of the proximal point method
satisfies

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥, ∀k,

f(xk+1)− f(x∗) ≤ 1
2η∥x0 − x∗∥

1
k
, ∀k,

where x∗ is any global minimizer to f(x).
Theorem 5.11. (Linear convergence rate under strong convexity.) Assume
f : Rn −→ R ∪ {+∞} is a closed (or equivalently lower semicontinous)
proper µ-strongly convex function, then it has a unique global minimizers
x∗. For any positive step size η > 0, the iterates of the proximal point
method satisfies

1. ∥xk − x∗∥ ≤
(√

1
1+2ηµ

)k
∥x0 − x∗∥.

2. f(xk)− f(x∗) ≤ 1+2ηµ
2η

(
1

1+2ηµ

)k
∥x0 − x∗∥2.

Remark 5.6. The proximal point method is unconditionally stable, i.e.,
f(xk) is under control for any step size. With strong convexity, faster rate
is achieved for larger step size η.
Proof. For the proximal point method, there is some subderivative vk+1 ∈
∂f(xk+1) such that

xk = xk+1 + ηvk+1

xk − x∗ = xk+1 − x∗ + ηvk+1

∥xk − x∗∥2 = ∥xk+1 − x∗ + ηvk+1∥2

By Lemma 4.1, we have

∥xk − x∗∥2 = ∥xk+1 − x∗∥2 + 2⟨xk+1 − x∗, ηvk+1⟩+ ∥ηvk+1∥2

≥ ∥xk+1 − x∗∥2 + 2η⟨xk+1 − x∗,vk+1⟩
= ∥xk+1 − x∗∥2 + 2η⟨xk+1 − x∗, ∂f(xk+1)− ∂f(xk+1)⟩
≥ ∥xk+1 − x∗∥2 + 2ηµ∥xk+1 − x∗∥2
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thus we obtain

∥xk−x∗∥2 ≥ (1+2ηµ)∥xk+1−x∗∥2 ⇒ ∥xk−x∗∥2 ≤
( 1

1 + 2ηµ

)k

∥x0−x∗∥2.

Let g(x) ≡ 0 in the Prox-Grad Inequality, then we get the following inequal-
ity for the proximal operator:

f(x∗)− f(xk+1) ≥ 1
2η∥x∗ − xk+1∥2 −

1
2η∥x∗ − xk∥2, ∀η > 0.

Thus

f(xk+1)− f(x∗) ≤ 1
2η∥x∗ − xk∥2 ≤

1 + 2ηµ
2η

( 1
1 + 2ηµ

)k+1
∥x0 − x∗∥2.

5.5 The fast proximal gradient method

The proximal gradient method can be accelerated by combining with Nes-
terov’s acceleration method in Section 2.8. The vanilla version of the fast
proximal gradient method can be written as


xk+1 = (I + η∂f)−1[yk − ηk∇g(yk)]
tk+1 = 1

2

(
1 +

√
4t2k + 1

)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

x0 = y0, t0 = 1.

The sequence tk should satisfy t2k − tk ≤ t2k−1, for which we can simply use
tk = k+1

2 :

{
xk+1 = (I + η∂f)−1[yk − ηk∇g(yk)]
yk+1 = xk+1 + k−1

k+2(xk+1 − xk)
x0 = y0.

5.5.1 Convergence rate under convexity

Theorem 5.12 (O( 1
k2 ) convergence rate). Assume f : Rn −→ R ∪ {+∞}

is a closed (or equivalently lower semicontinous) proper convex function,
and g : Rn −→ R is a differentiable convex function with ∇g being Lips-
chitz continuous with Lipschitz constant L. Assume the existence of global
minimizers of F (x) = f(x) + g(x). With step size η = 1

L , the iterates of
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the fast proximal gradient method with t2k − tk ≤ t2k−1 (e.g., tk = k+1
2 or

tk+1 = 1
2

(
1 +

√
4t2k + 1

)
) satisfies

F (xk+1)− F (x∗) ≤ 2L∥x0 − x∗∥
1
k2 , ∀k,

where x∗ is any global minimizer to f(x) + g(x).

Remark 5.7. By letting f(x) ≡ 0, this is the same result as Theorem 2.10.

Proof. The Prox-Grad inequality

F (x)− F (ȳ) ≥ g(x)− g(y)− ⟨∇g(y),x− y⟩+ 1
2η∥x− ȳ∥2 − 1

2η∥x− y∥2,

≥ L

2 ∥x− ȳ∥2 − L

2 ∥x− y∥2.

Plugging x = 1
tk

x∗ + (1− 1
tk

)xk and y = yk (then ȳ = xk+1) into we get

F

( 1
tk

x∗ + (1− 1
tk

)xk

)
−F (xk+1) ≥ L

2 ∥
1
tk

x∗+(1− 1
tk

)xk−xk+1∥2−
L

2 ∥
1
tk

x∗+(1− 1
tk

)xk−yk∥2

= L

2t2k
∥x∗ + (tk − 1)xk − tkxk+1∥2 −

L

2t2k
∥x∗ + (tk − 1)xk − tkyk∥2.

Convexity of F gives

F

( 1
tk

x∗ + (1− 1
tk

)xk

)
≤ 1
tk
F (x∗) + (1− 1

tk
)F (xk) .

Let Rk = F (xk)− F (x∗), then

F

( 1
tk

x∗ + (1− 1
tk

)xk

)
−F (xk+1) ≤ (1− 1

tk
)[F (xk)−F (x∗)]−[F (xk+1)−F (x∗)].

= (1− 1
tk

)Rk −Rk+1.

Combining two inequalities, we get

(1− 1
tk

)Rk−Rk+1 ≥
L

2t2k
∥x∗+(tk−1)xk−tkxk+1∥2−

L

2t2k
∥x∗+(tk−1)xk−tkyk∥2.

If we define uk = x∗ + (tk−1 − 1)xk−1 − tk−1xk, then

∥x∗ + (tk − 1)xk − tkxk+1∥2 = ∥uk+1∥2

Next, by plugging in

yk+1 = xk+1 + tk − 1
tk+1

(xk+1 − xk),
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we get

∥x∗ + (tk − 1)xk − tkyk∥2 = ∥x∗ + (tk − 1)xk − tkxk − (tk−1 − 1)(xk − xk−1)∥2

= ∥x∗ + (tk−1 − 1)xk−1 − tk−1xk∥2 = ∥uk∥2.

So we get

(1− 1
tk

)Rk −Rk+1 ≥
L

2t2k
∥uk+1∥2 −

L

2t2k
∥uk∥2

(t2k − tk)Rk − t2kRk+1 ≥
L

2 ∥uk+1∥2 −
L

2 ∥uk∥2

(t2k − tk)Rk + L

2 ∥uk∥2 ≥ t2kRk+1 + L

2 ∥uk+1∥2

t2k−1Rk + L

2 ∥uk∥2 ≥ t2kRk+1 + L

2 ∥uk+1∥2.

So with t0 = 1, we have

t2kRk+1 + L

2 ∥uk+1∥2 ≤ t20R1 + L

2 ∥u1∥2 = F (x1)− F (x∗) + L

2 ∥x∗ − x1∥2.

Plugging x = x∗ and y = y0 (then ȳ = x1) into the Prox-Grad inequality

F (x)− F (ȳ) ≥ g(x)− g(y)− ⟨∇g(y),x− y⟩+ 1
2η∥x− ȳ∥2 − 1

2η∥x− y∥2,

≥ L

2 ∥x− ȳ∥2 − L

2 ∥x− y∥2,

so with x0 = y0, we get

F (x∗)− F (x1) ≥ L

2 ∥x∗ − x1∥2 −
L

2 ∥x∗ − y0∥2

⇒F (x1)− F (x∗) + L

2 ∥x∗ − x1∥2 ≤
L

2 ∥x∗ − x0∥2.

Thus
Rk+1 ≤

L

2 ∥x0 − x∗∥2
1
t2k
.

Finally, the 1
k2 rate is obtained from the rate tk = O( 1

k ). For instance,
we can take tk = k+1

2 . We can also take

tk+1 = 1
2

(
1 +

√
4t2k + 1

)
⇒ tk ≥

k + 2
2 ,

which can be verified by induction.



86 5. SUBGRADIENT AND PROXIMAL GRADIENT METHODS

5.5.2 Convergence rate under strong convexity

If g(x) is also µ-strongly convex, then σ = L
µ denotes its condition number.

See [3, Theorem 10.42] for the convergence rate of a modified fast proximal
gradient method:

Theorem 5.13. Assume f : Rn −→ R∪ {+∞} is a closed (or equivalently
lower semicontinous) proper convex function, and g : Rn −→ R is a µ-
strongly convex function with ∇g being Lipschitz continuous with Lipschitz
constant L. Then F (x) = f(x) + g(x) is a proper lower semicontinous µ-
strongly convex function, thus it has a unique global minimizer x∗. With
step size η = 1

L , the iterates of the following modified fast proximal gradient
method

xk+1 = (I + η∂f)−1[yk − ηk∇g(yk)]
yk+1 = xk+1 +

√
σ−1√
σ+1(xk+1 − xk)

x0 = y0.

satisfies

F (xk)− F (x∗) ≤
(

1−
√
µ

L

)k

[F (x0)− F (x∗) + L

2µ∥x0 − x∗∥2].

5.5.3 Restarted fast proximal gradient method

For f(x) = ∥x∥1, the proximal gradient method is often called ISTA (it-
erative shrinkage/thresholding algorithm), and the fast proximal gradient
method is called FISTA.

The performace of the fast proximal gradient method can be significantly
improved if using a restarted version (reset tN = 1,yN = xN every N
iterations):


xk+1 = (I + η∂f)−1[yk − ηk∇g(yk)]
tk+1 = 1

2

(
1 +

√
4t2k + 1

)
yk+1 = xk+1 + tk−1

tk+1
(xk+1 − xk)

, if k
N is an integer, set yk = xk, tk = 1.

5.6 Comparison and examples

So we can summarize all the global convergence rate results so far in this
chapter as follows (see Section 6.2 for the linear rate of the proximal point
method):
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Assumptions Convexity Strong Convexity Step Size
Subgradient Method O( 1√

k
) O( 1

k ) ηn ≡ 1√
k

or Polyak step size

Proximal Point Method O( 1
k ) O(

(
1

1+ηµ

)2k
) ∀η > 0

Proximal Gradient Method O( 1
k ) O(

(
1− µ

L

)k) η ≤ 1
L

Fast Proximal Gradient O( 1
k2 ) O(

(
1−

√
µ
L

)k
) η ≤ 1

L

Table 5.1: The convergence rate for F (xk) − F (x∗) of different algorithms
minimizing F (x) = f(x) + g(x), where f(x) and g(x) are convex, µ is the
strong convexity parameter of g, and L is the Lipschitz constant of ∇g.

Assumptions Convexity Strong Convexity
Gradient Descent with η < 2

L O( 1
k )

Fast Gradient Descent, η = 1
L O( 1

k2 )
Gradient Descent with η ≤ 2

L+µ O(
(
1− 2ηµL

L+µ

)2k
)

Gradient Descent with η = 2
L+µ O(

(
L/µ−1
L/µ+1

)2k
)

Fast Gradient Descent, η = 1
L O(

(
1−

√
µ
L

)k
)

Table 5.2: The global convergence rate for f(xk)−f(x∗) of minimizing f(x),
where f(x) is convex, µ is the strong convexity parameter of f , and L is the
Lipschitz constant of ∇f . Remark: 1−

√
µ
L <

(
L/µ−1
L/µ+1

)2
if µ/L ≤ 0.085.

