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Introduction

Let X Ă PN be a smooth projective variety over C of dimension 2n´ 1. Let f : X Ñ Osm

be the universal family of smooth hyperplane sections of X, where Osm is the Zariski open
subset of the dual projective space corresponding to smooth hyperplane sections.

Denote T to be the total space of the vector bundle H2n´2
van whose fiber is the (middle

dimensional) vanishing cohomology H2n´2
van pXt,Zq on a smooth hyperplane section Xt. Topo-

logically, T is an infinite sheeted covering space of the base Osm, with countably many
connected components (the classes with different self-intersection number cannot be con-
nected via monodromy). Among all of the connected components, there is a distinguished
one T 1 containing a vanishing cycle, i.e., consider a disk ∆ transversal to the discriminant
locus OzOsm with ∆˚ Ď Osm, then the restricted family f |∆ has local analytic equation
x2

1`¨ ¨ ¨`x
2
2n´2 “ t around the node, which is diffeomorphic to the tangent bundle of sphere

S2n´2 and a vanishing cycle αt P H2n´2
van pXt,Zq is the fundamental class of the sphere as the

zero section (i.e., Impxiq “ 0 when t ą 0). The component T 1 is well-defined since vanish-
ing cycle is conjugate to each other via monodromy in the universal family of hyperplane
sections, see [9], Proposition 3.23.

Our goal is to understand the topology of the covering space π : T 1 Ñ Osm. In other words,
we would like to understand the global monodromy of vanishing cycle on the universal family
of hyperplane sections. Classically, only local monodromy around a nodal degeneration is
known, which is the Picard-Lefschetz formula. However, no global result is known yet. We
will show that the monodromy of π is "complicated enough" to generate H2n´1

prim pX,Qq which
we will decribe in the following.

Let J “ F nH2n´1
prim pX,Cq˚{H2n´1pX,Zqprim be the middle dimensional primitive interme-

diate Jacobian of X. There is a real anlytic map called Topological Abel-Jacobi map [11]

(1) Φ : T Ñ J.

Schnell [8] showed that:
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Theorem 1. Φ induces map on the level of homology

Φ˚ : H1pT,Zq Ñ H1pJ,Zq – H2n´1pX,Zqprim

has cofinite image.

In fact, Φ˚ coincides with what called the tube mapping defined in [8], which can be
described more geometrically: Choose a base point t0 P Osm, let Xt0 “ X

Ş

Ht0 be the
corresponding hyperplane section. By Poincare duality, we view a vanishing cohomol-
ogy class αt0 P H2n´2pXt,Zq as a vanishing homology class αt0 P H2n´2pXt0 ,Zqvan :“

kerpH2n´2pXt0 ,Zq Ñ H2n´2pX,Zqq. Since a loop in T corresponds to a loop in Osm which
fixes αt0 , Φ˚ is equivalent to the map

Φ˚ : tpαt0 , rγsq P H2n´2pXt0 ,Zqvan ˆ π1pOsm, t0q|rγs ¨ αt0 “ αt0u Ñ H2n´1pX,Zqprim

(2) pαt0 , γq ÞÑ Γ

by sending the pair to its "tube" Γ by following αt0 along the loop γ. The image is a p2n´1q-
chain with boundary BΓ “ αt0 ´ γ ¨ αt0 “ 0, so it is a p2n ´ 1q-cycle. So Schnell’s theorem
can be regarded as realizing a primitive class as trace of monodromy of vanishing classes on
smooth hyperplane sections.

Zhao [11] used Schnell’s theorem to show a theorem called topological Jacobi inversion:

Corollary 1. Up to embed X by linear system |lXt| for some l large enough, the map p1q is
surjective.

If we restrict the topological Abel-Jacobi map to the distinguished component T 1

Φ1 : T 1 Ñ J.

It also induces the tube mapping

(3) Φ1˚ : H1pT
1,Zq Ñ H1pJ,Zq – H2n´1pX,Zqprim

In the paper, we are going to show that

Theorem 2. When X is a smooth hypersurface in P4 of degree d ě 3, then Φ1˚ has cofinite
image.

To describe a geometric meaning, we state following oberservations:
I. The vanishing cycle is conjugate to each other, so we can just fix one vanishing cycle

α P H2n´2pXt0 ,Zqvan.
II. Choose a Lefschetz pencil P1 and UX Ď P1 the locus where hyperplane sections are

smooth, then Zariski’s lemma states that the map the map π1pUX , t0q Ñ π1pOsm, t0q induced
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by inclusion UX ãÝÑ Osm is surjective. So we only need to consider those loops contained in
the Lefschetz pencil.

It follows that an equivalent statement of Theorem 2 will be

Theorem 21. Let X be a smooth hypersurfaces in P4 of degree d ě 3. Let α P H2
vanpXt0 ,Zq

and α be its Poincare dual. LetG be the subgroup of π1pUX , t0q consisting of rγs satisfying
rγs ¨ α “ α, then the map

(4) Φ1˚ : tαu ˆGÑ H3pX,Zq

as defined in p2q has cofinite image.

