
MA 574 - Numerical Optimization, Fall 2024

I Instructor: Xiangxiong Zhang

I Course webpage:

https://www.math.purdue.edu/∼zhan1966/teaching/574

I Selected topics from the following reference books:

I Beck, Introduction to Nonlinear Optimization
I Beck, First order methods in optimization
I Ryu and Yin, Large-Scale Convex Optimization: Algorithms & Analyses via

Monotone Operators
I Nicolas Boumal, An introduction to optimization on smooth manifolds
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Differences compared to other optimization courses on campus
I There are other graduate level optimization courses offered in CS and engineering

departments at Purdue.
I MA 574 is the only math graduate course on numerical optimization. Fall 2024

will be the first time that it will be taught, covering four topics:
1. Smooth optimization methods such as gradient descent and accelerated gradient

descent.
2. Nonsmooth convex optimization such as proximal gradient and splitting methods.
3. Randomized and stochastic methods.
4. Riemannian optimization.

I I taught MA 598 Topics in Optimization in 2023 covering the first three topics.
I In MA 574, we focus on convergence analysis. Less than one half of MA 574 are

classical ones covered in a standard optimization textbook/course, while the other
content may not be covered in other optimization courses:
I Many methods and techniques such as Nesterov’s acceleration, stochastic gradient

descent and Riemannian optimization became popular only after 2000, thus they
were usually not covered in a book/course 20 or even 10 years ago.

I Riemannian optimization is currently not covered in other courses on campus.
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Plan for this semester

There are many different types of optimization problems, but we mainly focus on the
convergence of algorithms minimizing a convex function f (x) with a large scale:

I Part I: some classical algorithms for minimizing a smooth function f (x) such as
gradient descent, accelerated gradient descent, Newton’s method, quasi Newton
methods, etc.

I Part II: algorithms for composite optimization of minimizing f (x) + g(x) where
f (x) and g(x) are both convex, but at least one of them is not differentiable, e.g.,

min ‖x‖1 + ‖Ax − b‖22

where ‖x‖1 =
∑

i |xi |.
I Part III: stochastic type algorithms, such as stochastic gradient descent.

I Part IV: minimization over a Riemannian manifold constraint.
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Examples

I Part I: for min
x

f (x), the gradient descent method is

xk+1 = xk − ηk∇f (xk)

When and why does gradient descent converge? How fast does it converge?
Prerequisites for Part I:
I Calculus: gradient, Hessian, Taylor Theorem...
I Linear algebra: eigenvalues, singular values and etc.

I Part II: we will introduce subderivatives, proximal operator, and algorithms using
the subderivatives. We will use monotonicity of operators to prove convergence.

min ‖x‖1 + ‖Ax − b‖22

We will need some knowledge on convex non-differentiable functions, which will
be covered in the class.

4 / 9



I Part II: here is another example of nonsmooth convex optimization for denoising a given noisy
image A via TV (total variation) norm minimization

min
x
‖x‖TV + λ‖x − A‖22,

where ‖x‖TV =
∑
i,j

√
|xi,j − xi+1,j |2 + |xi,j − xi,j+1|2

The algorithm PDHG will be covered in part II, and the paper on this method would be a good
choice for the final presentation.

Large scale means: if the dimension of x is n then only O(n) storage is acceptable. What is n2?5 / 9



Examples

I Part III: for minimizing f (x) :=
N∑
i=1

fi (x), the full gradient is ∇f (x) =
N∑
i=1
∇fi (x),

we can use the stochastic gradient like

∇S f (x) :=
∑
i∈S
∇fi (x)

where S is a random small subset of {1, 2, · · · ,N}. The stochastic gradient
descent can be defined as:

xk+1 = xk − ηk∇Sk f (xk).

In order to analyze the convergence, we need some probability knowledge, which
will be introduced.

An example where N is too large: recommendation systems for customers rating
products (movies, merchandise, etc).
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Examples
Part IV: consider minimizing f (x) with x ∈M ⊂ RN where M is a Riemannian manifold. If
you have not heard of manifolds, just think of M being a surface, e.g., a unit sphere.

(a) Charts (b) Tangent Space and Retrac-
tion

I Manifold over R: M is a set and it is locally diffeomorphic to Rd .

I Tangent Space: a tangent vector is tangent to a curve on M.

I For f (X ) defined on M, the Riemannian gradient grad f (X ) is a tangent vector.
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An example of Riemannian Gradient

I Consider min
X∈M

f (X ) = 1
2‖A(X )− b‖2 where A is a linear operator and M is an

embedded manifold in RN .

I Gradient: ∇f (X ) = A∗(A(X )− b).

I Riemannian gradient is the projection of ∂f (X )
∂X = A∗(A(X )− b) onto TXM
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Focuses and learning outcomes of this course

I We focus on analysis of classical algorithms, i.e., why and how fast they converge.
Applications will be barely mentioned, though questions about applications are
always welcome.

I A final presentation/report (depending on our schedule) is required by reading a
paper and/or implementing some classical/novel algorithms. Examples of possible
choices of papers:
I Convergence of nonlinear conjugate gradient method.
I Convergence analysis of Adam.
I Stochastic gradient Langevin dynamics.

I Learning outcome: by the end of the semester, I expect you to ??
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