As a comparison, we also recall the global and local convergence rates
proven for the smooth problems

Finally we take look at how slow/fast these methods can be for mini-
mizing ∥x∥1 + ∥Ax− b∥2. See Figure 5.1. We remark that monotone decay
for F (xk)− F (x∗) can be proven for the subgradient method and the prox-
imal gradient method, but for the fast proximal gradient method. We can
observe that indeed F (xk) − F (x∗) is not monotone for the fast proximal
gradient method, but obviously the fast proximal gradient method is much
better.
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Assumptions Rate
Gradient Descent with ∥x0 − x∗∥ ≤ 2µ

M and η = 2
L+µ

∥xk+1−x∗∥
∥xk−x∗∥ ≤ 1− 2µ

L+3µ

Newton’s method with ∥x0 − x∗∥ ≤ 2µ
3M

∥xk+1−x∗∥
∥xk−x∗∥2 ≤ 3M

2µ

Table 5.3: The local convergence rate for minimizing f(x), where f(x) is
not necessarily convex, x∗ is a local minimizer, µ is the strong convexity
parameter of f , and M is the Lipschitz constant of the Hessian ∇2f .
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(a) Provable rates are the worst case rates, which are usually ob-
served in the beginning.
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linear rate

(b) Even if the function has no strong convexity nor smoothness, a
local linear rate may be observed: for large k, the iterates xk stay
on a lower dimensional set, and the function becomes smooth on
this set. Such a set is often called active set.
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(c) For ℓ1 problem, restarted FISTA can perform extremely well.

Figure 5.1: A LASSO problem (4.3) with A ∈ R40×1000. The cost function
F (x) = ∥x∥1 + ∥Ax− b∥2 is neither smooth nor strongly convex.
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6

Fixed point iteration and
Douglas-Rachford splitting

In this chapter, we consider some more sophisticated splitting algorithms to
solve a more chanllenging ℓ1-minimization problem (4.2):

min
x
∥x∥1 + ι{x:Ax=b}.

6.1 Nonexpansive operators

Definition 6.1. An operator T : Rn −→ Rn is called

• contractive if ∥T (x)− T (y)∥ < ∥x− y∥, ∀x,y.

• nonexpansive if ∥T (x)− T (y)∥ ≤ ∥x− y∥, ∀x,y.

• firmly nonexpansive if ∥T (x)−T (y)∥2 ≤ ⟨T (x)−T (y),x−y⟩, ∀x,y.

With the Cauchy-Schwartz inequality

⟨T (x)− T (y),x− y⟩ ≤ ∥T (x)− T (y)∥∥x− y∥,

we can see that a firmly nonexpansive operator must be nonexpansive.

Theorem 6.1. For an operator T : Rn −→ Rn and the identity operator
I : Rn −→ Rn, the following are equivalent:

1. T is firmly nonexpansive.

2. I − T is firmly nonexpansive.

3. 2T − I is nonexpansive.

4. ∥T (x)− T (y)∥2 + ∥(I − T )(x)− (I − T )(y)∥2 ≤ ∥x− y∥2

91
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Proof. For 1 and 2:

∥T (x)− T (y)∥2 ≤ ⟨T (x)− T (y),x− y⟩

∥x−T (x)− [y−T (y)]∥2 = ∥x−y∥2 +∥T (x)−T (y)∥2−⟨T (x)−T (y),x−y⟩

≤ ∥x− y∥2 − ⟨T (x)− T (y),x− y⟩ = ⟨[x− T (x)]− [y− T (y)],x− y⟩.

For 1 and 3: let R = 2T − I, then

∥R(x)−R(y)∥2 = ∥2[T (x)− T (y)]− (x− y)∥2

= 4∥T (x)− T (y)∥2 + ∥x− y∥2 − 4⟨T (x)− T (y),x− y⟩ ≤ ∥x− y∥2

⇔ ∥T (x)− T (y)∥2 ≤ ⟨T (x)− T (y),x− y⟩

For 1 and 4: it can be similarly shown.

Example 6.1. Let T (x) = η∇f(x), 0 < η ≤ 1
L where ∇f is Lipschitz

continuous with Lipschitz constant L:

1. T is nonexpansive.

2. By Theorem 2.2, if f is convex, then T is firmly nonexpansive.

3. If f is convex, the gradient descent operator operator I − T is also
firmly nonexpansive.

6.2 The third convergence rate of proximal point
method

One important example of firmly nonexpansive and contractive operators is
the proximal operator:

Theorem 6.2. For a proper closed convex function f : Rn −→ (−∞,+∞],
its proximal operator Proxη

f is firmly nonexpansive:

∥Proxη
f (x)− Proxη

f (y)∥2 ≤ ⟨Proxη
f (x)− Proxη

f (y),x− y⟩.

If f is also µ-strongly convex, then

(1 + µη)∥Proxη
f (x)− Proxη

f (y)∥2 ≤ ⟨Proxη
f (x)− Proxη

f (y),x− y⟩.

Remark 6.1. With the Cauchy-Schwartz inequality ⟨T (x)−T (y),x−y⟩ ≤
∥T (x) − T (y)∥∥x − y∥, the proximal operator is contractive for a strongly
convex f .
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Proof. Let

u = Proxη
f (x) = (I + η∂f)−1(x)⇒ x− u

η
∈ ∂f(u),

v = Proxη
f (y) = (I + η∂f)−1(y)⇒ y− v

η
∈ ∂f(v).

For a µ-strongly convex function (µ = 0 for a convex function), by Lemma
4.1, we have

⟨∂f(u)− ∂f(v),u− v⟩ ≥ µ∥u− v∥2

thus
⟨x− u

η
− y− v

η
,u− v⟩ ≥ µ∥u− v∥2,

⟨x− y,u− v⟩ ≥ (1 + ηµ)∥u− v∥2.

We now reconsider the proximal point method for minimizing f(x):
xk+1 = (I + η∂f)−1(xk) = Proxη

f (xk).
Theorem 6.3. (Linear convergence rate under strong convexity.) Assume
f : Rn −→ R ∪ {+∞} is a closed (or equivalently lower semicontinous)
proper µ-strongly convex function, then it has a unique global minimizers
x∗. The iterates of the proximal point method satisfies

1. ∥xk − x∗∥ ≤
(

1
1+ηµ

)k
∥x0 − x∗∥, ∀η > 0.

2. f(xk)− f(x∗) ≤ 1+ηµ
2η

(
1

1+ηµ

)2k
∥x0 − x∗∥2, ∀η > 0.

Remark 6.2. This is a better rate than the linear rate in Section 5.4 since( 1
1 + ηµ

)2
<

1
1 + 2ηµ ⇔ 1 + 2ηµ < 1 + 2ηµ+ η2µ2.

Proof. By Theorem 6.2, the proximal operator is contractive

∥Proxη
f (x)− Proxη

f (y)∥ ≤ 1
1 + µη

∥x− y∥.

Notice that we have x∗ = Proxη
f (x∗). Plugging in x = xk and y = x∗, we

get ∥xk+1 − x∗∥ ≤
(

1
1+ηµ

)
∥xk − x∗∥ thus ∥xk − x∗∥ ≤

(
1

1+ηµ

)k
∥x0 − x∗∥.

Let g(x) ≡ 0 in the Prox-Grad Inequality (Theorem 5.6), then we get
the following inequality for the proximal operator:

f(x∗)− f(xk+1) ≥ 1
2η∥x∗ − xk+1∥2 −

1
2η∥x∗ − xk∥2, ∀η > 0.

Thus

f(xk+1)− f(x∗) ≤ 1
2η∥x∗ − xk∥2 ≤

1 + ηµ

2η

( 1
1 + ηµ

)k+1
∥x0 − x∗∥2.
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6.3 Fixed point iteration
We now consider iterative schemes in the form xk+1 = T (xk). There are
many fixed point theorems and we list a few.

Theorem 6.4 (Banach Fixed Point Theorem). Let T : Rn −→ Rn be a
contractive operator/mapping, then T has a unique fixed point T (x∗) = x∗.

In the Banach Fixed Point Theorem (1922), the Euclidean space Rn can
be replaced by a non-empty complete metric space.

Theorem 6.5 (Brouwer Fixed Point Theorem). Let Sn be the unit ball in
Rn. If T : Sn −→ Sn is continuous, then T has at least one fixed point
T (x∗) = x∗.

In the Brouwer Fixed Point Theorem (1911), the unit ball can be re-
placed by a nonempty compact convex set.

Theorem 6.6 (Browder-Göhde-Kirk Fixed Point Theorem). Let X be a
uniformly convex Banach space. Let Y be a non-empty, bounded, closed and
convex subset of X. If T : Y −→ Y is an nonexpansive operator, then it has
a fixed point.

A few quick examples:

1. If T : Rn −→ Rn is nonexpansive, then T may not have a fixed point.

Counter example, T (x, y) =
(

cos θ − sin θ
0 0

)(
x
y

)
+
(

0
1

)
.

2. If T : Sn −→ Sn is nonexpansive, then T has at least one fixed point
but xk+1 = T (xk) may not converge. Counter example: T (x) = −x.

For the counter example above, even though the iterative scheme for the
operator xk+1 = T (xk) = −xk does not converge, the relaxation scheme

xk+1 = θxk + (1− θ)T (xk)

always converges. Such a fact still holds for a general setup:

Theorem 6.7. Assume T : Rn −→ Rn is nonexpansive and T has at least
one fixed point x∗. Then the iteration scheme

xk+1 = Sθ(xk) := θxk + (1− θ)T (xk), θ ∈ (0, 1)

satisfies:

1. xk converges to y∗, one of fixed points of T .

2. ∥xk+1 − xk∥2 ≤ 1
k+1(1

θ − 1)∥x0 − y∗∥2.
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Proof. Step I:

∥xk+1 − x∗∥2 = ∥θ[xk − x∗] + (1− θ)[T (xk)− x∗]∥2

= θ∥xk − x∗∥2 + (1− θ)∥T (xk)− x∗∥2 − θ(1− θ)∥T (xk)− xk∥2

≤ θ∥xk − x∗∥2 + (1− θ)∥xk − x∗∥2 − θ(1− θ)∥T (xk)− xk∥2

= ∥xk − x∗∥2 −
θ

1− θ∥Sθ(xk)− xk∥2

Step II: we first get ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2. Sum it up, we get

(n+1)∥xn+1−xn∥2 ≤
n∑

k=0
∥xn+1−xn∥2 ≤

1− θ
θ

[∥x0−x∗∥2−∥xn+1−x∗∥2],

where the first inequality is implied by

∥xk+1 − xk∥2 ≤ θ∥xk − xk−1∥+ (1− θ)∥T (xk)− T (xk−1)∥ ≤ ∥xk − xk−1∥.

Step III: ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 implies that {xk} is a bounded
sequence thus it has a convergent subsequence xkj

→ y∗. ∥xk+1 − xk∥2 ≤
1

k+1(1
θ − 1)∥x0 − x∗∥2 implies

∥xk+1 − xk∥2 → 0⇒ ∥Sθ(xk)− xk∥ → 0⇒ (1− θ)∥T (xk)− xk∥ → 0

thus ∥T (xkj
)− xkj

∥ → 0.
Since ∥T (x) − x − [T (y) − y]∥ ≤ 2∥x − y∥, T − I is continuous, thus

∥T (y∗)− y∗∥ = 0, which implies y∗ is a fixed point.
Finally, ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 for any fixed point x∗ forces the

whole sequence converging to y∗.

6.4 Douglas-Rachford splitting

Now we consider a composite optimization problem

min
x
f(x) + g(x),

where both f(x) and g(x) are convex but not differentiable. We assume
that the proximal operators for f(x) and g(x) are available. Consider the
basis pursuit problem (4.2) as an example:

min
x
∥x∥1 + ι{x:Ax=b},

we have f(x) = ∥x∥1 and g(x) = ι{x:Ax=b}. Assume ARm×n with m < n

has linearly independent rows so that AAT is invertiable.
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For the ℓ1 function, its proximal operator is called Shrinkage operator:

Proxγ
f (x) = v, vi =


xi − γ, xi > 1,
xi + γ, xi < −1,
0, xi ∈ [−1, 1].