Our strategy is to first prove the theorem for the case d “ 3, which is based on the
fact that a vanishing cycle on a cubic surface is represented by difference of two disjoint
lines rL1s ´ rL2s together with geometry of Abel-Jacobi map on cubic threefolds [1], [4].
The general situation relies on degeneration of the hypersurface of degree d into union of
hyperplanes of degree 3 and degree d´ 3 meeting transversely. After birational modification
on the total space of the family, we obtain a semistable family where the asymptotic Hodge
theory is well understood [7], then the proof follows from the analysis of degeneration of
vanishing cycle and its monodromy.

1. Cubic Threefolds

In this section, we will give a proof of Theorem 2. For the purpose of completeness, we
will focus on the describing the geometry of component T 1.

1.1. The Component T 1. The first observation is that the covering map π : T 1 Ñ Osm is
finite. As the smooth hyperplane section of cubic threefold Y is a cubic surface Yt, whose
vanishing cohomology H2

vanpXt,Zq is concentrated on type p1, 1q, therefore it is algebraic
according to Lefschetz p1, 1q theorem. In fact, it is classically known that a vanishing cycle
α is represented by a difference of two disjoint lines rL1s ´ rL2s, whose monodromy group
over the universal parameter space Osm Ď O :“ pP4q˚ is the Weyl group W pE6q, which has
order 51840.

Next, let L Ă O be a general line and let U be the open subset L
Ş

Osm. Let F is
the relative Fano scheme of lines on cubic surfaces over L. Explicitly, it is defined by the
incidence relation

F “ tpp, tq|Lp Ă Y XHtu Ă F ˆ L,

where F is the Fano surface of lines on the cubic threefold Y . In other words, we are allowed
to restrict the covering map T 1 Ñ Osm to T 1U Ñ U .

Let π : F Ñ L be the projection to the sectond factor. Then π
(1) is a ramified covering map whose restriction FU Ñ U is a covering space map of 27-to-1;
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(2) has exactly 6 ramification points over each point tnode P LzU and all ramification points
are simple.

We can also consider the fiber product over U

(5) p : FU ˆU FU Ñ U

which parameterizes pair of lines.

Claim. The set of pairs of disjoint lines form a connected component of the covering space
p5q.

Proof. First the universal family of cubic surfaces has monodromyW pE6q act transitively on
ordered 6-tuple pL1, ..., L6q of mutually disjoint lines, so given any pair of disjoint line pL1, L2q

on cubic surface, one complete it to a 6-tuple, so any pair of disjoint line and conjugate to
each other under monodromy action in the universal family of cubic surfaces.

Next, Cheng [C20] showed that the monodromy group of lines of cubic surfaces as hy-
perplane sections of a smooth cubic 3-fold is the full monodromy group W pE6q. Finally,
again by Zariski’s lemma on fundamental group, one can restrict the universal family to a
Lefschetz pencil. �

Now, denote
MÑ U

the connected component of pair of disjoint lines in p5q.
Fiberwise evaluating the pair pL1, L2q to the homology class rL1s´rL2s on the cubic surface.

The class is vanishing since its intersection number with a hyperplane is zero. Moreover, it
is known classically it is actually a vanishing cycle. This gives a map

MÑ T 1U

pL1, L2q ÞÑ rL1s ´ rL2s

over U .
Equivalently, we have a diagram

M T 1U

U

6´1

π
π1

with the horizontal map a covering space map of degree 6, since every local vanishing cycle
has exactly 6 ways as difference of disjoint pair of lines. π is a 27ˆ 16 sheeted covering map,
and π1 is 72 sheeted covering map.
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To get some understanding of local picture of T 1U , let ∆ be a small disk centered at a point
ti P LzU and fix a point t P ∆˚. If pt, αq P T 1U , then according to Picard-Lefschetz formula
on ordinary node on even dimensional variety, the local monodromy induced by π1p∆

˚, tq

has order 2. In particular, there is an analytic punctured disk ∆˚
α Ă T 1U containing the point

pt, αq, and the projection
π1 : ∆˚

α Ñ ∆˚

is given by z ÞÑ zd, where d is the order of the local monordromy of α. Let δ be the local
vanishing cycle, there are two possibilities:
I. xα, δy “ 0, α is invariant under local monodromy and d “ 1;
II. xα, δy ‰ 0, α has nontrivial local monodromy and d “ 2.

Now π1´1p∆˚q is disjoint union of finitely many analytic disks which are finite covering
space over ∆˚ determined by local monodromy of vanishing cycle. We can "fill in the hole"
for these analytic disks and do the same thing for each point ti P LzU . Therefore we get a
proper analytic space T 1U with T 1U as an open dense subspace. So we have a diagram extended
to

M̄ T 1U

L

6´1

π̄
π̄1

where M̄ is the normalization of closure of M in F ˆL F .
Now both π̄ and π̄1 are ramified covers, while the horizontal map is still unramified cover

between smooth proper curves. We have commutative diagram of Abel-Jacobi maps

T 1U

M̄ J

F ˆ F

Φ̄6´1

f ψ

where ψpp, qq “
şLp

Lq
is the Abel-Jacobi map considered in [4]. f is the natural morphism

and it is injective since a pair of disjoint line uniquely determines a hyperplane section. The
diagram commutes is due to the fact the topological Abel-Jacobi map (1) coincides Griffiths
Abel-Jacobi map, when the vanishing cyles parameterized by T 1 are all algebraic [11].