For the indicator function, the proximal operator is the Euclidean pro-
jection:

Proxγ
g (x) = x +AT (AAT )−1(b−Ax),

where AT (AAT )−1 is also called pseudoinverse of A, see Appendix A.4.
So for the problem (4.2), we have proximal operators for f and g, but

not for f + g. The divide and concur approach is to do a splitting by using
Proxf and Proxg. And the most robust splitting method is called Douglas-
Rachford splitting introduced by Lions and Mercier in 1979:

1. The same splitting was used for solving the heat equation by Peaceman
and Rachford in 1955 and Douglas and Rachford in 1956. Such an ap-
proach is under the name alternating-direction implicit (ADI) methods
for solving PDEs. It is for solving equations like 0 = Ax +Bx

2. Lions and Mercier in 1979 extended it for solving inclusion equations
like 0 ∈ ∂f(x) + ∂g(x).

3. It is exactly equivalent to the very popular ADMM (Alternating Direc-
tion Method of Multipliers) method and some special version of split
Bregman method, which are widely used for problems in nonlinear
mechanics and image processing.

Definition 6.2. For minimizing f(x)+g(x), the simplest Douglas-Rachford
splitting is given as

yk+1 =
I+ Rη

f Rη
g

2 (yk), ∀η > 0,

where I is the identity operator, Rη
f = 2 Proxη

f −I and Rη
g = 2 Proxη

g −I

The sequence yk does NOT converge to x∗ and the variable y is only an
auxiliary variable. Instead, xk = Proxη

g(yk) will converge to x∗. So a more
explicit expression of the simplest Douglas-Rachford splitting is

Douglas-Rachford :

yk+1 = I+Rη
f

Rη
g

2 (yk) = yk − xk + Proxη
f (2xk − yk)

xk = Proxη
g(yk)

The Douglas-Rachford splitting is robust in the sense that the convergence
is true for any convex functions f and g with any step size η > 0:
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Theorem 6.8. If f : R −→ (−∞,+∞] and g : R −→ (−∞,+∞] are proper
closed convex functions, assume f(x)+g(x) has at least one minimizer, then
the general Douglas-Rachford splitting converges to a fixed point y∗:

yk+1 = [θI+ (1− θ) Rη
f Rη

g ](yk), θ ∈ (0, 1),

and xk = Proxη
g(yk) converges to x∗, one of the minimizers of f(x) + g(y)

with

1. ∥yk+1 − y∗∥ ≤ ∥yk − y∗∥. But ∥xk+1 − x∗∥ ≤ ∥xk − x∗∥ is not true.

2.
∥xk+1 − xk∥2 ≤ ∥yk+1 − yk∥2 ≤

1
k

(1
θ
− 1)∥y0 − y∗∥2.

Remark 6.3. If we take θ = 0, we get the Peaceman-Rachford splitting:

Peaceman-Rachford :
{

yk+1 = Rη
f Rη

g(yk)
xk = Proxη

g(yk)
,

which however does not converge unless at least one of the two functions is
strongly convex. For example, if f and g are indicator functions of two lines
passing the origin in R2, then the double reflection iteration will diverge.

Proof. Step I: existence of minimizers implies that T = θI + (1 − θ) Rη
f Rη

g

has fixed points:

T (y∗) = y∗

⇔ Rη
f Rη

g(y∗) = y∗

⇔ 2 Proxη
f Rη

g(y∗)− Rη
g(y∗) = y∗

⇔ Proxη
f Rη

g(y∗) = Proxη
g(y∗) (z = Proxη

g(y∗))
⇔ Proxη

f (2z− y∗) = z ((I+ η∂g)z = y∗)
⇔ z = (I+ η∂f)−1[2z− (I+ η∂g)z]
⇔ 0 ∈ ∂f(z) + ∂g(z).

Step II: by Theorem 6.2, Prox is firmly nonexpansive, thus R = 2 Prox−I
is nonexpansive (Theorem 6.1). So T = θI+ (1− θ) Rη

f Rη
g is also nonexpan-

sive since it is a convex combinatin of I and Rη
f Rη

g .
Step III: by Theorem 6.7, yk converges to one fixed point y∗. Thus

xk = Proxη
g(yk) converges to one minimizer x∗, due to the fact we have

shown in Step I:

T (y∗) = y∗ ⇔ 0 ∈ ∂f(z) + ∂g(z), z = Proxη
g(y∗).

Theorem 6.7 also implies

∥yk − y∗∥2 ≤
1
k

(1
θ
− 1)∥y0 − y∗∥2.
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6.5 Examples and comparison
Sometimes the general or relaxed Douglas-Rachford splitting is also written
in the form of

yk+1 = [(1− λ)I+ λ
I+ Rη

f Rη
g

2 ](yk), λ ∈ (0, 2). (6.1)

See Figure 6.1 for a numerical example.

6.6 Convergence under strong convexity
Lemma 6.1. If f : Rn −→ (−∞,+∞] is a proper closed µ-strongly convex
function, its proximal and reflection operators satisfy

∥Rη
f (x)− Rη

f (y)∥2 + 4µη∥Proxη
f (x)− Proxη

f (y)∥2 ≤ ∥x− y∥2.

Remark 6.4. With only convexity µ = 0, the reflection is only nonexpansive
∥Rη

f (x)− Rη
f (y)∥2 ≤ ∥x− y∥2.

Proof. By Theorem 6.2, we have

∥Rη
f (x)− Rη

f (y)∥2 = ∥2 Proxη
f (x)− x− (2 Proxη

f (y)− y)∥2

=4µη∥Proxη
f (x)− Proxη

f (y)∥2 + ∥x− y∥2 − 4⟨Proxη
f (x)− Proxη

f (y),x− y⟩
≤ − 4µη∥Rη

f (x)− Rη
f (y)∥2 + ∥x− y∥2

⇒∥Rη
f (x)− Rη

f (y)∥2 + 4µη∥Proxη
f (x)− Proxη

f (y)∥2 ≤ ∥x− y∥2.

Theorem 6.9 (Convergence of Peaceman-Rachford under strong convex-
ity.). If f : Rn −→ (−∞,+∞] is a proper closed convex function and
g : Rn −→ (−∞,+∞] is a proper closed µ-strongly convex function, then
f(x) + g(x) has a unique minimizer x∗. The iteration{

yk+1 = Rη
f Rη

g(yk)
xk = Proxη

g(yk)
, ∀η > 0

converges and

min
0≤k≤n

∥xk − x∗∥2 ≤
1

n+ 1
1

4µη∥y0 − y∗∥2.

Remark 6.5. Notice that we can switch f and g in the Peaceman-Rachford
splitting {

zk+1 = Rη
g Rη

f (zk)
xk = Proxη

f (zk)
, ∀η > 0

and the same results apply, because it is the same iteration as above if we
set z0 = y0.
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(a) Douglas-Rachford splitting converges for any step size η > 0 but
proximal operator for g(x) = ∥Ax − b∥2 requires (I + η2AT A)−1.
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(b) If λ = 2 in (6.1), then it does not converge. For this example
A ∈ R40×1000 thus no strong convexity for g(x).
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(c) If tuning parameters, Douglas-Rachford splitting can be faster
than FISTA or restarted FISTA for certain accuracy threshold.

Figure 6.1: A LASSO problem (4.3) with A ∈ R40×1000. The cost function
F (x) = ∥x∥1 + ∥Ax− b∥2 is neither smooth nor strongly convex.
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Proof.

∥Rη
f Rη

g(yk)− Rη
f Rη

g(y∗)∥2 + 4µη∥Proxη
g(yk)− Proxη

g(y∗)∥2

≤∥Rη
g(yk)− Rη

g(y∗)∥2 + 4µη∥Proxη
g(yk)− Proxη

g(y∗)∥2

≤∥yk − y∗∥2,

thus
∥yk+1 − y∗∥2 + 4µη∥xk − x∗∥2 ≤ ∥yk − y∗∥2

n∑
k=0

4µη∥xk − x∗∥2 ≤ ∥y0 − y∗∥2 − ∥yn+1 − y∗∥2 ≤ ∥y0 − y∗∥2.

Lemma 6.2. If f : Rn −→ (−∞,+∞) is a µ-strongly convex function and
∇f is Lipschitz continuous, its reflection operator is a contraction:

∥Rη
f (x)− Rη

f (y)∥2 ≤
(

1− 4µη
(1 + µL)2

)
∥x− y∥2.

Proof.

∥[I+ η∇f ](x)− [I+ η∇f ](y)∥2

=∥x− y∥2 + η2∥∇f(x)−∇f(y)∥2 + 2η⟨x− y,∇f(x)−∇f(y)⟩
≤∥x− y∥2 + η2L2∥x− y∥2 + 2η∥x− y∥∥∇f(x)−∇f(y)∥
≤(1 + η2L2 + 2ηL)∥x− y∥2

thus
∥Proxη

f (u)− Proxη
f (v)∥2 ≥ 1

[1 + ηL]2 ∥x− y∥2.

Plug it into Lemma 6.1, we get the desired result.

Theorem 6.10. (Linear rate of general Douglas-Rachford splitting.) As-
sume f : Rn −→ (−∞,+∞] is a proper closed convex function, g : Rn −→
(−∞,+∞) is a convex function and ∇g is Lipschitz continuous with Lips-
chitz constant L. Then the general Douglas-Rachford{

yk+1 = θI+ (1− θ) Rη
f Rη

g(yk)
xk = Proxη

g(yk)
, θ ∈ (0, 1], ∀η > 0,

satisfies

1. ∥yk+1 − y∗∥ ≤ ∥yk − y∗∥. But ∥xk+1 − x∗∥ ≤ ∥xk − x∗∥ is not true.
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2.
∥xk+1 − x∗∥2 ≤ ∥yk+1 − y∗∥2 ≤ [θ + (1− θ)c]2k∥y0 − y∗∥2,

where

c =
√

1− 4µη
(1 + ηL)2 ≥

1− ηL
1 + ηL

.

Remark 6.6. The best provable rate w.r.t. θ would be θ = 1 (Peaceman-
Rachford). On the other hand, such a provable rate is usually much slower
than the actual convergence rate, thus the fastest parameter may not be θ = 1
in practice.

Proof. 1. Lemma 6.2 implies ∥Rη
g(x)− Rη

g(y)∥ ≤ c∥x− y∥.

2. Rη
f is nonexpansive, so

∥Rη
f Rη

g(x)− Rη
f Rη

g(y)∥ ≤ c∥x− y∥,

3. Let T = θI+ (1− θ) Rη
f Rη

g , then

∥T (x)− T (y)∥ ≤ [θ + (1− θ)c]∥x− y∥

thus
∥xk − x∗∥ ≤ ∥yk − y∗∥ ≤ [θ + (1− θ)c]k∥y0 − y∗∥.

6.7 Maximal monotone operators
We summarize the main results in this chapter by considering set valued
operators:

1. An operator T is a set-valued mapping or multi-valued function on Rn

if T (x) ⊂ Rn, and its domain is defined as

dom(T ) = {x ∈ Rn : T (x) ̸= ∅}.

2. An operator T is called monotone if

⟨T (x)− T (y),x− y⟩, ∀x,y ∈ dom(T ).

3. The graph of an operator is defined as

Graph(T ) = {(x,y) ∈ Rn ×Rn : y ∈ T (x)}.

4. A monotone operator T is called maximal monotone if there is no
other monotone operator S such that Graph(T) is a proper subset of
Graph(S).
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5. The inverse operator is defined as T−1(x) = {y : x ∈ T (y)}.

6. The resolvent of an operator T is defined as JT = (I+ T )−1.

7. The reflection of an operator T is defined as RT = 2JT − I = 2(I +
T )−1 − I.

8. If T is nonexpansive, then (1−θ)I+θT is called θ-averaged operator for
θ ∈ (0, 1). By Theorem 6.7, the fixed point iteration of any θ-averaged
operator always converges.

Lemma 6.3. If A is maximal monotone, RA is a nonexpansive (single-
valued) operator with dom(RA) = Rn , and JA is a (1/2)-averaged with
dom(JA) = Rn

Examples:

1. If f(x) is a proper convex function, then ∂f is a monotone operator.

2. If f(x) is a proper closed convex function, then ∂f is a maximal mono-
tone operator, thus Proxη

f is (1/2)-averaged and Rη
f is nonexpansive.

3. If f(x) and g(x) are proper closed convex functions, then

Rη
fR

η
g is nonexpansive⇔

I+Rη
fR

η
g

2 is firmly nonexpansive

Rη
fR

η
g is nonexpansive⇒

(1− θ)I+ θRη
fR

η
g

2 converges for any θ ∈ (0, 1), η > 0.

We list the algorithms as follows:

General Douglas-Rachford :


yk+1 = [(1− λ)I+ λ

I+Rη
f

Rη
g

2 ](yk), λ ∈ (0, 2)
= yk − λxk + λProxη

f (2xk − yk)
xk = Proxη

g(yk)

Douglas-Rachford :

yk+1 = I+Rη
f

Rη
g

2 (yk) = yk − xk + Proxη
f (2xk − yk)

xk = Proxη
g(yk)

Peaceman-Rachford :
{

yk+1 = Rη
f Rη

g(yk)
xk = Proxη

g(yk)
.
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6.8 Davis-Yin splitting
For a composite problem of two functions minx f(x) + g(x), the Douglas-
Rachfording splitting is given as{

yk+1 = yk − xk + Proxη
f (2xk − yk)

xk = Proxη
g(yk)

.

To extend it to three functions

min
x
f(x) + g(x) + h(x),

the Davis-Yin splitting [5] is given as
xk+ 1

2
= Proxη

g(zk)
xk+1 = Proxη

f (2xk+ 1
2
− zk − η∇h(xk+ 1

2
))

zk+1 = zk + xk+1 − xk+ 1
2

,

which can be proven convergent for convex functions f, g, h with ∇h being
Lipschitz continuous with Lipschitz L, and η < 2

L .

Remark 6.7. When h(x) ≡ 0, Davis-Yin splitting reduces to Douglas-
Rachford splitting. When g(x) ≡ 0, Davis-Yin splitting reduces to the
forward-backward splitting.

Remark 6.8. The Davis-Yin splitting is equivalent to a 3-block ADMM
method (for a dual problem), which however is slightly different from the
popular version of 3-block ADMM method.
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7

Fenchel duality and primal
dual methods

7.1 Convex conjugate
The convex conjugate is also called Legendre Transform, Fenchel Transform
and Fenchel dual:

Definition 7.1. For an extended function f : R −→ [−∞,+∞], its convex
conjugate is defined as

f∗(x) = max
y
⟨x,y⟩ − f(y).

Theorem 7.1. For any proper function f : R −→ (−∞,+∞], f∗(x) is a
closed convex function on its domain dom(f∗) = {x : f∗(x) < +∞} even if
f(x) is not convex.

Theorem 7.2. For any proper convex function f : R −→ (−∞,+∞], f∗(x)
is a proper closed convex function.

Example 7.1. By solving the critical point equation, we can find that

1. For f(x) = ex,

f∗(x) =


x log x− x, x > 0
0, x = 0
+∞, x < 0

.

2. For f(x) = ax+ b,

f∗(x) =
{
−b, x = a

+∞, x ̸= a
.

Theorem 7.3. The convex conjugate satisfies:

105



106 7. FENCHEL DUALITY AND PRIMAL DUAL METHODS

• For any f : R −→ (−∞,+∞], f(x) + f∗(y) ≥ ⟨x,y⟩, ∀x,y.

• For any f : R −→ [−∞,+∞], f(x) ≥ f∗∗(x), ∀x.

• For any proper closed convex function f , f(x) = f∗∗(x), ∀x.

Example 7.2. If f(x) = ∥x∥ for some norm, then the convex conjugate is
the indicator function of the dual norm unit ball

f∗(x) =
{

0, ∥x∥∗ ≤ 1
+∞, ∥x∥∗ > 1

.

1. For the vector 2-norm ∥x∥2, ∥x∥∗ = ∥x∥2.

2. For the vector 1-norm ∥x∥1, ∥x∥∗ = ∥x∥∞ = maxi |xi|.

3. For the vector ∞-norm ∥x∥∞, ∥x∥∗ = ∥x∥1 = ∑
i |xi|.

4. For the vector p-norm ∥x∥p, ∥x∥∗ = ∥x∥q, where

∥x∥p =
[∑

i

|xi|p
] 1

p

,
1
p

+ 1
q

= 1.

7.1.1 Fenchel Duality Theorem

Theorem 7.4. Let f and g be two proper convex functions. Assume the
intersection of relative interior of dom(f) and relative interior of dom(g) is
not empty, then

min
x

[f(x) + g(x)] = −min
y

[f∗(y) + g∗(−y)]

Theorem 7.5. For a proper closed convex function f , the following are
equivalent:

1. f(x) + f∗(y) = ⟨x,y⟩.

2. y ∈ ∂f(x).

3. x ∈ ∂f∗(y).

Therefore, for two proper closed convex functions, we have the following
primal dual relation:

y∗ = argmin
y

f∗(y)− ⟨x∗,y⟩ ⇔ x∗ ∈ ∂f∗(y∗)

x∗ = argmin
x
⟨x,y∗⟩+ g(x)⇔ −y∗ ∈ ∂g(x∗).
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7.1.2 Strong convexity and smoothness

Theorem 7.6 (Conjugate Correspondence.). Strong convexity is equiv-
alent to smoothness of the conjugate function:

1. If f is proper closed µ-strongly convex, then ∇f∗ is Lipschitz contin-
uous with L = 1

µ .

2. If f : Rn −→ R has Lipschitz continuous gradient, then f∗ is µ-
strongly convex with µ = 1

L .

Example 7.3. Consider the problem minx f(x)+g(x), where f(x) = ∥x∥1+
1

2α∥x∥
2, g(x) = ι{x:Ax=b}(x). Then the strong convexity of f implies ∇f∗

is Lipschitz-continuous with L = α. For finding ∇f∗, there is no need to
evaluate f∗:

x = ∇f∗(y)⇔ y ∈ ∂f(x) = ∂∥x∥1 + 1
α

x⇔ x = (I+ α∂∥ · ∥1)−1(αy).

7.1.3 Moreau-Decomposition

Theorem 7.7 (Moreau-Decomposition). For any proper closed convex func-
tion f : R −→ (−∞,+∞], for any x and η > 0,

Proxη
f (x) + ηProx

1
η

f∗(x
η

) = x.

Thus by Moreau-Decomposition, we have Proxf∗ whenver we have Proxf .

Example 7.4. Now consider solving the basis pursuit problem (4.2). It
is proven in [18] that the minimizer (4.4) for large enough α minimizes
(4.2). So assume we use a large enough α, we consider (4.4) written in the
following form

min
x
∥x∥1 + ι{x:Ax=b}(x) + 1

2α∥x∥
2

Let f(x) = ∥x∥1 and g(x) = ι{x:Ax=b}(x) + 1
2α∥x∥

2, then we have both
proximal operators. Among all methods introduced so far, we can use only
Douglas-Rachford splitting to solve it. But if we consider the Fenchel’s dual
formulation:

min
x

[f(x) + g(x)] = −min
y

[f∗(y) + g∗(−y)],

then for solving miny[f∗(y) + g∗(−y)], we may use Fast Proximal Gradient
method since ∇g∗ is Lipschitz continuous due to the strong convexity of g(x).
On the other hand, this may not be a good choice since the Lipschtiz constant
is exactly α.
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7.2 How many different Douglas-Rachford split-
tings?

Now consider solving

min
x

[f(x) + g(x)] = −min
y

[f∗(y) + g∗(−y)],

with f(x) = ∥x∥1 and g(x) = ι{x:Ax=b}(x). To apply the Douglas-Rachford
splitting, it seems that there are at least four choices to do fixed point
iteration yk+1 = T (yk):

1. T = 1
2 [I+ Rf(x) Rg(x)].

2. T = 1
2 [I+ Rg(x) Rf(x)].

3. T = 1
2 [I+ Rf∗(y) Rg∗(−y)].

4. T = 1
2 [I+ Rg∗(−y) Rf∗(y)].

For the first two choices, for the Peaceman-Rachford splitting, it can be
easily proven that they are the same if using special intial guess:

Theorem 7.8. The sequence produced by{
zk+1 = Rη

g Rη
f (zk)

xk = Rη
f (zk)

, z0 = Rη
g(y0),

is the same as the sequence produced by{
yk+1 = Rη

f Rη
g(yk)

xk = Rη
g(yk)

, ∀y0.

Remark 7.1. For general Douglas-Rachford splitting, though the same re-
sult cannot be shown, in practice the difference in numerical performance
between two different versions caused by switching f and g is marginal and
minimal.

Now the question is, does it make a difference if using Douglas-Rachford
splitting on the Fenchel’s dual problem? It turns out that they is still no
difference.

For solving minx[F (x) + G(x)], with step size η > 0, it can be written
as

General Douglas-Rachford : vk+1 = [(1−λ)I+λI+ Rη
F Rη

G

2 ](vk), λ ∈ (0, 2).
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For the primal problem minx[f(x) + g(x)], we take G(x) = f(x) and
F (x) = g(x), then

DR on (P) :


vk+1 = [(1− λ)I+ λ

I+Rη
g Rη

f

2 ](vk), λ ∈ (0, 2)
= vk − λxk + λProxη

f (2xk − vk)
xk = Proxη

f (vk)
. (7.1)

For the dual problem miny[f∗(y) + g∗(−y)], we take F (y) = g∗(−y) and
G(y) = f∗(y), then

Proxη
F = −Proxη

g∗ .

Using step size τ > 0, we have

DR on (D) :


uk+1 = [(1− λ)I+ λ

I+Rτ
F Rτ

G
2 ](uk), λ ∈ (0, 2)

= uk − λyk − λProxτ
g∗(2yk − uk)

yk = Proxτ
f∗(uk)

. (7.2)

Theorem 7.9. The general Douglas-Rachford splitting on the primal prob-
lem (7.1) is exactly the same as general Douglas-Rachford splitting on the
dual problem (7.2) if η = 1

τ . In particular, uk = vk
η , xk → x∗ and yk → y∗.

Problem 7.1. Prove the two theorems in this section. If using (7.2), how
to recover the physcial variable x from its iterate uk or yk?

7.3 Primal Dual Hybrid Gradient (PDHG) method
For a given composite problem in Theorem 7.4, we have the following three
equivalent formulation:

Primal Problem (P) : min
x

[f(x) + g(x)]

Dual Problem (D) :−min
y

[f∗(y) + g∗(−y)]

Primal Dual (PD) : min
x

max
y

[⟨x,y⟩ − f∗(y) + g(x)]

Primal Dual relation :x∗ ∈ ∂f∗(y∗), y∗ ∈ −∂g∗(x∗).

In (PD), the cost function is

L(x,y) = ⟨x,y⟩ − f∗(y) + g(x),

and for finding the saddle point minx maxy L(x,y), a simple method is to
use implicit gradient descent/ascent:

xk+1 − xk

η
= −∂L(xk+1,yk)

∂x = −yk − ∂g(xk+1)

yk+1 − yk

η
= ∂L(xk+1,yk+1)

∂y = xk+1 − ∂f∗(yk+1)
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which gives the Arrow-Hurwitz method (1958):

Arrow-Hurwitz :
{

xk+1 = Proxη
g [xk − ηyk]

yk+1 = Proxτ
f∗ [yk + τxk+1]

, η > 0, τ > 0.

For the Arrow-Hurwitz method to converge, the step sizes must be small
enough. A better method is the Primal Dual Hybrid Gradient (PDHG)
method introduced around 2010:

PDHG :
{

xk+1 = Proxη
g [xk − ηyk]

yk+1 = Proxτ
f∗ [yk + τ(2xk+1 − xk)]

, η > 0, τ > 0, ητ ≤ 1.