Proposition 1. For Y a cubic threefold, the tube mapping

(6) Φ1˚ : H1pT
1
U , ˚q Ñ H3pY,Zq.
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has cofinite image.

Proof. It is shown in [4] that ψ is generically 6-to-1 onto the theta divisor of the intermediate
Jacobian J . Moreover, ψ contract the diagonal to 0 P J which turns out to be the isolated
triple point singularity of the theta divisor. It follows that f ˝ψ is generically 6-to-1, so Φ̄ is
generically one-to-one and therefore a birational morphism from the smooth curve T 1U onto
its image.

In particular, we conclude that Φ̄˚q : H1pT 1U ,Zq Ñ H1pJ,Zq is nonzero, otherwise, the
corresponding map on fundamental groups is trivial, so Φ̄ lifts to the universal cover C5 of
J , but any holomorphic map from a proper analytic space to affine space will be constant,
which is a contradiction.

Now, since the topological Abel-Jacobi map Φ : T 1U Ñ J factors through Φ̄, and the map
π1pT

1
U , ˚q Ñ π1pT 1U , ˚q induced by inclusion T 1U ãÝÑ T 1U is surjective, it follows that the map

p6q is nonzero.
The proof will be completed using a lemma below. �

Lemma 1. Given a smooth variety X Ă PN of dimension 2n ´ 1. Assume the tube map is
nonzero, then the image of the tube map is cofinite.

Proof. We can choose W Ă PN`1 a smooth variety containing X as a smooth hyperplane
section. Choose a general pencil LW of hyperplane sections of W passing through X “

W
Ş

Hv0 and let UW be the points corresponding to smooth hyperplane section. Then there
is an monodromy action

ρ : π1pUW , v0q Ñ AutH2n´1pX,Qqvan.

There is a classical theorem [9] which states that the action ρ is irreducible. On the other
hand, one can show that the image of tube mapping is invariant under the monodromy action.
In particular, ImpΦ1˚q bQ is a ρ-subrepresentation of H2n´1pX,Qqvan, so the irreduciblity of
ρ together with our assumption implies that ImpΦ1˚qbQ has to be the whole H2n´1pX,Qqvan,
which implies that ImpΦ1˚q Ď H2n´1pX,Zqvan is cofinite.

Lastly, let’s show that the image of tube mapping is indeed invariant under the monodromy
action. Choose a smooth loop l Ď UW based at v0, then by restricting to a small segment li
contained in a small open neighborhood Ui of UW over which the family tW

Ş

HvuvPUW
is

C8 trivial, we can fix a uniform Lefschetz pencil for all (2n-2)-folds Wv “ W
Ş

Hv for v P li
and the family UWv varies smoothly, so the tube map p4q is locally trivial. It follows that
the image of Tube map on UW is a sub-local system of H2n´1pWv,Zqvan. Finally as we have
explained, since the vanishing cycle is conjugate to each other, together with the Zariski’s
lemma (so it doesn’t matter the choice of base point and Lefschetz pencil). So this sub-local
system UW has trivial monodromy. �
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2. Degeneration of Dual Varieties

More generally, let Xd be a degree d ě 2 smooth hypersurface of Pn`1 defined by Fd; Xd1 ,
Xd2 be smooth hypersurfaces of degree d1 and d2 respectively defined by Fd1 and Fd2 , with
d “ d1 ` d2.

We require Fd, Fd1 , Fd2 to be general, so that their common zero locus is a complete
intersection. Besides, by Bertini’s theorem, Fs :“ sFd`Fd1Fd2 is smooth for s ‰ 0 when |s| is
small enough. So for such s ‰ 0, there is a dual map on smooth hypersurface Xs :“ tFs “ 0u

Ds : Xs ÞÑ pPn`1
q
˚

(7) x ÞÑ
`BFs
Bx0

pxq, ...,
BFs
Bxn`1

pxq
˘

with BFs

Bxj
pxq “ sBFd

Bxj
pxq ` Fd2

BFd1

Bxj
pxq ` Fd1

BFd2

Bxj
pxq, j “ 0, ..., n` 1 by direct computation.

The image pXsq
˚ is called the dual variety ofXs and it is well know that it is a hypersurface

of degree m “ dpd ´ 1qn in the dual space. So this defines a rational section µ on the sheaf
SmpV ˚q b O∆ over ∆ which has possibly a pole along s “ 0 where V “ Cn`2, but by
multiplying by a suitable power of s, we can assume the section µ is regular and µp0q ‰ 0.
This will not change the defining hypersurface in projective space, so it defines a hypersurface.

Definition. Define pX0q
˚ to be the projective hypersurface tµ “ 0u Ď pPn`1q˚ and call it the

dual variety in the limit associated to the family sFd ` Fd1Fd2.