Theorem 7.10. The PDHG method with τ = 1
η is equivalent to the Douglas-

Rachford splitting I+Rf Rg

2 . Thus the PDHG method with τ = 1
η converges

for any η > 0 if f and g are two convex functions satisying assumptions in
the Fenchel’s duality Theorem.

Proof. Define vk = xk − ηyk, then the PDHG method above with τ = 1
η

becomes {
xk+1 = Proxη

g [vk]
vk+1 = vk − xk+1 + Proxη

f [(2xk+1 − vk)]
, η > 0.

7.4 A simple version of ADMM
The Alternating Direction Method of Multipliers (ADMM) introduced in
1970s is a widely use propular method. We first consider its simplest version.
For solving minx f(x) + g(x), we rewrite it as

min f(w) + g(z), w = z.

For such a constrained minimization, the Lagrangian is defined as

L(w, z,y) = f(x) + g(z)− ⟨y,w− z⟩,

where y is the Lagrangian multiplier. For finding a saddle point to the
Lagrangian, the Augmented Lagrangian is given as

L(w, z,y) = f(x) + g(z)− ⟨y,w− z⟩+ τ

2∥w− z∥2.

The ADMM method with step sizes τ > 0 and σ > 0 is given as

zk+1 = argmin
z
L(wk, z,yk)

wk+1 = argmin
w

L(w, zk+1,yk)

yk+1 = yk + σ
∂L
∂y

(wk+1, zk+1,yk)
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which is equivalent to

zk+1 = argmin
z

g(z)− ⟨yk,wk − z⟩+ τ

2∥wk − z∥2

(ADMM) : wk+1 = argmin
w

f(w)− ⟨yk,w− zk+1⟩+ τ

2∥w− zk+1∥2

yk+1 = yk + σ(wk+1 − zk+1)

Theorem 7.11. The ADMM method with σ = τ = η is equivalent to the
Douglas-Rachford splitting I+Rη

F Rη
G

2 on the dual problem with F = g∗(−y)
and G = f∗(y). Thus the ADMM method converges for any two convex
functions if using step size σ = τ > 0.

Proof. For the DR splitting vk+1 = I+Rη
F Rη

G
2 (vk), yk = ProxG(vk), define

vk+1−yk

η = zk+1 and vk−yk
η = wk, then it can be verified.

Problem 7.2. Finish the proof above.

Problem 7.3. Start with the general DR splitting on the dual problem
vk+1 = [(1 − λ)I + λ

I+Rη
F Rη

G
2 (vk)], yk = ProxG(vk) to derive a general

ADMM method with a relaxation parameter λ ∈ (0, 2).

7.5 Split Bregman method
The Bregman distance for a convex function f is defined as

Df (x,y) = f(x)− f(y)− ⟨∂f(y),x− y⟩.

The Bregman distance was used for the original Bregman iteration for
minimization. The split Bregman method by Goldstein and Osher in 2009
is also a very popular method. For simplicity, we first consider it for solving

min f(w) + g(z), w = z.

Consider an unconstrained problem

min
w,z

f(w) + g(z) + τ

2∥w− z∥2,

for which the Bregman iteration is given as

zk+1 = argmin
z

g(z) + τ

2∥wk − z− uk∥2

(Split Bregman) : wk+1 = argmin
w

f(w) + τ

2∥w− zk+1 − uk∥2

uk+1 = uk + (wk+1 − zk+1)
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Plug in u = 1
τ y, then it can be written as

zk+1 = argmin
z

g(z)− ⟨yk,wk − z⟩+ τ

2∥wk − z∥2

(Split Bregman) : wk+1 = argmin
w

f(w)− ⟨yk,w− zk+1⟩+ τ

2∥w− zk+1∥2

yk+1 = yk + τ(wk+1 − zk+1)

So this version of split Bregman method is equivalent to ADMM with
σ = τ , thus also equivalent to the DR spliting on the dual.

7.6 Equivalence of popular algorithms
Now consider popular algorithms for solving

Primal Problem (P) : min
x

[f(x) + g(x)]

Dual Problem (D) :−min
y

[f∗(y) + g∗(−y)]

Primal Dual (PD) : min
x

max
y

[⟨x,y⟩ − f∗(y) + g(x)],

the following are exactly equivalent:

1. PDHG on (PD) with step size choice τ = 1
η .

2. Simple Douglas-Rachford splitting on (P) with step size η > 0.

3. ADMM on (D) with step size τ = σ = η.

4. Split Bregman on (D) with parameter τ = η.

5. Simple Douglas-Rachford splitting on (D) with step size 1
η > 0.

6. ADMM on (P) with step size τ = σ = 1
η .

7. Split Bregman on (P) with parameter τ = 1
η .
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Splitting methods for TV
norm minimization and
similar problems

In this chapter, we consider solving a problem in the form

min
x
f(Kx) + g(x),

where K is a matrix or a linear transformation, and we have the proximal
operator for f(y) but not for F (x) = f(Kx). One example is the ROF
model for TV-norm denoising in Section 4.1.2. We may consider the TV-
norm denoising for a one-dimensional signal as an example:

min
x∈Rn

∥Dx∥1 + α

2 ∥x− d∥
2, (8.1)

where d ∈ Rn is a given 1D noisy signal and D is the finite difference matrix
for approximating first order derivatives:

D =



−1 1
−1 1

−1 1
. . . . . .

−1 1
0


n×n

.

8.1 Lagrangian and the dual problem
For a linear operator K, let K∗ denote its adjoint operator. For a real matrix
D, its adjoint D∗ is simply the transpose matrix DT . We also consider a
more general problem in the following form

min
x,y

f(x) + g(y), Ax +By = C,

113
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where A and B are matrices. Notice that x and y may not have the same
size. For example, for minx[f(Kx) + g(x)], we can rewrite it as

min
v,x

[f(v) + g(x)], v−Kx = 0.

For a constrained problem, the Lagrangian is given as

L(x,y, z) = f(x) + g(y) + ⟨z, Ax +By− C⟩.

Under some technical assumptions (see [12, 14]) for the matrices A and
B and convex functions f and g for ensuring regularity and total duality,
we have

min
x,y

max
z

[f(x) + g(y) + ⟨z, Ax +By− C⟩]

= max
z
{min

x
[f(x) + ⟨z, Ax⟩+ min

y
[g(y) + ⟨z, By⟩] + ⟨z,−C⟩}

= max
z
{−max

x
[⟨x,−AT z⟩ − f(x)]−max

y
[⟨y,−BT z⟩ − g(y)] + ⟨z,−C⟩}

= max
z

[−f∗(−AT z)− g∗(−BT z) + ⟨z,−C⟩]

=−min
z

[f∗(−AT z) + g∗(−BT z) + ⟨z, C⟩],

which implies the following problems are equivalent:

Primal Problem (P) : min
x

[f(Kx) + g(x)]

Dual Problem (D) :−min
y

[f∗(y) + g∗(−K∗y)]

Primal Dual (PD) : min
x

max
y

[⟨Kx,y⟩ − f∗(y) + g(−K∗x)].

8.2 The dual proximal gradient method
For the example (8.1), we have f(x) = ∥x∥1 and g(x) = α

2 ∥x − d∥
2, and

their conjugate functions are computable:

f∗(y) = ι{y : ∥y∥∞ ≤ 1}, g∗(y) = 1
2α∥y + αd∥2 − d2

2α.

So we have

Primal Problem (P) : min
x
∥Dx∥1 + α

2 ∥x− d∥
2,

Dual Problem (D) :−min
y

[f∗(y) + 1
2α∥D

T y− αd∥2 − d2

2α ].

For the primal problem (P), we can apply the subgradient method which
is however as slow as not converging in practice. We cannot use the prox-
imal gradient method for (P) since the proximal operator to ∥Dx∥1 is not
available. But it is quite straightforward to use the (fast) proximal gradient
method on (D), which is also called the dual proximal gradient method.
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8.3 The PDHG method

For the Lagrangian L(x,y) = ⟨y,Kx⟩ − f∗(y) + g(x), to find the saddle
point minx maxy L(x,y), the Arrow-Hurwitz method (1958) is to use im-
plicit gradient descent/ascent:

xk+1 − xk

η
= −∂L(xk+1,yk)

∂x = −K∗yk − ∂g(xk+1)

yk+1 − yk

η
= ∂L(xk+1,yk+1)

∂y = Kxk+1 − ∂f∗(yk+1)

which gives :

Arrow-Hurwitz :
{

xk+1 = Proxη
g [xk − ηK∗yk]

yk+1 = Proxτ
f∗ [yk + τKxk+1]

.

The convergence of the Arrow-Hurwitz method can be proven if g is strongly
convex, and the step sizes must be small enough. A better method is the
Primal Dual Hybrid Gradient (PDHG) method:

PDHG :
{

xk+1 = Proxη
g [xk − ηK∗yk]

yk+1 = Proxτ
f∗ [yk + τK(2xk+1 − xk)]

, η > 0, τ > 0, τη < 1
∥K∥2

.

Theorem 8.1. (O( 1
k ) convergence rate.) Let x̃k = 1

k

∑k
i=1 xi, the PDHG

method with τη < 1
∥K∥2 for convex functions f and g satisfies

L(x̃k,y)− L(x, ỹk) ≤ 1
k

[ 1
τ
∥x− x0∥2 + 1

σ
∥y− y0∥2].

Recall that the PDHG method is equivalent to Douglas-Rachford split-
ting solving the primal problem, if K = I. For a general linear operator K,
this equivalence is no longer true. However, the PDHG method for a general
linear operator K is still equivalent to Douglas-Rachford splitting solving a
different problem [9]:

min
u,v

f(Ku + Cv) + g(u) + ιv=0,

where
C = (γ−2

I−KKT )
1
2 , γ∥K∥ ≤ 1.

8.4 The accelerated PDHG method

The accelerated PDHG method introduced by Chambolle and Pock around
2010 is a very popular and easy-to-implement method. The PDHG can be
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equivalently written as

PDHG :


yk+1 = Proxτ

f∗ [yk + τKx̄k]
xk+1 = Proxη

g [xk − ηK∗yk+1]]
x̄k = xk+1 + θ(xk+1 − xk), θ = 1

.

The accelerated PDHG method by Chambolle and Pock is for a µ-strongly
convex function g:

fast PDHG :



τ0η0 ≤ 1
∥K∥2 , x̄0 = x0,

yk+1 = Proxτ
f∗ [yk + τKx̄k]

xk+1 = Proxη
g [xk − ηK∗yk+1]]

θk = 1√
1+2µηk

, ηk+1 = θkηk, τk+1 = τk
θk

x̄k = xk+1 + θk(xk+1 − xk)

.

Theorem 8.2. (O( 1
k2 ) convergence rate.) Let x̃k = 1

k

∑k
i=1 xi, the fast

PDHG method with τη < 1
∥K∥2 for a convex function f and a strongly convex

function g satisfies

0 ≤ sup
y∈B2

L(x̃k,y)− inf
x∈B1

L(x, ỹk) ≤ sup
y∈B2

sup
y∈B2

1
k2 [ 1

τ
∥x−x0∥2 + 1

σ
∥y−y0∥2],

where (B1, B2) is a closed bounded set containing a saddle point. If there is
only one saddle point, then (xk,yk)→ (x∗,y∗).

8.5 ADMM
For a more general problem

min
x,y

f(x) + g(y), Ax +By = C,

recall that the Lagrangian is given as

L(x,y, z) = f(x) + g(y) + ⟨z, Ax +By− C⟩.

The augmented Lagrangian with a parameter σ > 0 is given as

Lσ(x,y, z) = f(x) + g(y) + ⟨z, Ax +By− C⟩+ σ

2 ∥Ax +By− C∥2.

The ADMM method with step sizes τ > 0 and σ > 0 is given as

xk+1 = argmin
x
Lσ(x,yk, zk)

yk+1 = argmin
y
Lσ(xk+1,y, zk)

zk+1 = zk + τ
∂Lσ

∂z
(xk+1,yk+1, zk)
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which is equivalent to

xk+1 = argmin
x

f(x) + ⟨zk, Ax +Byk − C⟩+ σ

2 ∥Ax +Byk − C∥2

(ADMM) : yk+1 = argmin
y

g(y) + ⟨zk, Axk+1 +By− C⟩+ σ

2 ∥Axk+1 +By− C∥2

zk+1 = zk + τ(Axk+1 +Byk+1 − C).

From the Lagrangian, we can derive the dual problem:

(P) : min
x,y

f(x) + g(y), Ax +By = C

(D) : −min
z

[f∗(−AT z) + g∗(−BT z) + ⟨z, C⟩],

Theorem 8.3. Assume some technical conditions for matrices A,B and
convex functions f, g so that (P )⇔ (D) and F (z) = f∗(−AT z) and G(z) =
g∗(−BT z)+ ⟨z, C⟩ are well defined, then the ADMM method with σ = τ = η

is equivalent to the Douglas-Rachford splitting I+Rη
F Rη

G
2 on the dual problem.

Thus the ADMM method converges for any two convex functions if using
step size σ = τ > 0.

Problem 8.1. Start from the general Douglas-Rachford splitting (1−λ)I+
λ
I+Rη

F Rη
G

2 to derive a general ADMM method with an additional relaxation
parameter λ ∈ (0, 2). What assumptions do we need so that the limiting
Peaceman-Rachford splitting for λ = 2 will converge?

8.6 Implementation of TV norm minimization

The TV norm minimization for image denoising has been proposed since
early 1990s [13, 15].

8.6.1 Continuum ROF image denoising model

The discussion of a continuum setup only serves as an intuitional guide
for us to derive the discrete analog later. Consider a rectangular domain
Ω = [0, 1] × [0, 1], and a function u(x, y) ∈ H1(Ω), which represents an
image with infinite resolution. Then its total variation is defined as

∥u∥T V =
∫∫

Ω
|∇u|dxdy,

where ∇u = (ux, uy) and |∇u| =
√
|ux|2 + |uy|2. With L2-norm as

∥u∥L2 =
√∫∫

Ω
|u|2dxdy,
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for a given a(x, y), the ROF (Rudin, Osher, and Fatemi, 1992) model [13]
is to minimize (over u in a proper function space)

∥u∥T V + 1
2λ∥u− a∥

2
L2 ,

where λ is a fixed parameter.

Figure 8.1: Periodic or zero bounary conditions are suitable for MRI images,
but not for a generic image.

The function space that the minimizer should belong to, is a subspace of
H1(Ω) with suitable boundary conditions. For instance, periodic or homo-
geneous Dirichlet boundary conditions make sense for MRI images, but not
for a generic image. For convenience, for a generic image, we just consider
homogeneous Neumann boundary conditions, which will naturally emerge
in the discrete setup as will be seen in the following subsections. See Figure
8.1.

To this end, we define

H = {u ∈ H1(Ω) : ∇u · n|∂Ω = 0},

where n is the unit normal vector of the boundary ∂Ω.
The gradient operator ∇ is a linear mappping, and we use an abstract

name for it K = ∇:

K = ∇ : H −→ V = (L2(Ω), L2(Ω))
u 7−→ ∇u = (ux, uy)

To understand the adjoint operator of K = ∇, we need the H(div)-space:

H(div) = {q = (q1, q2) ∈ (L2(Ω), L2(Ω)) : ∇ · (q1, q2) ∈ L2(Ω)} ⊂ V.

Remark 8.1. Elements in H(div) are not necessarily in H1(Ω). For in-

stance, let f(x) =
{

1, x ≥ 0
0, x < 0

, then q(x, y) := (0, f(x)) is in H(div) but

f(x) /∈ H1(Ω).
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The divergence operator ∇· is a linear mapping from H(div) to L2(Ω).
If we assume suitable boundary conditions for smooth q so that boundary
terms in the integration-by-parts vanish, then K∗ = −∇· is the adjoint
operator of K = ∇ since

⟨Ku,q⟩ :=
∫∫

Ω
∇u·qdxdy = −

∫∫
Ω
u∇·qdxdy = ⟨u,−∇·q⟩, ∀q ∈ (C1

0 (Ω), C1
0 (Ω)).

8.6.2 Discrete ROF model

Consider an image of size n × n, corresponding to domain [0, 1] × [0, 1]
and a uniform grid xi, yj = (j − 1)h, j = 1, · · · , n with h = 1

n−1 . Notice
that an image does not have any necessary association of a domain of size
[0, 1] × [0, 1], and this assumption of domain [0, 1] × [0, 1] should not affect
the final implementation.

Recall that D is the finite difference matrix approximating first order
derivative, then we have

DT =



−1
1 −1

1 −1
. . . . . .

1 −1
1 0


n×n

, DTD =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


.

Now for a bivariate function u(x, y), let U be a 2D array with U(j, i) =
u(xi, yj), then

U ≈ u⇒ 1
h
UDT ≈ ux,

1
h
DU ≈ uy.

Remark 8.2. We may also choose the notation U(i, j) = u(xi, yj), then
1
hDU ≈ ux.

For function u(x, y) and a(x, y), we have

||u||T V ≈
∑

i

∑
j

h2
√
|ux(xi, yj)|2 + |uy(xi, yj)|2

||u− a||2L2 ≈
∑

i

∑
j

h2|u(xi, yj)− a(xi, yj)|2.

Introduce Ux := 1
hUD

T and Uy := 1
hDU. Let A be a 2D array with

A(j, i) = a(xi, yj), then the discrete ROF model is

min
U∈Rn×n

∑
i

∑
j

(
h2
√
Ux(j, i)2 + Uy(j, i)2 + h2 1

2λ|U(j, i)−A(j, i)|2
)
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= min
U∈Rn×n

∑
i

∑
j

(
h
√

[UDT ](j, i)2 + [DU ](j, i)2 + h2 1
2λ|U(j, i)−A(j, i)|2

)
.

Notice that its minimizer does not depend on the choice of h if λ = C
h

for some constant C. An image has no physical grid spacing anyway, so h
should be arbitrary, for which we should take λ = C

h . In practice, C = 10
usually produces a reasonable result. See Figure 8.2 and Figure 8.3.

(a) Noisy Image (b) C = 4

(c) C = 8 (d) C = 12

Figure 8.2: ROF solutions using isotropic TV-norm with different λ = C
h .

8.6.3 Primal, dual and primal-dual forms

Using all notation above, the discrete ROF model can be written as
min

U∈Rn×n
f(KU) + g(U), (8.2a)

where K = ∇h : Rn×n −→ R2(n×n) is a linear mapping

K(U) = ∇hU = 1
h

(UDT , DU), (8.2b)
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(a) Noisy Image (b) C = 4

(c) C = 8 (d) C = 12

Figure 8.3: ROF solutions using isotropic TV-norm with different λ = C
h .

and

f(P,Q) =
∑
i,j

h2
√
P 2(i, j) +Q2(i, j), g(U) = λ

∑
i,j

h2|U(i, j)− a(i, j)|2.

(8.2c)
It is straightforward to verify that the adjoint operator of K is given by

K∗ = −∇h· : R2(n×n) −→ R
n×n

(P,Q) 7−→ 1
h

(PD +DTQ)

The convex minimization (8.2a) is called primal form. To solve (8.2a),
equivalently we can solve its dual form

− min
P∈R2(n×n)

f∗(P) + g∗(−K∗P). (8.3)
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Both (8.2a) and (8.3) are also equivalent to the primal-dual form:

min
U∈Rn×n

max
P∈R2(n×n)

⟨KU,P⟩ − f∗(P) + g(U), (8.4)

Recall that the minimizer U∗ to (8.2a) and the minimizer P∗ to (8.3) are
related via the optimality condition in the primal-dual form in the previous
chapter. To recover the physical image U from P, we need the relation
obtained from the Legendre transform of g(U):

0 ∈ K∗P + ∂g(U),

which gives

0 = K∗P + λ(U −A)⇒ U = A− 1
λ
K∗P.

8.6.4 ADMM on the primal problem

Both alternating direction method of multipliers (ADMM) (Glowenski and
Marrocco 75) and Douglas-Rachford splitting (Lions and Mercier 79) are
popular and successful splitting convex minimization algorithms, and we
have seen that they are equivalent in the following sense:

ADMM on primal⇔ Douglas-Rachford on dual,

ADMM on dual⇔ Douglas-Rachford on primal.

By plugging in the linear constraint Ax+By = C as P−KU = 0, ADMM
with τ = σ applied on f(P) + g(U) in the primal form (8.2a) becomes

Pk+1 = argminPf(P) + ⟨Qk,P−KUk⟩+ σ

2 ∥P−KUk∥2

(ADMM) : Uk+1 = argminUg(U) + ⟨Qk,Pk+1 −KU⟩+ σ

2 ∥Pk+1 −KU∥2

Qk+1 = Qk + σ(Pk+1 −KUk+1).

For f(P) where P = (P,Q), its proximal operator for (V) = (U, V ) is
defined as

Proxη
f (V) = argmin

P
f(P,Q) + 1

2η∥P−V∥2

= argmin
P

∑
i,j

h2
√
P (i, j)2 +Q2(i, j) + 1

2ηh
2(|P (i, j)− U(i, j)|2 + |Q(i, j)− V (i, j)|2)

= argmin
P

∑
i,j

h2[
√
P (i, j)2 +Q2(i, j) + 1

2η (|P (i, j)− U(i, j)|2 + |Q(i, j)− V (i, j)|2)].
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Example 8.1. Consider f(x, y) =
√
x2 + y2, its subdifferential can be com-

puted as

∂f(x, y) =

∇f = ( x√
x2+y2

, y√
x2+y2

) , |x|+ |y| > 0

([−
√

2
2 ,

√
2

2 ], [−
√

2
2 ,

√
2

2 ]) , |x|+ |y| = 0
.

With the subdifferential, we can compute the conjugate function as an indi-
cator of the unit ball:

f∗(x, y) = ι{(x,y):x2+y2≤1}(x, y).

Problem 8.2. Derive the formula for Proxη
f (V) using Moreau’s formula

Proxη
f (x) + ηProx1/η

f∗ (xη) = x.

To implement the second line in ADMM, by ignoring constants, we con-
sider

Uk+1 = argminUg(U)− ⟨Qk,KU⟩+ τ

2∥KU −Pk+1∥2.

Notice that g(U) is a simple quadratic function, thus the minimizer is ob-
tained by finding critical point, for which we need to take derivative of
∥KU −Pk+1∥2 w.r.t. U :

∂

∂U
⟨KU −Pk+1,KU −Pk+1⟩ = h2(2K∗KU − 2K∗Pk+1).

So the second line can be equivalently written as

λ(Uk+1 −A)−K∗Qk + τK∗KUk+1 − τK∗Pk+1 = 0

which is
(λI + τK∗K)Uk+1 = −λA+K∗Qk + τK∗Pk+1.

Notice that K∗K = −∆h is precisely the discrete Laplacian with purely
Neumann boundary conditions, and λI − τ∆h can be inverted efficiently in
a simple way, see Appendix B.3.

8.6.5 Douglas-Rachford splitting on the dual problem

Using notation in this section, for the TV-norm denoising problem of a 2D
image B ∈ Rn×n, the primal problem is equivalently written as

min
U∈Rn×n

∥KU∥1 + λ

h
∥U −B∥2F ,

where ∥·∥F is the Frobenius norm for a matrix ∥U−B∥F =
√∑

i,j |U(i, j)− a(i, j)|2
and the 1-norm for a pair of matrices V = (P,Q) is

F (V) = ∥(P,Q)∥1 =
∑
i,j

√
P (i, j)2 +Q(i, j)2.
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The convex conjugate of F (V) is

F ∗(V) =
∑
i,j

ι{P (i,j)2+Q(i,j)2≤1}.

Up to a constant shift, the dual problem can be written as

−minF ∗(V) + h

2λ∥K
∗V− λ

h
B∥2F .

Problem 8.3. Derive the dual problem.