X˚
0 is reducible since it contains dual variety of Xd1 and dual variety of Xd2 . However,

since the dual family tX˚
s usP∆ is flat, the degree of X˚

0 should equal to degree of X˚
0 , but

a simple count shows that dpd ´ 1qn ą d1pd1 ´ 1qn ` d2pd2 ´ 1qn so there should be more
components in X˚

0 . In [10], we find other components components explicitly.
Finally we will prove the following:

Lemma 2. By shrinking ∆ to a smaller disk, tHtu is Lefschetz pencil for all Xs with s P ∆.
In other words, we can choose a line L Ď pPn`1q˚, such that L is transverse to all X˚

s . For
s “ 0, this means being transversal to each component of X˚

0

Proof. This argument is based on continuity. First we choose L to be transverse to X˚
0 , then

we show that it is transverse to all Xs up to shrinking to a smaller disk.
When s ‰ 0, the dual variety X˚

s is an irreducible hypersurface of pPn`1q˚, defined by a
single homogeneous polynomial tGs “ 0u varying continuously with respect to the parameter
s.

Then the dual variety in the limit X˚
0 :“ tz|G0pzq “ 0u is defined by G0 :“ limsÑ0Gs.

By assumption, L is disjoint from the singularities SingpX˚
0 q, so there is an open neigh-

borhood U of SingpX˚
0 q in pPn`1q˚ such that U

Ş

L “ H, so by continuity, we can choose
7



∆ small enough so that SingpX˚
s q Ď U for all s P ∆. Therefore, L intersect X˚

s along the
smooth locus pX˚

s q
sm for each s P ∆.

Let tp1, ..., pku be the set of points of L X X˚
0 . Let

řn`1
i“0 a

j
iwi “ 0, j “ 1, ..., n be n

hyperplanes in pPn`1q˚ whose common zero loci is the line L, where w0, ..., wn`1 is the
coordinate on the dual space. So by the transversality assumption, the tangent vectors
`

BG0{Bw0ppiq, ..., BG0{Bwn`1ppiq
˘

is not contained in the span of the three hyperplanes. In
other words, the matrix Mps, wq is of full rank at s “ 0, w “ pi, for i “ 1, ..., k, where
Mps, wq is the pn` 1q ˆ pn` 2q matrix

Mps, wq “

»

—

—

—

–

a1
0 a1

1 ¨ ¨ ¨ a1
n`1

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

an0 an1 ¨ ¨ ¨ ann`1
BGs

Bw0
pwq BGs

Bw1
pwq ¨ ¨ ¨ BGs

Bwn`1
pwq

fi

ffi

ffi

ffi

fl

.

Again by continuity, Mps, wq will remain to be of maximal rank for s P ∆ and w P Ui
for ∆ small open neighborhood of 0, and Ui small open neighborhood of pi. Finally, we can
shrink ∆ so that for each s P ∆, the intersection L

Ş

pX˚
s q
sm is contained in

Ť

i Ui. Therefore
P1 is a Lefschetz pencil for all s P ∆. �

3. Deforming of vanishing cycles

Recall that in the previous section, we associated the family of hypersurfaces of degree d
a family of dual varieties

f :
ď

sP∆

X˚
s Ñ ∆

with X˚
0 as limit of dual variety nearby, which contains X˚

d1
as an irreducible component

(where we assume d1 is the degree at least two factor). Also, we chose a general pencil
L Ď pPn`1q˚ intersecting transversely to X˚

s for all s P ∆.
Choose a point p P L

Ş

X˚
d1
, so in particular, p is a smooth point of Y ˚ and away from

other components of X˚
0 . By inverse image theorem, up to shrinking to a smaller disk, we

can find τpsq P L varying differentiably with respect to s P ∆ such that τpsq P L
Ş

pX˚
s q
sm

and τp0q “ p.
In other words, τ defines a C8 section whose image lies in the smooth part pX˚

s q
sm and

additionally τp0q P pX˚
d1
qsm.

Ť

sP∆ X
˚
s pPn`1q˚ ˆ∆

∆

f τ

c
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This gives a family of hyperplanes Hτpsq which are tangent to Xs and Hτp0q is tangent to
Xd1 and the singularity on the hyperplane section has nondegenerate tangent cone. Choose
a constant section c, where c P pPn`1q˚zX˚

0 is close to τp0q so that there is a local vanishing
cycle α P Hn´1pXd1

Ş

Hc,Zqvan which specializes to the node as Hc specializes to Hτp0q.
Now up to shrinking to a smaller disk of ∆ containing 0, there is a vanishing cycle αs P
Hn´1pXs

Ş

Hcqvan which specializes to the node as Hc specializes to Hτpsq.
The goal of this section is to prove a following (imprecise) statement:

(8) The vanishing cycles is on the hyperplane section Hc is a trivial family over ∆.