The proximal operator of F ∗ can be easily computed as the projection
to the unit ball for each entry (i, j).

Now consider the proximal operator of the function

G∗(V) = h

2λ∥K
∗V− λ

h
B∥2F ,

which is written as

Proxη
G∗(W) = argmin

V

h

2λ∥K
∗V− λ

h
B∥2F + 1

2η∥V−W∥2F .

Let V = argmin, then the critical point equation gives

h

λ
K(K∗V− λ

h
B) + 1

η
(V−W) = 0

⇒ (1
η
I+ h

λ
KK∗)V = KB + 1

η
W.

We need to solve V in an equation in the form

KK∗V + βV = F

where β = λ
ηh and F = ηKB+W is some known vector field. At first glance,

this corresponds to an equation

∇(−∇ · p⃗) + βp⃗ = f⃗ ,

which involves the mixed second order derivatives, which is a harder equation
to solve than the Poisson equation.

However, we can just solve Poisson equation to solve this seemingly
difficult equation:

1. Let U = −∇h · V = K∗V, then taking negative divergence for both
sides, we get −∇h · (∇hU) +βU = −∇h ·F, thus we solve one Poisson
equation to get U .
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2. The kernal of K∗ is orthogonal to the range of K (column space of a
matrix K is orthogonal to the left null space of K), thus

R
2(n×n) = Ker(K∗)⊕R(K),

which implies a very useful fact (corresponding to Helmholtz decom-
position for suitable vector fields):

V = ∇hW + G, ∇h ·G = 0.

3. Finally, we need to solve Poisson one more time:

−∇h ·V = U ⇒ −∇h · (∇hW + G) = U ⇒ −∆hW = U.

4. To recover G, plug V = ∇hW + G back into the original equation, we
get G = F− β∇hW −∇hU.

Putting everything together, we get

V = F + (1− β)∇hW −∇hU

∇hW = ∇h(−∆h)−1(−∆h + βI)−1(−∇h · F)
∇hU = ∇h(−∆h + βI)−1(−∇h · F),

where (−∆h +βI)−1 can be computed similarly for computing (−∆h)−1, see
Appendix B.3.

Remark 8.3. It is not a surprise that the seemingly more difficult equation
∇(−∇·p⃗)+βp⃗ = f⃗ can actually be solved by two Poisson equations (−∆h)−1

and (−∆h +βI)−1, since the Douglas-Rachford splitting on the dual problem
is equivalent to ADMM on the primal problem, which involves a Poisson
equation (−∆h + βI)−1.

Remark 8.4. Despite the mathematical equivalence between Douglas-Rachford
splitting on the dual problem and ADMM on the primal problem, in terms
of computational cost, ADMM on the primal problem is better, since only
one Poisson equation (−∆h + βI)−1 needs to be computed in each iteration.

8.7 Comparisons and concluding remarks

So for the TV norm minimization problem in this chapter, we have consid-
ered three algorithms:

1. The (fast) proximal gradient method on the dual problem (D).

2. The (fast) PDHG method by Chambolle and Pock.
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3. The ADMM method on (P) (Douglas-Rachford splitting on (D)).

In terms of implementation, the first two methods do not involve inverting
big matrices, e.g., solving a Poisson equation, which is however needed in
ADMM. On the other hand, ADMM may converge faster than the first two
methods in terms of iteration numbers, though each iteration of ADMM
is more expensive. Moreover, in practice, one may use an inaccurate ap-
proximation to the solution of the Poisson equation in ADMM and its per-
formance is often quite satisfying. For instance, for solving the Poisson
equation, a few iterations of conjugate gradient method can be used as a
(very inaccurate) approximation. See [19] for examples and justifications.
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Appendix A

Linear algebra

A.1 Eigenvalues and Courant-Fischer-Weyl min-
max principle

Notations and quick facts:

• AT denote the transpose. A∗ denote the conjugate transpose of A.

• A matrix A ∈ Cn×n is called Hermitian if A∗ = A. Any Hermitian
matrix A has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn with a complete set
of orthonormal eigenvectors.

• Any real symmetric matrix has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn

with a complete set of real orthonormal eigenvectors.

For a Hermitian matrix A, Rayleigh-Ritz quotient is defined as

RA(x) = x∗Ax

x∗x
, x ∈ Cn.

Let {vj ∈ Cn : j = 1, · · · , n} be orthonormal eigenvectors of A then they
form a basis. Thus any vector x can be expressed as x =

n∑
j=1

ajvj . Let V be

a matrix with columns as vj and a be a column vector with entries aj . Then
x = V a and x∗x = a∗V ∗V a = a∗a =

n∑
j=1
|aj |2. Let Λ be a diagonal matrix

with diagonal entries λj . We have Avj = λjvj thus Ax =
n∑

j=1
ajAvj =

n∑
j=1

ajλjvj = V Λa. Thus x∗Ax = a∗V ∗V Λa = a∗Λa =
n∑

j=1
λj |aj |2. So we get

λn

n∑
j=1
|aj |2 ≤

n∑
j=1

λj |aj |2 ≤ λ1

n∑
j=1
|aj |2,

which is the min-max principle.

133
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Theorem A.1 (Courant-Fischer-Weyl min-max principle). Let λ1 and λn

be the largest and the smallest eigenvalues of a Hermitian matrix A, then
for any vector x ∈ Cn,

λn ≤
x∗Ax

x∗x
≤ λ1.

Next, we consider a positive definite matrix A, i.e., the eigenvalues are
positive:

λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

Then A is invertible and A−1 has the same eigenvectors vi with eigenvalues
λ−1

i .

Theorem A.2 (Kantorovich inequality). Let A ∈ Cn×n be a positive defi-
nite matrix, then

∥x∥4

(x∗Ax)(x∗A−1x) ≥
4λ1λn

(λ1 + λn)2 , ∀x ∈ Cn.

Proof. With similar discussions as before, we get

∥x∥4

(x∗Ax)(x∗A−1x) =

[
n∑

j=1
|aj |2

]2

[
n∑

j=1
λj |aj |2

] [
n∑

j=1
|aj |2/λj

] = 1
n∑

j=1
λjbj

1
n∑

j=1
bj/λj

,

where bj = |aj |2
n∑

j=1
|aj |2

. We can rewrite it as

∥x∥4

(x∗Ax)(x∗A−1x) = ϕ(b)
ψ(b) ,

where ϕ(b) = 1
n∑

j=1
λjbj

and ψ(b) =
n∑

j=1
bj/λj .

Consider the convex function g(λ) = 1
λ , then ϕ(b) = g(λ∗) with a specific

point λ∗ =
n∑

j=1
λjbj .

Consider a line segment connecting (λ1,
1

λ1
) and (λn,

1
λn

) in the same
plane where the graph of g(λ) lies. Then this line segment intersects with
the vertical line λ = λ∗ at some point (λ∗,

c
λ1

+ d
λn

) where c + d = 1 and
c, d > 0.

Notice that all the bj form a set of convex combination coefficients, thus
the value of ψ(b) can be regarded as a convex combination of points (λj ,

1
λj

)
for all j, which is a point in the same plane. In particular, this point is on
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the vertical line λ = λ∗, and lower than the intersection point (λ∗,
c

λ1
+ d

λn
),

and higher than (λ∗,
1

λ∗
) due to the convexity of the function g(λ) = 1

λ .
So we have

ϕ(b)
ψ(b) ≥

1/λ∗
c

λ1
+ d

λn

.

Notice that λ∗ can also be written as λ∗ = cλ1 + dλn. Since c = 1− d and
d = 1− c, we get

c

λ1
+ d

λn
= cλn + dλ1

λ1λn
= (1− d)λn + (1− c)λ1

λ1λn
= λ1 + λn − λ∗

λ1λn
.

Thus
ϕ(b)
ψ(b) ≥

1/λ∗
c

λ1
+ d

λn

= 1/λ∗
λ1+λn−λ∗

λ1λn

≥ min
λ∈(λn,λ1)

1/λ
λ1+λn−λ

λ1λn

.

The minimum value is achieved at λ = (λ1 + λn)/2. Plug it in, the proof is
concluded.

A.2 Singular values
For a matrix A ∈ Cm×n, let A∗ denote the conjugate transpose of A. Then
A∗A and AA∗ are both positive semi-definite (or definite) Hermitian matri-
ces thus have real non-negative eigenvalues, denoted as λi(A∗A) and λi(AA∗)
ordering by magnitudes.

The matrix A has l = min{m,n} singular values, defined as

σi(A) =
√
λi(A∗A) =

√
λi(AA∗).

The singular values are defined for any matrix A and are always real non-
negative. Eigenvalues are defined for square matrices and are not necessarily
real.

A.3 Singular value decomposition
Theorem A.3. Let l ≤ min{m,n}. Any matrix A ∈ Cm×n of rank k has a
decomposition A = UΣV ∗ (singular value decomposition (SVD) where
U of size m × l and V of size n × l have orthonormal columns and Σ of
size l× l is diagonal matrix with singular values of A. It also has a compact
decomposition A = U1Σ1V1 (compact SVD) where where U of size m× k
and V of size n×k have orthonormal columns and Σ1 of size k×k is diagonal
matrix with nonzero singular values of A.

Proof. Assume n ≤ m, we consider the matrix A∗A (if n > m, similar
procedure for AA∗). The matrix A∗A is positive semi-definite Hermitian
thus has non-negative real eigenvalues with a complete set of orthonormal
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eigenvectors. And A∗A has the same rank as A (why? good excercise to
figure it out), thus A∗A has k nonzero eigenvalues. Let D be a k×k diagonal
matrix with all nonzero eigenvalues of A∗A as diagonal entries, and V be a
n× n matrix with orthonormal eigenvectors as columns. Then

V ∗A∗AV =
[
D 0
0 0

]
.

Let V = [V1 V2] corresponding to nonzero and zero eigenvalues, then[
V ∗

1
V ∗

2

]
A∗A

[
V1 V2

]
=
[
D 0
0 0

]
.

By multiplying matrices in the left hand side above, we get

V ∗
1 A

∗AV1 = D, V ∗
2 A

∗AV2 = 0.

Recall V = [V1 V2] has orthonormal columns thus V V ∗ = I, which implies
V1V

∗
1 + V2V

∗
2 = I.

Next, since V2 consists of eigenvectors to zero eigenvalue of A∗A, we
get A∗AV2 = 0 thus V ∗

2 A
∗AV2 = 0. So we must have AV2 = 0 because it

contradicts with V ∗
2 A

∗AV2 = 0 otherwise.
Let U1 = AV1D

− 1
2 where D 1

2 is defined as taking square root for diagonal
entries of D. Then

U1D
1
2V ∗

1 = AV1V
∗

1 = A(I − V2V
∗

2 ) = A− (AV2)V ∗
2 = A.

The decomposition A = U1D
1
2V ∗

1 is exactly the compact SVD. Pick any U2
of size n × (n − k) such that U = [U1 U2] is a unitary matrix and define Σ
of size n× n as

Σ =
[
D

1
2 0

0 0

]
,

then A = UΣV is the full SVD.

From the proof above, we get the following facts:

• The columns of V (right-singular vectors) are eigenvectors of A∗A.

• The columns of U (left-singular vectors) are eigenvectors of AA∗.

• A real matrix A has real singular vectors.

• Let ui and vi be i-th columns of U and V corresponding i-th singular
value σi(A), then

Avi = σiui, A∗ui = σivi.
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• The rank of A is also the number of nonzero singular values of A.

• The compact SVD of A looks like this:

A = U1 Σ1 V ∗
1

with

Σ1 =

σ1
. . .

σk

 .
It is a convention to order σi in decreasing order: σ1 ≥ σ2 ≥ · · · ≥ σk.

• For a Hermitian (or real symmetric) positive semi-definite (PSD) ma-
trix A and its SVD A = UΣV ∗ we must have U = V , thus its SVD
A = UΣU∗ is also its eigenvalue decomposition. Therefore, singular
values are also eigenvalues for PSD matrices.