Note at the same time the section τ gives a nodal locus via dual correspondence.
We take τp0q P Xd1 Ď Pn`1 which is not on the base locus of ∆-pencil, i.e., not on

Xd1

Ş

Xd, so if we take a small polydisk D containing τp0q so τpsq P D when s is small.
Also we require D to stay away from base locus, then D can thought as living in the total
space X . We can choose affine coordinate x1, ..., xn, t where t corresponds to the pencil L.
Recall that Fs “ sFd`Fd1Fd2 to be the homogeneous polynomial varying in s, so restriction
of Fs to a fixed t is the equation of the hyperplane section Xs

Ş

Ht. For each s P ∆, we
denote τpsq “ pxs1, ..., xsn, tsq the nodal locus, i.e., the hyperplane section Xs XHt´ts has an
ordinary node at τpsq. Since BFs{Btpτpsqq ‰ 0, the implicit function theorem says that there
is a smooth function fspx1, ..., xnq, such that

Fspx1, ..., xn, fspx1, ..., xnqq ” 0.

Moreover fs is holomorphic function in x1, ..., xn and is analytic with respect to the pa-
rameter s. There is a power series expansion

fspx1, ..., xnq “ Qspx1 ´ x
s
1, ..., xn ´ x

s
nq ` higher powers,

where Qs is a nondegenerate quadric form.
Now by a parametric version of holomorphic Morse lemma, we have

Claim. There is an analytic change of coordinate x11, ..., x1n such that

fspx
1
1, ..., x

1
nq “ x121 ` ¨ ¨ ¨ ` x

12
n .

Moreover, the change of coordinate depends analytically with respect to the parameter s.

This implies the following result, which is a precise statement of p8q:

Corollary 2. There is an analytic isomorphism

D
–
ÝÑ tx121 ` ¨ ¨ ¨ ` x

12
n “ tu ˆ∆

preserving projection to ∆.
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Before we end the section, we prove a lemma which will be used later.

Lemma 3. In the fixed t-pencil L in the Lemma 2, there exists a connected analytic open
subset obtained U Ď L by removing finitely many closed disks from L, such that
(i) c (defined ealier in this section) is contained in U , and
(ii) for all s P ∆˚, and t P U , Ht XXs is smooth, and
(iii) for each t P U Ht

Ş

Xdi and Ht

Ş

Xd1

Ş

Xd2 is smooth.

Proof. Since the interesection points of the pencil and the dual variety L
Ş

X˚
s varies con-

tinuously, so for each zi P L
Ş

X˚
0 , there is a small disk Dzi Ď L centered at zi, such that

the intersection of
Ť

sP∆ L
Ş

X˚
s Ă

Ť

iDzi . �

4. Proof of Theorem 2 for quartic threefold

In this section, we will prove Theorem 2 for quartic by degenerating it into a union of cubic
threefold Y and a hyperplane P in P4, where Y and P intersects transversely. More precisely,
let FX , FY and FP be general homogeneous polynomials of degree 4, 3 and 1 respectively,
and the one dimensional of quartic is

(9) X “ tsFX ` FY FP “ 0u Ă ∆ˆ P4,

with s P ∆ a small disk centered at 0 P C, with special fiber Y Y P and general fiber a
smooth quartic 3-fold. By Bertini’s theorem, we can choose the disk small enough, so that
s “ 0 is the only singular fiber.
Xs is used to denote the quartic threefold given by the equation tFs “ FX ` FY FP “ 0u.

Also, by Lemma 3, we have an open subset U Ď L such that it contains a base point c where
the vanishing cycle on the hyperplane section Xs

Ş

Hc deforms trivially as s varies in ∆.
Moreover, Ht

Ş

Xs is smooth for all t P U and s P ∆˚ and all Ht

Ş

Y and Ht

Ş

P
Ş

Y are
smooth.

According to Clemens’s Degeneration on Kahler Manifolds [2], there is a deformation
retract of Xs onto Y

Ť

P which induces diffeomorphism of Y zpY
Ş

P q into a smooth sub-
manifold X 1

s of Xs (and P zpY
Ş

P q into a smooth submanifold X2
s of Xs and disjoint from

X 1
s). So in order to guarantee that the 3-cycles in image of the tube mapping T can be de-

form to nearby quartic, we have to make sure both the vanishing cycle α and those 3-cycles
transported along loops γ which fix α are all supported in Y zpY

Ş

P q.
Now, by Lemma p1q, the proof of theorem 2 reduces to prove

Proposition 2. The tube map of quartic threefold X is nonzero.

4.1. Terminology. In this section, we will introduce some terminology on the tube mapping
on an open submanifold of a (possibly singular) variety.
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Let M be a n-dimensional smooth subvariety of PN , and let L “ P1 be a pencil of
hyperplanes in PN in general position. Denote U Ď L be the set of points corresponding to
the hyperplanes which are not tangent to M . Consider the incidence variety

M̃ :“ tpx, tq PM ˆ U |x PM
č

Htu,

together with projections

M̃ M

U

σ

π

π is proper submersion, so is locally trivial thanks to the Ehresmann’s theorem.
Let t0 P U be a fixed base point and α P Hn´1pM

Ş

Ht0 ,Zqvan a vanishing cohomology
on the hyperplane section and γ : r0, 1s Ñ U with γp0q “ γp1q “ t0 be a loop based at t0
satisfying rγs ¨ α “ α in Hn´1pM

Ş

Ht0 ,Zq as monodromy action. So the trace of α along γ
defines is an integral n-cycle Aα,γ on M̃

Definition. Call Aα,γ P HnpM̃,Zq the tube mapping associated to the pair pα, γq.

So σpAα,γq defines a primitive class in HnpM,Zqprim which is the Tube mapping in the
sense of [8].

More generally, we can consider tube mapping supported in an open submanifold if Ehres-
mann’s theorem still holds. More precisely, let M˝ Ď M be an open submanifold and M̃˝

the set of pairs px, tq with x PM˝
Ş

Ht. Assume that the restriction of π to π|U : M̃˝ Ñ U is
C8 locally trivial, i.e., for each t P U , there is an open subset V Ď U and a fiber preserving
diffeomorphism

π´1pV q
Ş

M̃˝ pπ´1ptq
Ş

M̃˝q ˆ V

V

–

π

Assume additionally that the monodromy action identity rγs¨α “ α holds inHn´1pM
˝
Ş

Ht0 ,Zq.
Then the trace of α along γ is a n-cycle on M̃˝.

Definition. We call Aα,γ the tube mapping associated to the pair pα, γq supported in M˝.

In what follows, we will show for cubic 3-fold and hypersurface 3-fold of higher degree,
such open submanifold M˝ exist (and in fact diffeomorphic to each other) which support
certain amount of 3-cycles arising from such pairs pα, γq.

4.2. Proof of Proposition 2. The proof breaks up into several steps.
11



Step 1. Vanishing cycle on affine complement. Let Yt “ Y
Ş

Ht for t P L, and
Vt “ YtzpY

Ş

P q the affine complement. Denote UY Ď L the set of points where hyperplane
sections on Y is smooth. We first claim that

Lemma 4. For any t P UY , the vanishing homology on cubic surface H2pYt,Zqvan is isomor-
phic to the image of H2pVt,Zq Ñ H2pYt,Zq induced by inclusion Vt ãÝÑ Yt.

Proof. This is a special case of Prop. 7.3 of [6]. Write Pt “ Ht

Ş

P the projective 2-plane. By
definition, the vanishing homology H2pYt,Zqvan is the kernel of H2pYt,Zq Ñ H2pH2,Zq “ Z
induced by inclusion, which is identified with kernel of

(10) H2pYt,Zq Ñ H0pYt
č

Pt,Zq, α ÞÑ α X Pt

by the intersection pairing on Ht. Now p10q fits into the exact sequence

H2pVt,Zq Ñ H2pYt,Zq Ñ H0pYt
č

Pt,Zq,

where the last map factors through Thom isomorphism

H2pYt,Zq Ñ H2pYt, Vt,Zq – H0pYt
č

Pt,Zq.

So by exactness, the lemma is proved. �

It follows that one can represent a vanishing cycle α by a cycle supported in the affine
complement Vt, and therefore any open subspace of Vt which is deformation equivalent to Vt.

Step 2. 3-cycles away from hyperplane. Let UpP q be a tubular open neighborhood of
Y
Ş

P in Y and for t P U denote the Y 1t :“ YtzUpP q the submanifold with boundary. The
following is a consequence of a theorem which will be stated in the Appendix.

Lemma 5. The family tY 1t utPU is C8-locally trivial. Namely, for each t P U 1Y , there is a
neighborhood V of t such that there is a fiber preserving diffeomorphism π´1pVq – Vt ˆ V
preserves inclusion into Yt ˆ V.

This lemma tells us that it makes sense to talk about monodromy of homology on Y 1t over
the base U . We are going to show that the monodromy of vanishing cycle on open part
Recall UY Ď L is the set of points where hyperplane sections on Y is smooth, and U Ď L is
obtained by finitely many small disks centered at L

Ş

X˚
0 , so in particular U Ď UY . Choose

a base point t0 P U (in particular, we choose t0 “ c). Our main proposition in this section
will be

Proposition 3. There are finitely many loops l1, ..., ln P U based at t0 which generate the
fundamental group π1pUY , t0q. Moreover, for any vanishing cycle α P H2pYt0 ,Zqvan supported
in Y 1t0, the trace of α transported along any (composite of) li, i “ 1, ..., n is a 3-cycle in
Y zUpP q.