A.4 Pseudoinverse
Let the compact SVD of A ∈ Cm×n be

A = U1 Σ1 V ∗
1

with

Σ1 =

σ1
. . .

σk

 , σi > 0.

The pseudoinverse A† ∈ Cn×m is defined as A† = V1Σ−1
1 U∗

1 . Special cases:
1. A has linearly independent columns, then A† = (A∗A)−1A∗ and A†A =
In×n. In this case, A† is also called left inverse of A.

2. A has linearly independent rows, then A† = A∗(AA∗)−1 and AA† =
Im×m. In this case, A† is also called right inverse of A.

A.5 Vector norms

For x =
[
x1 x2 · · · xn

]T
:

• 2-norm: ∥x∥ =
√

n∑
j=1
|x|2j .

• 1-norm: ∥x∥1 =
n∑

j=1
|x|j .

• ∞-norm: ∥x∥∞ = maxj |x|j .
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A.6 Matrix norms
For a rank k matrix A = (aij) of sizem×n, assume its SVD is A = UΣV with
nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σk. Let σ =

[
σ1 σ2 · · · σk

]T
.

There are many norms of matrices. The following are a few important ones:

• Spectral norm: ∥A∥ is defined as ∥A∥ = max
x∈Cn

∥Ax∥
∥x∥ (x ∈ Rn for real

matrices) and ∥A∥ is equal to the largest singular value of A. By
Courant-Fischer-Weyl min-max principle Theorem A.1,

∥Ax∥
∥x∥

=
√
∥Ax∥2
∥x∥2

=
√
x∗A∗Ax

x∗x
≤
√
λ1(A∗A).

By taking x = v1, the eigenvector of A∗A corresponding to λ1(A∗A),
we get ∥A∥ =

√
λ1(A∗A) = σ1.

• Frobenius norm: ∥A∥F =
√
tr(A∗A) =

√
m∑

i=1

n∑
j=1
|aij |2.We have ∥A∥F =

∥σ∥ because

∥A∥F =
√
tr(V ∗ΣU∗UΣV ) =

√
tr(V ∗Σ2V ) =

√
tr(V V ∗Σ2) =

√∑
j

σ2
j ,

where we have used the property of trace function tr(ABC) = tr(CAB)
for three matrices A,B,C of proper sizes.

• Nuclear norm: ∥A∥∗ = σ1 + σ2 + · · ·σk. Then the nuclear norm of A
is simply ∥σ∥1.

• Matrix 1-norm: ∥A∥1 = max
x∈Cn

∥Ax∥1
∥x∥1

(x ∈ Rn for real matrices). Since
Ax is a linear combination of columns of A, therefore ∥Ax∥1 for ∥x∥1 =
1 is less than or equal to a convex combination of 1-norm of columns
of A thus ∥A∥1 = max

j

m∑
i=1
|aij |.

• Matrix ∞-norm: ∥A∥∞ = max
x∈Cn

∥Ax∥∞
∥x∥∞

(x ∈ Rn for real matrices). It

is easy to show ∥A∥∞ = max
i

n∑
j=1
|aij |.

Useful facts:

• For a matrix norm |||A||| induced by vector norms such as spectral
norm, 1− norm and ∞-norm, by definition we have

|||Ax||| ≤ |||A||| · |||x|||.

Since |||ABx||| ≤ |||A||| · |||Bx||| ≤ |||A||| · |||B||| · |||x|||, we also have

|||AB||| ≤ |||A||| · |||B|||.
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• For a matrix norm |||A||| defined through singular values such as spec-
tral norm, Frobenius norm and nuclear norm, it is invariant after uni-
tary transformation: let T and S be unitary matrices, then |||A||| =
|||TAS|||. Notice that TAS = (TU)Σ(V ∗S) is the SVD of TAS, so
TAS has the same singular values as A.

A.7 Normal matrices
A matrix A is normal if A∗A = AA∗. The following are equivalent:

• A∗A = AA∗.

• σi(A) = |λi(A)|.

• A is diagonalizable by unitary matrix: A = UΛU∗ where Λ is diago-
nal. (Obviously, A = UΛU∗ is also its eigenvalue decomposition. In
other words, A has a complete set of orthonormal eigenvectors (but
eigenvalues could be negative, could be complex). If Λ has negative
or complex diagonal entries, then A = UΛU∗ is not SVD and its SVD
has the form A = U |Λ|V ∗ where |Λ| is a diagonal matrix with diagonal
entries |λi|. )

The equivalency can be easily established by SVD. All Hermitian matrices
including PSD matrices are normal. Here is one non-Hermitian normal
matrix example: a matrix A is skew-Hermitian if A∗ = −A. Skew-Hermitian
matrices are normal and always have purely imaginary eigenvalues.
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Appendix B

Discrete Laplacian

B.1 Finite difference approximations
For a smooth function u(x), define the following finite difference operators
approximating u′(x) at the point x̄:

• Forward Difference: D+u(x̄) = u(x̄+h)−u(x̄)
h .

• Backward Difference: D−u(x̄) = u(x̄)−u(x̄−h)
h .

• Centered Difference: D0u(x̄) = u(x̄+h)−u(x̄−h)
2h .

By Taylor expansion, the truncation errors of these operators are

D±u(x̄) = u′(x̄) +O(h), D0u(x̄) = u′(x̄) +O(h2).

Define D̂0u(x̄) = u(x̄+h/2)−u(x̄−h/2)
h , then a classial second order finite

difference approximation to u′′(x) at x̄ is given by (denoted by D2):

D2u(x̄) = D+D−u(x̄) = D̂0D̂0u(x̄) = u(x̄+ h)− 2u(x̄) + u(x̄− h)
h2 = u′′(x̄)+O(h2).

The Poisson’s equations are

• 1D: u′′(x) = f(x)

• 2D: ∆u(x, y) = uxx + uyy = f(x, y).

• 3D: ∆u(x, y, z) = f(x, y, z).

B.2 1D BVP: Dirichlet b.c.
Consider solving the 1D Poisson’s equation with homogeneous Dirichlet
boundary conditions:{

−u′′(x) = f(x), x ∈ (0, 1),
u(0) = 0, u(1) = 0. (B.1)

141
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Discretize the domain [0, 1] by a uniform grid with spacing h = 1
n+1 and

n interior nodes: xj = jh, j = 1, 2, · · · , n. See Figure B.1. Let u(x) denote
the true solution and fj = f(xj). For convenience, define two ghost points
x0 = 0 and xn+1 = 1. Let uj be the value of the numerical solution at xj .
Since two end values are given as u(0) = 0, u(1) = 0, only the interior point
values uj(j = 1, · · · , n) are unknowns. After approximating d2

dx2 by D2, we
get a finite difference scheme

−D2uj = −uj−1 + 2uj − uj+1
h2 = fj , j = 1, 2, · · · , n (B.2)

0 x1 x2 x3 xj = jh xn−1 xn 1

Figure B.1: An illustration of the discretized domain.

Define

Uh =


u1
u2
...
un

 , F =


f1
f2
...
fn

 , K = 1
h2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2


.

With the boundary values u0 = 0 and un+1 = 0 from the boundary condi-
tion, we can rewrite the finite difference scheme in the matrix vector form:

KUh = F.

B.2.1 Eigenvalues of K

In general it is difficult to find exact eigenvalues of a large matrix. For
the K matrix, if U is an eigenvector, then KU = λU approximates the
eigenfunction problem:

−u′′ = λu, u(0) = u(1) = 0. (B.3)

This is standard knowledge in an ordinary differential equation course to
find such eigenfunctions as sin(mπx) with eigenvalues λm = m2π2 for m =
1, 2, · · · . So we expect that the eigenvectors of K would look like sin(mπx)
for small h. With the following trigonometric formulas,

sin(mπxj+1) = sin(mπ(xj+h)) = sin(mπxj) cos(mπh)+cos(mπxj) sin(mπh),

sin(mπxj−1) = sin(mπ(xj−h)) = sin(mπxj) cos(mπh)−cos(mπxj) sin(mπh),



B.3. EFFICIENT INVERSION OF DISCRETE LAPLACIAN 143

thus,

− sin(mπxj−1) + 2 sin(mπxj)− sin(mπxj+1) = (2− 2 cos(mπh)) sin(mπxj).

Notice the facts that sin(mπx0) = 0 and sin(mπxn+1) = 0, we also have

2 sin(mπx1)− sin(mπx2) = (2− 2 cos(mπh)) sin(mπx1),

− sin(mπxn−1) + 2 sin(mπxn) = (2− 2 cos(mπh)) sin(mπxn).
Let x = [x1, x2, · · · , xn]T , then the eigenvectors of K are vm = sin(mπx):

K sin(mπx) = 1
h2 (2− 2 cos(mπh)) sin(mπx), m = 1, 2, · · · , n,

with eigenvalues

λm = 1
h2 [2− 2 cos(mπh)] = 4 1

h2 sin2(mπ

2h).

Since all eigenvalues are positive, K is a positive definite matrix, thus
singular values are also eigenvalues. We have

∥K∥ = σ1 = max
m

4 sin2(mπ

2h) = 4 1
h2 sin2(π2

n

n+ 1) ≤ 4 1
h2 ,

and
min

m
4 sin2(mπ

2h) = 4 1
h2 sin2(π2

1
n+ 1)

Thus we have
4 1
h2 sin2(π2h)I ≤ K <

4
h2 I

for any n where h = 1
n+1 .

Define the eigenvector matrix as S = [sin(πx) sin(2πx) · · · sin(nπx)]
and consider the diagonal matrix Λ with diagonal entries 2−2 cos(mπh)

h2 ,m =
1, · · · , n. Then K = SΛS−1, and K−1 = SΛ−1S−1. Therefore we get

1
4h

2I ≤ K−1 <
h2

4 sin2(π
2h)I.

We can check that 4 1
h2 sin2(π

2h) is a decreasing function of h, and 4 1
h2 sin2(π

2h)→
π2 as h→ 0 L’Hospital’s rule.

Thus we also have
1
4h

2I ≤ K−1 <
1
π2 I,

and ∥K−1∥ ≤ 1
π2 .

B.3 Efficient inversion of discrete Laplacian
See Section 2.8 in MA/CS 615 notes.

https://www.math.purdue.edu/%7Ezhan1966/teaching/615/MA615_notes.pdf
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Appendix C

Basic Theorems in Analysis

The following results are standard in many real analysis books, e.g. [7].

C.1 Completeness of Real Numbers
Theorem C.1 (Completeness Theorem for Sequences). If a sequence of real
numbers {an} ⊂ R is monotone and bounded, then it converges.

Theorem C.2 (Completeness Theorem for Sets). If a set of real numbers
S ⊂ R is bounded, then its supremum and infimum exist.

C.2 Compactness
Definition C.1. A subset S in Rn is called compact if any sequence {an} ⊆
S has a convergent subsequence {ani} with limit point in S.

Theorem C.3 (Heine–Borel). A subset S in Rn is compact if and only if
it is closed and bounded.

Theorem C.4 (Bolzano–Weierstrass). Any bounded sequence in Rn has a
convergent subsequence.

Using Theorems above and proof by contradiction, we can show
Theorem C.5. A continuous function f(x) attains its maximum and min-
imum on a compact set in Rn.

C.3 Cauchy Sequence
Definition C.2. A sequence {xk} ⊂ Rn is Cauchy if

∀ε > 0,∃N, ∀m,n ≥ N, ∥xm − xn∥ < ε.

Theorem C.6. A sequence {xk} ⊂ Rn converges if and only if it is a
Cauchy sequence.
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C.4 Infinite Series

Theorem C.7. If
∞∑

n=0
an converges, then lim

n→∞
an = 0.

Theorem C.8. For a decreasing function f(x),
∞∑

n=1
f(n) converges if and

only if
∫∞

N f(x)dx is finite for some N > 0.

The theorem above implies
∞∑

n=1
1

n2 converges and the Harmonic Sum
∞∑

n=1
1
n = +∞.
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