12



Proof. Denote p1, ..., pn P LzUY be the points corresponding Y 1pi being homotopic to comple-
ment of a smooth cubic curve in a singular cubic surface, and q1, ..., qm P L be the points
corresponding to Y 1qj homotopic to complement of a singular cubic curve in a smooth cubic
surface. Now, let the loop li based at 0 be defined as straight line towards pi, go around
anticlockwise, and go back and stay in U . Then loops l1, ..., ln is a generating set of 3rd
primitive homology on the 3-fold under tube map. Moreover the closed region bounded by
any composite of these loops does not contain the point qj, so does not deposit monodromy
on 1st homology of the cubic curve. It follows from the exact sequence

H1pCt0 ,Zq Ñ H2pY
1
t0
,Zq Ñ H2pYt0 ,Zq Ñ 0,

that the monodromy on the open Y 1t0 coincides with the monodromy of the compact cubic
surface. In other words, we have a commutative diagram �

H2pYt0 ,Zq H2pYt0 ,Zq

H2pY
1
t0
,Zq H2pY

1
t0
,Zq

γ˚

γ˚

Step 3. Deformation of 3-cycle to nearby quartic. Based on two steps discussed
above, we have
‚ an analytic open subset U Ď L such that all t P U corresponds to hyperplaneHt intersecting
transversely with Xs for all s P ∆ (when s “ 0, this implies Ht is transverse to both Y and
P , moreover Ht

Ş

P is plane transverse to the cubic surface Y
Ş

Ht);
‚ a base point t0 P U (t0 “ c) and a local vanishing cycle α P H2pY

Ş

Ht0 ,Zqvan supported in
the open part Y 1t0 , and a continous family of local vanishing cycles αs P H2pXs

Ş

Ht0 ,Zqvan;
‚ a loop γ Ď U based at t0 such that the monodromy action rγs ¨ α “ α in H2pY

1
t0
,Zq. So

the associated tube mapping class Aα,γ is supported in Y zUpP q, whose image is nonzero in
H3pY,Zq.

Our goal is to produce a 3-cycle As in the nearby fiber Xs which is obtained by the tube
mapping of the pair pαs, γq, and As specializes to A0 :“ Aα,γ. In this section, we will deal
with construction of As. In the next section, we will construct the family of vanishing cycles
αs on the quartic Xs

Ş

Ht0 .
Consider the total space of the family of quartic threefolds over a small disk.

X “ tpx, sq P P4
ˆ∆|psFX ` FY FHqpxq “ 0u Ñ ∆, px, sq ÞÑ s.

The total space is singular along ts “ 0, FX “ 0, FY “ 0, FH “ 0u, which is a smooth curve
E of genus 19 in Y

Ş

P .
13



For the reason of Hodge theory, we want a smooth total space carrying the degeneration,
and the special fiber should be normal crossing divisor, so the information of weight filtration
will be related to the geometry of special fiber, so we need to resolve the total space.

The singularity is a nondegenerate node along a transversal hyperplane, so we can produce
a small resolution on the total space by blowing up a threefold in W which contains E. A
good thing for small resolution is that the special fiber will be normal crossing with two
components (comparatively, blowup along E will produces an extra component), so the
weight filtration of the limiting mixed Hodge structure is easy to describe. Since our proof
of Proposition 2 relies heavily on the knowledge of the weight filtration, we prefer small
resolution in this situation.

To produce such a small resolution, for example, we can blowup P in X . As P being
a divisor, the blowup does not change the X outside the singular locus E. In fact it has
an effect of replacing E by a P1-bundle over E. We denote the new total space as W , with
projection W Ñ ∆. So fiber over ∆˚ stay the same as smooth quartic threefold Xs, while
the central fiber is isomorphic to Y

Ť

P̃ , where P̃ is the blowup of P along the curve E. So
we write W “

Ť

sP∆ X̃s.
Now consider the W̃ “ t

`

px, sq, t
˘

P W ˆ U |x P X̃s

Ş

Htu which blows up the base locus
on the pencil P1. So there is a commutative diagram

W̃ W

Z ∆ˆ U X

∆

q

π

By taking an open neighborhood U of Y
Ş

P̃ away from the total space W̃ , the map
W̃ zU Ñ ∆ ˆ U is a submersion. By composing with projection ∆ ˆ U Ñ ∆ and up to
shrinking to a smaller disk of ∆ containing origin, the fiber of W̃ zU Ñ ∆ has two disjoint
components W̃ 1

s and W̃ 2
s . On the special fiber, W̃ 1

0 (resp. W̃ 2
0 ) is blowup along base locus of

open submanifold of Y (resp. P̃ ) away from Y
Ş

P̃ . We denote Z the union
Ť

sP∆ W̃
1
s and

denote q the projection of Z to ∆ˆ U and π to ∆, respectively.

Claim. Both q and π are C8-locally trivial.

Proof. By considering the closure Z̄ of Z inside W̃ and extend the two projections to
Z̄
Ş

π´1p∆q are both proper and submersive along the boundary and interior, so it satisfies
the assumption of Theorem 4 in the appendix, so both q and π are C8-locally trivial. �
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Proposition 4. Up to shrinking to a smaller disk of ∆, there is a fiber preserving diffeo-
morphism

ψ : Z
–
ÝÑ Z0 ˆ∆

such that πZ0 ˝ ψpZs
Ş

Htq Ď Z0

Ş

Ht for all t P U . In other words, the ψ is a trivialization
which preserves hyperplane sections.

Proof. By shrinking U to a smaller open neighborhood U 1 whose closure is countained in U ,
we can find finitely many open covering U1, ..., UN of U 1 and a smaller open disk ∆1 Ď ∆

containing origin such that the q map over ∆1 ˆ Ui is a trivial family. In other words, there
is a diagram

Z|Ui
pW̃ 1

0

Ş

Htiq ˆ∆1 ˆ Ui

∆1 ˆ Ui

∆1

ψi

–
q

π

where ti P Ui and q´1pUtq “ Z|Ut .
Denote ψi the trivialization on Z|Ui

. Note that it preserves hyperplane sections. To
construct a trivialization globally on Z, we need to use partition of unity. To be more
precise, let px1, x2q be a real coordinate on ∆1 and B{Bxj, j “ 1, 2 a constant real vector field
on ∆1. Pullback to the product pW̃ 1

0

Ş

Htqˆ∆1ˆUi and then pushforward via ψ´1
i . Now we

get a vector field vij on Z|Ui
whose horizontal part is B{Bxj. Now choose a partition of unity

of Z with respect to the open covering Z|Ui
, we get smooth functions fi supported in tZ|Ui

u

such that
ř

fi ” 1. It follows that vj :“
ř

i fiv
i
j defines a vector field on Z globally with

constant horizontal part B{Bxj. Let φv denote the one parameter group of diffeomorphism
generated by a vector field v. This induces a desired fiber preserving diffeomorphism

ψ : Z0 ˆ∆1
– Z

pz, ax1 ` bx2q ÞÑ φav1`bv2pzq

�

Proposition above allows us to define a family of 3 cycles Aλ on Zs Ď W̃s via the following
way: Denote ψs “ ψp¨, sq for s P ∆ the diffeomorphism. Let α be a vanishing cycle supported
on Z0

Ş

Ht0 and γp0q “ γp1q “ t0 be a loop on U satisfying rγs ¨ α “ α and A0 “ A the
3-cycle as tube mapping associated to the pair pα, γq supported on the open submanifold
Y zUpP q. Define As :“ ψspAq the 3-cycle on Zs Ď Xs.

Corollary 3. The 3-cycles As on Zs Ď Xs are Tube mapping associated to a pair pα, γq.
15



Now we are ready to finish the proof of Proposition 2.
Proof of Proposition 2. As we have shown above, there is a 3-cycle As in the quartic 3-fold
Xs for s P ∆ as tube mapping of a pair pαs, γq, where αs P H2pXs

Ş

Ht0 ,Zqvan and γ Ď U is
a loop based at t0 which fixes α via monodromy action. So it suffices to show that As is not
a zero class in H3pXs,Zq for some s ‰ 0.

Recall in the beginning of Step 3, we produce a small resolution on the total space of the
quartic family p9q and get a family

(11) h : W Ñ ∆

with W smooth and general fiber being Xs and special fiber being Y
Ť

P̃ .
This is a semistable degeneration and there is an associated limiting mixed Hodge structure

H3
lim with W3 part contributed by the image of H3pY

Ť

P̃ q.
Another way to describe theW3H

3
lim “ H3pY

Ť

P̃ q is by considering the invariant sections
on a local system: Denote h1 : W ˚ Ñ ∆˚ the restriction of p11q. Then the invariant sections
on j˚R3h1˚Z are identified with points on i˚j˚R3h1˚Z, which are precisely W3H

3
lim.

On the other hand, H3pY
Ť

P̃ q fits into an exact sequence

0 Ñ H2
pY

č

P̃ ,Zqvan Ñ H3
pY

ď

P̃ ,Zq Ñ H3
pY,Zqprim ‘H3

pP̃ ,Zqprim Ñ 0.

Since by our construction, the 3-cycle As specializes to A0 contained in Y zUpP q via a
family of 3-cycles As defined in the Corollary 3 above, so A0 is a primitive cohomololgy class
on Y and nonzero, in particular A0 P W3H

3
lim “ i˚j˚R

3h1˚Z according to the exact sequence
above, so the 3-cycles As defines a section in

η : ∆ Ñ j˚R
3h1˚Z

with ηp0q ‰ 0. It follows that ηpsq is not zero for s ‰ 0 close enough to 0. In particular, for
such s, As is not a zero class in H3pXs,Zq. �

5. Proof of Theorem 2

Let Xd be a smooth hypersurface of degree d ě 4 in P4. Then we claim:

Theorem 3. The tube mapping of vanishing cycles on Xd

Φ˚ : H1pT
1
Z,Zq Ñ H3pXd,Zq

is of full rank.

Proof. By degenerating Xd to Xd1 and a smooth hyperplane P intersecting transversely. The
initial step is true for d “ 3 as proved in an earlier section. The induction step is to repeat
same proof as for quartic. �
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Appendix

Theorem 4. (Ehresmann’s theorem for manifolds with boundary) Let M be a smooth mani-
fold possibly with boundary, and B is a smooth manifold such that BB “ H. Let π : M Ñ B

be a proper smooth map such that the restriction to the interior π|M˝ and restriction to the
boundary π|BM are submersive, then M is locally trivial over B, that is, for each b P B, there
exists an open neighborhood U of b such that there is a diffeomorphism

Ψ : π´1
pUq –M0 ˆ U

such that π “ p2 ˝Ψ, where M0 “ π´1pbq and p2 is the projection to the second factor.
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